With Thick Insulator To Reduce Gate Capacitance In Non-channel Areas (e.g., Thick Oxide Over Source Or Drain Region) Patents (Class 257/333)
  • Patent number: 8866225
    Abstract: A field effect transistor including: a support layer, a plurality of active zones based on a semiconductor, each active zone configured to form a channel and arranged between two gates adjacent to each other and consecutive, the active zones and the gates being arranged on the support layer, each gate including a first face on the side of the support layer and a second face opposite the first face. The second face of a first of the two gates is electrically connected to a first electrical contact made on the second face of the first of the two gates, and the first face of a second of the two gates is electrically connected to a second electrical contact passing through the support layer. The gates of the transistor are not electrically connected to each other.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 21, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frederic Mayer, Laurent Clavelier, Thierry Poiroux, Gerard Billiot
  • Patent number: 8860131
    Abstract: An embodiment of a power device comprising and formation of at least one gate region, of at least one buried source region, of at least one body region and of at least one source region; at least one body/source contact and at least one buried source contact; and formation of a source contact region and of a gate contact region through deposition. An embodiment of the method also comprises formation of the at least one gate region and of the at least one buried source region, electrically insulated, through a single deposition of a conductive filling material on an epitaxial layer, on vertical walls of the trench and within the empty region; and through etching of the conductive filling material forming a first spacer and a second spacer, suitable for serving as a gate electrode and forming a buried source electrode within the empty region.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 14, 2014
    Assignee: STMICROELECTRONICS S.r.l.
    Inventor: Fabio Zara
  • Patent number: 8853770
    Abstract: A termination structure is provided for a power transistor. The termination structure includes a semiconductor substrate having an active region and a termination region. The substrate has a first type of conductivity. A termination trench is located in the termination region and extends from a boundary of the active region toward an edge of the semiconductor substrate. A doped region having a second type of conductivity is disposed in the substrate below the termination trench. A MOS gate is formed on a sidewall adjacent the boundary. The doped region extends from below a portion of the MOS gate spaced apart from the boundary toward the edge of the semiconductor substrate. A termination structure oxide layer is formed on the termination trench covering a portion of the MOS gate and extends toward the edge of the substrate.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Vishay General Semiconductor LLC
    Inventors: Chih-Wei Hsu, Florin Udrea, Yih-Yin Lin
  • Patent number: 8847233
    Abstract: It is an object to provide a semiconductor device in which a short-channel effect is suppressed and miniaturization is achieved, and a manufacturing method thereof. A trench is formed in an insulating layer and impurities are added to an oxide semiconductor film in contact with an upper end corner portion of the trench, whereby a source region and a drain region are formed. With the above structure, miniaturization can be achieved. Further, with the trench, a short-channel effect can be suppressed setting the depth of the trench as appropriate even when a distance between a source electrode layer and a drain electrode layer is shortened.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Toshinari Sasaki, Junichi Koezuka, Shunpei Yamazaki
  • Patent number: 8829605
    Abstract: A MOSFET includes: a substrate made of silicon carbide and having a first trench and a second trench formed therein, the first trench having an opening at the main surface side, the second trench having an opening at the main surface side and being shallower than the first trench; a gate insulating film; a gate electrode; and a source electrode disposed on and in contact with a wall surface of the second trench. The substrate includes a source region, a body region, and a drift region. The first trench is formed to extend through the source region and the body region and reach the drift region. The second trench is formed to extend through the source region and reach the body region.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi, Shinji Matsukawa
  • Patent number: 8829620
    Abstract: The first electrode of the transistor may include a first electrically conductive region provided within the semiconductor substrate. The second electrode may include a second electrically conductive region provided within the semiconductor substrate. The first and second regions may be separated by the substrate region, and the control electrode may include a third electrically conductive region provided within the substrate. The third electrically conductive region may be both separated from the substrate region by an insulating region and electrically coupled to the substrate region by a junction diode intended to be reverse-biased.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: September 9, 2014
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Jean Jimenez
  • Patent number: 8823088
    Abstract: A semiconductor device includes a first region and a second region, a buried gate arranged in the first region, and an oxidation prevention barrier surrounding the first region.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: September 2, 2014
    Assignee: SK Hynix Inc.
    Inventor: Se-Aug Jang
  • Patent number: 8809926
    Abstract: A semiconductor memory device may include a common source region on a substrate, an active pattern between the substrate and the common source region, a gate pattern facing a sidewall of the active pattern, a gate dielectric pattern between the gate pattern and the active pattern, a variable resistance pattern between the common source region and the active pattern, and an interconnection line.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park, Sangbo Lee, Hongsun Hwang
  • Patent number: 8796764
    Abstract: A semiconductor device includes a semiconductor substrate, a trench, a buried insulated source electrode arranged in a bottom portion of the trench, a first gate electrode and a second gate electrode arranged in an upper portion of the trench and spaced apart from one another. A surface gate contact extends into the upper portion of the trench and is in physical and electrical contact with the first gate electrode and second gate electrode.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 5, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Uli Hiller
  • Patent number: 8791002
    Abstract: A fabrication method for a semiconductor device includes the step of forming a gate insulating film on the side of a trench, the bottom thereof, and the periphery thereof. The step of forming a gate insulating film includes a step of forming a first insulating film on the side of the trench and a step of forming a second insulating film on the bottom and periphery of the trench using a high-density plasma chemical vapor deposition method. The thickness of the portions of the gate insulating film formed on the bottom and periphery of the trench is made larger than that of the portion of the gate insulating film formed on the side of the trench.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: July 29, 2014
    Assignee: Panasonic Corporation
    Inventor: Chiaki Kudou
  • Patent number: 8779509
    Abstract: A semiconductor device includes a doped layer which contains a first dopant of a first conductivity type. In the doped layer, a counter-doped zone is formed in an edge area that surrounds an element area of the semiconductor device. The counter-doped zone contains at least the first dopant and a second dopant of a second conductivity type, which is the opposite of the first conductivity type. A concentration of the second dopant is at least 20% and at most 100% of a concentration of the first dopant. The dopants in the counter-doped zone decrease charge carrier mobility and minority carrier lifetime such that the dynamic robustness of the semiconductor device is increased.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 15, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Franz Hirler
  • Patent number: 8765609
    Abstract: A process for fabricating a tapered field plate dielectric for high-voltage semiconductor devices is disclosed. The process may include depositing a thin layer of oxide, depositing a polysilicon hard mask, depositing a resist layer and etching a trench area, performing deep silicon trench etch, and stripping the resist layer. The process may further include repeated steps of depositing a layer of oxide and anisotropic etching of the oxide to form a tapered wall within the trench. The process may further include depositing poly and performing further processing to form the semiconductor device.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 1, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Vijay Parthasarathy, Sujit Banerjee, Wayne B. Grabowski
  • Patent number: 8742401
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 3, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 8742496
    Abstract: Methods for forming a memory cell are disclosed. A method includes forming a source-drain structure in a semiconductor substrate where the source-drain structure includes a rounded top surface and sidewall surfaces. An oxide layer is formed on the top and sidewall surfaces of the source-drain structure. The thickness of the portion of the oxide layer that is formed on the top surface of the source-drain structure is greater than the thickness of the portion of the oxide layer that is formed on the sidewall surfaces of the source-drain structure.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: June 3, 2014
    Assignee: Spansion LLC
    Inventors: Shenqing Fang, Gang Xue, Wenmei Li, Inkuk Kang
  • Patent number: 8735228
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 27, 2014
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 8735974
    Abstract: An object of the present application is to reduce the gate capacitance without lowering the withstand voltage of a semiconductor device and prevent generation of a leak current between main electrodes even when an oxide film is formed poorly. A semiconductor device of the present application comprises a gate electrode and a dummy gate electrode. The gate electrode is insulated from an emitter electrode and faces a part of a body region via an insulating film, the part of the body region separating a drift region and an emitter region from each other. The dummy gate electrode is electrically connected with the emitter electrode and is connected with the drift region and the body region via the insulating film. At least a part of the dummy gate electrode comprises a first conductive region of the same type as the drift region. In the dummy gate electrode, the emitter electrode is separated from the drift region by the first conductive region.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Patent number: 8735978
    Abstract: Embodiments of a semiconductor device include a semiconductor substrate having a first surface and a second surface opposed to the first surface, a trench formed in the semiconductor substrate and extending from the first surface partially through the semiconductor substrate, a gate electrode material deposited in the trench, and a void cavity in the semiconductor substrate between the gate electrode material and the second surface. A portion of the semiconductor substrate is located between the void cavity and the second surface.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ljubo Radic, Edouard D. de Frésart
  • Patent number: 8735906
    Abstract: The semiconductor device according to the present invention includes a semiconductor layer of a first conductivity type made of SiC, a body region of a second conductivity type formed on a surface layer portion of the semiconductor layer, a gate trench dug down from a surface of the semiconductor layer with a bottom surface formed on a portion of the semiconductor layer under the body region, source regions of the first conductivity type formed on a surface layer portion of the body region adjacently to side surfaces of the gate trench, a gate insulating film formed on the bottom surface and the side surfaces of the gate trench so that the thickness of a portion on the bottom surface is greater than the thickness of portions on the side surfaces, a gate electrode embedded in the gate trench through the gate insulating film, and an implantation layer formed on a portion of the semiconductor layer extending from the bottom surface of the gate trench to an intermediate portion of the semiconductor layer in the t
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Yuki Nakano
  • Patent number: 8704298
    Abstract: A MOS diode includes a substrate with a mesa, a P-type semiconductor region with etched shallow trench surrounding the mesa, that cause an increasing metal contact area to reduce Vf value, a gate oxide layer arranged on the mesa, a polysilicon layer arranged on the gate oxide layer, and a shielding oxide layer arranged on the polysilicon layer. The termination structure includes a trench, an oxide layer arranged at least within the trench, at least one sidewall polysilicon layer arranged on the oxide layer within the trench. In the MOS diode, the shielding oxide layer is thicker than the gate oxide layer to prevent leaking current. The oxide layer and the sidewall polysilicon layer can enhance the reverse voltage tolerance of the MOS diode. A metal layer covers the polysilicon region, shielding oxide layer, semiconductor regions with etched shallow trench, termination region and some parts outside the termination region.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 22, 2014
    Assignee: PFC Device Corp.
    Inventors: Kuo-Liang Chao, Mei-Ling Chen, Lung-Ching Kao, Hung-Hsin Kuo
  • Patent number: 8680613
    Abstract: The present disclosure describes a termination structure for a high voltage semiconductor transistor device. The termination structure is composed of at least two termination zones and an electrical disconnection between the body layer and the edge of the device. A first zone is configured to spread the electric field within the device. A second zone is configured to smoothly bring the electric field back up to the top surface of the device. The electrical disconnection prevents the device from short circuiting the edge of the device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8680611
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 8669613
    Abstract: A semiconductor die with integrated MOSFET and diode-connected enhancement mode JFET is disclosed. The MOSFET-JFET die includes common semiconductor substrate region (CSSR) of type-1 conductivity. A MOSFET device and a diode-connected enhancement mode JFET (DCE-JFET) device are located upon CSSR. The DCE-JFET device has the CSSR as its DCE-JFET drain. At least two DCE-JFET gate regions of type-2 conductivity located upon the DCE-JFET drain and laterally separated from each other with a DCE-JFET gate spacing. At least a DCE-JFET source of type-1 conductivity located upon the CSSR and between the DCE-JFET gates. A top DCE-JFET electrode, located atop and in contact with the DCE-JFET gate regions and DCE-JFET source regions. When properly configured, the DCE-JFET simultaneously exhibits a forward voltage Vf substantially lower than that of a PN junction diode while the reverse leakage current can be made comparable to that of a PN junction diode.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: March 11, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Sik Lui, Wei Wang
  • Publication number: 20140061783
    Abstract: A super-junction device including a unit region is disclosed. The unit region includes a heavily doped substrate; a first epitaxial layer over the heavily doped substrate; a second epitaxial layer over the first epitaxial layer; a plurality of first trenches in the second epitaxial layer; an oxide film in each of the plurality of first trenches; and a pair of first films on both sides of each of the plurality of first trenches, thereby forming a sandwich structure between every two adjacent ones of the plurality of first trenches, the sandwich structure including two first films and a second film sandwiched therebetween, the second film being formed of a portion of the second epitaxial layer between the two first films of a sandwich structure. A method of forming a super-junction device is also disclosed.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shengan Xiao
  • Patent number: 8653592
    Abstract: A method of forming an isolation structure, comprising: (a) providing a base having a recess; (b) forming a stop layer on the base and in the recess; (c) forming a dielectric material on the stop layer so as to allow the rest of the recess to be filled with the dielectric material; (d) removing the dielectric material over the base by performing a chemical mechanical polishing (CMP) process until a part of the stop layer is exposed so as to form a dielectric layer in the recess; and (e) removing a part of the stop layer, wherein the another part of the stop layer and the dielectric layer filled in the recess constitute the isolation structure.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 18, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Da Cheng, Chin-Tsan Yeh, Tuung Luoh, Chin-Ta Su, Ta-Hung Yang, Kuang-Chao Chen
  • Patent number: 8648412
    Abstract: In one embodiment, a structure for a trench power field effect transistor device with controlled, shallow, abrupt, body contact regions.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 11, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter A. Burke, Agajan Suwhanov, Prasad Venkatraman
  • Patent number: 8637923
    Abstract: A transistor includes a substrate including a trench, an insulation layer filled in a portion of the trench, the insulation layer having a greater thickness over an edge portion of a bottom surface of the trench than over a middle portion of the bottom surface of the trench, a gate insulation layer formed over inner sidewalls of the trench, the gate insulation layer having a thickness smaller than the insulation layer, and a gate electrode filled in the trench.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: January 28, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Cheol-Ho Cho
  • Publication number: 20130341712
    Abstract: A shielding structure for a semiconductor device includes a plurality of trenches. The trenches include passivation liners and shield electrodes, which are formed therein. In one embodiment, the shielding structure is placed beneath a control pad. In another embodiment, the shielding structure is placed beneath a control runner.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 26, 2013
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Peter A. Burke, Brian Pratt, Prasad Venkatraman
  • Patent number: 8614475
    Abstract: A method of manufacturing a non-volatile memory device includes forming a number of memory cells. The method also includes depositing a first dielectric layer over the memory cells, where the first dielectric layer is a conformal layer having a substantially uniform thickness. The method further includes depositing a second dielectric layer over the first dielectric layer. Together, the first and second dielectric layers form an interlayer dielectric without voids.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: December 24, 2013
    Assignees: Spansion LLC, Advanced Mirco Devices, Inc.
    Inventors: Minh Van Ngo, Hirokazu Tokuno, Angela T. Hui, Wenmei Li, Hsiao-Han Thio
  • Patent number: 8610205
    Abstract: In one general aspect, an apparatus can include a shield dielectric disposed within a trench aligned along an axis within an epitaxial layer of a semiconductor, and a shield electrode disposed within the shield dielectric and aligned along the axis. The apparatus can include a first inter-poly dielectric having a portion intersecting a plane orthogonal to the axis where the plane intersects the shield electrode, and a second inter-poly dielectric having a portion intersecting the plane and disposed between the first inter-poly dielectric and the shield electrode. The apparatus can also include a gate dielectric having a portion disposed on the first inter-poly dielectric.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: December 17, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Dean E. Probst
  • Patent number: 8598654
    Abstract: In one general aspect, an apparatus can include a first trench oxide disposed within a first trench of an epitaxial layer and having a trench bottom oxide disposed below a gate portion of the first trench oxide. The apparatus can include a second trench disposed lateral to the first trench. The trench bottom oxide portion of the first oxide can have a thickness greater than a distance within the epitaxial layer from the first trench to the second trench.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: December 3, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chanho Park, Ashok Challa, Ritu Sodhi
  • Patent number: 8592895
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: November 26, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20130277737
    Abstract: A semiconductor device includes a gate metal buried within a trench included in a semiconductor substrate including an active region defined by an isolation layer, a spacer pattern disposed on an upper portion of a sidewall of a gate metal, a first gate oxide layer disposed between the spacer pattern and the trench, a second gate oxide layer disposed below the first gate oxide layer and the gate metal, and a junction region disposed in the active region to overlap the first gate oxide layer.
    Type: Application
    Filed: June 13, 2013
    Publication date: October 24, 2013
    Inventor: Wan Soo KIM
  • Patent number: 8564048
    Abstract: Embodiments of the invention relate to field effect transistors. The field effect transistor includes a gate electrode for providing a gate field, a first electrode including a conductive material having a low carrier density and a low density of electronic states, a second electrode, and a semiconductor. Contact barrier modulation includes barrier height lowering of a Schottky contact between the first electrode and the semiconductor. In some embodiments of the invention, a vertical field effect transistor employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 22, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Bo Liu, Mitchell Austin McCarthy, John Robert Reynolds, Franky So
  • Patent number: 8558305
    Abstract: An embodiment of a method for manufacturing a power device integrated on a semiconductor substrate. The method includes photo-lithography and etching of an epitaxial layer for the formation of at least one deep trench; deposition of a dielectric layer with partial filling of the at least one trench; complete filling of the at least one trench with a layer of sacrificial material; selective etching of the dielectric layer with consequent retrocession below the layer of sacrificial material; selective etching of the layer of sacrificial material with consequent formation of an empty region within the at least one trench; and growth of a layer of gate oxide; formation of at least one gate region, of at least one buried source region, of at least one body region and of at least one source region.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: October 15, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventor: Fabio Zara
  • Publication number: 20130240988
    Abstract: In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Sven Beyer
  • Patent number: 8530963
    Abstract: A power transistor includes a plurality of transistor cells. Each transistor cell has a first electrode coupled to a first electrode interconnection region overlying a first major surface, a control electrode coupled to a control electrode interconnection region overlying the first major surface, and a second electrode coupled to a second electrode interconnection region overlying a second major surface. Each transistor cell has an approximately constant doping concentration in the channel region. A dielectric platform is used as an edge termination of an epitaxial layer to maintain substantially planar equipotential lines therein. The power transistor finds particular utility in radio frequency applications operating at a frequency greater than 500 megahertz and dissipating more than 5 watts of power. The semiconductor die and package are designed so that the power transistor can efficiently operate under such severe conditions.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: September 10, 2013
    Assignee: Estivation Properties LLC
    Inventor: Robert Bruce Davies
  • Patent number: 8519473
    Abstract: A vertical transistor component is produced by providing a semiconductor body with a first surface and a second surface, producing at least one gate contact electrode in a trench, the trench extending from the first surface through the semiconductor body to the second surface, and producing at least one gate electrode connected to the at least one gate contact electrode in the region of the first surface.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 27, 2013
    Assignee: Infineon Technologies AG
    Inventors: Andreas Peter Meiser, Markus Zundel, Christoph Kadow
  • Patent number: 8502281
    Abstract: An integrated circuit and component is disclosed. In one embodiment, the component is a compensation component, configuring the compensation regions in the drift zone in V-shaped fashion in order to achieve a convergence of the space charge zones from the upper to the lower end of the compensation regions is disclosed.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Holger Kapels
  • Patent number: 8502287
    Abstract: Field effect devices and ICs with very low gate-drain capacitance Cgd are provided by forming a substantially empty void between the gate and the drain regions. For vertical FETS a cavity is etched in the semiconductor (SC) and provided with a gate dielectric liner. A poly-SC gate deposited in the cavity has a central fissure (empty pipe) extending through to the underlying SC. This fissure is used to etch the void in the SC beneath the poly-gate. The fissure is then closed by a dielectric plug formed by deposition or oxidation without significantly filling the etched void. Conventional process steps are used to provide the source and body regions around the cavity containing the gate, and to provide a drift space and drain region below the body region. The etched void between the gate and drain provides lower Cgd and Ron*Qg than can be achieved using low k dielectrics.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ljubo Radic, Edouard D. de Frésart
  • Patent number: 8497550
    Abstract: A DRAM memory cell includes: a first finFET structure; and a second finFET structure adjacent to the first finFET structure. The second finFET structure includes: a source follower transistor in a first fin of the second finFET structure; an access transistor in a second fin of the second fin FET structure; a write word line; and a read word line stacked above the write word line. When the read word line is fired high, the source follower transistor enables data to be read from the first finFET structure.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: July 30, 2013
    Assignee: Nanya Technology Corp.
    Inventor: Werner Juengling
  • Patent number: 8487368
    Abstract: A trench type power MOSFET has a thin vertical gate oxide along its side walls and a thickened oxide with a rounded bottom at the bottom of the trench to provide a low RDSON and increased VDSMAX and VGSMAX and a reduced Miller capacitance. The walls of the trench are first lined with nitride to permit the growth of the thick bottom oxide to, for example 1000? to 1400? and the nitride is subsequently removed and a thin oxide, for example 320? is regrown on the side walls. In another embodiment, the trench bottom in amorphized and the trench walls are left as single crystal silicon so that oxide can be grown much faster and thicker on the trench bottom than on the trench walls during an oxide growth step. A reduced channel length of about 0.7 microns is used. The source diffusion is made deeper than the implant damage depth so that the full 0.7 micron channel is along undamaged silicon.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: July 16, 2013
    Assignee: International Rectifier Corporation
    Inventor: Narash Thaper
  • Patent number: 8487373
    Abstract: Methods for forming a memory cell are disclosed. A method includes forming a source-drain structure in a semiconductor substrate where the source-drain structure includes a rounded top surface and sidewall surfaces. An oxide layer is formed on the top and sidewall surfaces of the source-drain structure. The thickness of the portion of the oxide layer that is formed on the top surface of the source-drain structure is greater than the thickness of the portion of the oxide layer that is formed on the sidewall surfaces of the source-drain structure.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 16, 2013
    Assignee: Spanion LLC
    Inventors: Shenqing Fang, Gang Xue, Wenmei Li, Inkuk Kang
  • Patent number: 8455343
    Abstract: A semiconductor device includes a first region and a second region, a buried gate arranged in the first region, and an oxidation prevention barrier surrounding the first region.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 4, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Se-Aug Jang
  • Patent number: 8431457
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of trenches using a first mask. The trenches include source pickup trenches located in outside a termination area and between two adjacent active areas. First and second conductive regions separated by an intermediate dielectric region are formed using a second mask. A first electrical contact to the first conductive region and a second electrical contact to the second conductive region are formed using a third mask and forming a source metal region. Contacts to a gate metal region are formed using a fourth mask. A semiconductor device includes a source pickup contact located outside a termination region and outside an active region of the device.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 30, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hong Chang, Yi Su, Wenjun Li, Limin Weng, Gary Chen, Jongoh Kim, John Chen
  • Patent number: 8431989
    Abstract: This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one of the cells constituting an active cell has a source region disposed next to a trenched gate electrically connecting to a gate pad and surrounding the cell. The trenched gate further has a bottom-shielding electrode filled with a gate material disposed below and insulated from the trenched gate. At least one of the cells constituting a source-contacting cell surrounded by the trench with a portion functioning as a source connecting trench is filled with the gate material for electrically connecting between the bottom-shielding electrode and a source metal disposed directly on top of the source connecting trench.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 30, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Sik K. Lui
  • Patent number: 8431450
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Patent number: 8426912
    Abstract: A semiconductor device according to the present invention includes: a semiconductor layer of a first conductivity type; a body region of a second conductivity type formed in a surface layer portion of the semiconductor layer; a trench dug from the surface of the semiconductor layer to penetrate the body region; a source region of a first conductivity type formed on a side portion of the trench in a surface layer portion of the body region; a gate insulating film formed on the bottom surface and the side surface of the trench; a gate electrode embedded in the trench through the gate insulating film and so formed that the surface thereof is lower by one stage than the surface of the source region; and a peripheral wall film formed on a peripheral edge portion of the surface of the gate electrode to be opposed to an upper end portion of the side surface of the trench.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: April 23, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Naoki Izumi
  • Patent number: 8420511
    Abstract: The invention provides a method for forming a transistor, which includes: providing a substrate, a semiconductor layer being formed on the substrate; forming a dummy gate structure on the semiconductor layer; forming a source region and a drain region in the substrate and the semiconductor layer and at opposite sides of the dummy gate structure; forming an interlayer dielectric layer on the semiconductor layer; removing the dummy gate structure for forming an opening in the interlayer dielectric layer; non-crystallizing the semiconductor layer exposed in the opening for forming a channel layer; annealing the channel layer so that the channel layer and the substrate have same crystal orientation; and forming a metal gate structure in the opening, the metal gate being formed on the channel layer. Saturation current of the transistor is raised, and the performance of a semiconductor device is promoted.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 16, 2013
    Assignee: Semiconductor Manufacturing International Corp.
    Inventor: Fumitake Mieno
  • Patent number: 8384152
    Abstract: A semiconductor device includes a first conductivity type layer of a first conductivity type, a body layer of a second conductivity type formed on the first conductivity type layer, a gate trench passing through the body layer so that the deepest portion thereof reaches the first conductivity type layer, a source region of the first conductivity type formed around the gate trench on the surface layer portion of the body layer, a gate insulating film formed on the bottom surface and the side surface of the gate trench, and a gate electrode embedded in the gate trench through the gate insulating film, and the bottom surface of the gate electrode and the upper surface of the first conductivity type layer are flush with each other.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: February 26, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshikazu Nakagawa, Naoki Izumi, Masaki Nagata
  • Patent number: 8372716
    Abstract: In one embodiment, a semiconductor device is formed having vertical localized charge-compensated trenches, trench control regions, and sub-surface doped layers. The vertical localized charge-compensated trenches include at least a pair of opposite conductivity type semiconductor layers. The trench control regions are configured to provide a generally vertical channel region electrically coupling source regions to the sub-surface doped layers. The sub-surface doped layers are further configured to electrically connect the drain-end of the channel to the vertical localized charge compensation trenches. Body regions are configured to isolate the sub-surface doped layers from the surface of the device.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Peter J. Zdebel