In Integrated Circuit Structure Patents (Class 257/337)
  • Patent number: 8686502
    Abstract: In an LDMOS device leakage and forward conduction parameters are adjusted by integrating an Schottky diode into the LDMOS by substituting one or more n+ source regions with Schottky diodes.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Venkat Raghavan, Andrew D. Strachan
  • Patent number: 8680616
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Ker Hsiao Huo, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20140070313
    Abstract: A power MOSFET has a main-FET (MFET) and an embedded current sensing-FET (SFET). MFET gate runners are coupled to SFET gate runners by isolation gate runners (IGRs) in a buffer space between the MFET and the SFET. In one embodiment, n IGRs (i=1 to n) couple n+1 gates of a first portion of the MFET (304) to n gates of the SFET. The IGRs have zigzagged central portions where each SFET gate runner is coupled via the IGRs to two MFET gate runners. The zigzagged central portions provide barriers that block parasitic leakage paths, between sources of the SFET and sources of the MFET, for all IGRs except the outboard sides of the first and last IGRs. These may be blocked by increasing the body doping in regions surrounding the remaining leakage paths. The IGRs have substantially no source regions.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Peilin Wang, Jingjing Chen, Edouard D. de Fresart, Pon Sung Ku, Wenyi Li, Ganming Qin
  • Publication number: 20140070312
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Inventors: Hongning Yang, Xin Lin, Jiang-Kai Zuo
  • Publication number: 20140061785
    Abstract: An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Amitava Chatterjee, Sameer Pendharkar
  • Patent number: 8664715
    Abstract: A transistor is formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 4, 2014
    Assignee: Advanced Analogic Technologies Incorporated
    Inventors: Donald R. Disney, Richard K. Williams
  • Patent number: 8664716
    Abstract: In a lateral-type power MOSFET, high breakdown voltage is achieved with suppressing to increase a cell pitch, and a feedback capacity and an ON resistance are decreased. An n? type silicon region having a high resistance to be a region of maintaining a breakdown voltage is vertically provided with respect to a main surface of an n+ type silicon substrate, and the n? type silicon region having the high resistance is connected to the n+ type silicon substrate. Also, a conductive substance is filled through an insulating substance inside a trench formed to reach the n+ type silicon substrate from the main surface of the n+ type silicon substrate so as to contact with the n? type silicon region having the high resistance, and the conductive substance is electrically connected to a source electrode.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Takayuki Hashimoto, Takashi Hirao, Noboru Akiyama
  • Patent number: 8648416
    Abstract: An integrated circuit includes a high voltage n-channel MOS power transistor integrated with a high voltage n-channel MOS blocking transistor. The power transistor and the blocking transistor have electrically coupled drain contact regions. In one embodiment, a drain area of the power transistor is separate from a drain area of the blocking transistor. In another embodiment, the drain area of the power transistor is contiguous with the drain area of the blocking transistor. The power transistor and the blocking transistor have drain extensions with drift areas. The power transistor drift area is laterally adjacent to both sides of the blocking transistor drift area. The drift areas are aligned so that breakdown does not occur between the power transistor and the blocking transistor. The body of the blocking transistor is isolated from the substrate.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Joseph Maurice Khayat, Marie Denison
  • Publication number: 20140035032
    Abstract: A semiconductor structure for facilitating an integration of power devices on a common substrate includes a first insulating layer formed on the substrate and an active region having a first conductivity type formed on at least a portion of the first insulating layer. A first terminal is formed on an upper surface of the structure and electrically connects with at least one other region having the first conductivity type formed in the active region. A buried well having a second conductivity type is formed in the active region and is coupled with a second terminal formed on the upper surface of the structure. The buried well and the active region form a clamping diode which positions a breakdown avalanche region between the buried well and the first terminal. A breakdown voltage of at least one of the power devices is a function of characteristics of the buried well.
    Type: Application
    Filed: July 11, 2013
    Publication date: February 6, 2014
    Inventors: Jacek Korec, Boyi Yang
  • Patent number: 8643071
    Abstract: A MOSFET device includes one or more active device structures and one or more dummy structures formed from semiconductor drift region and body regions. The dummy structures are electrically connected in parallel to the active device structures. Each dummy structure includes an electrically insulated snubber electrode formed proximate the body region and the drift region, an insulator portion formed over the snubber electrode and a top surface of the body region, and one or more electrical connections between the snubber electrode and portions of the body region and a source electrode. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Ji Pan, Daniel Ng, Anup Bhalla
  • Patent number: 8643090
    Abstract: In various embodiments, a semiconductor device is provided. The semiconductor device may include a first source/drain region, a second source/drain region, an active region electrically coupled between the first source/drain region and the second source/drain region, a trench disposed between the second source/drain region and at least a portion of the active region, a first isolation layer disposed over the bottom and the sidewalls of the trench, electrically conductive material disposed over the isolation layer in the trench, a second isolation layer disposed over the active region, and a gate region disposed over the second isolation layer. The electrically conductive material may be coupled to an electrical contact.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Publication number: 20140027846
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Patent number: 8637370
    Abstract: A high voltage trench MOS and its integration with low voltage integrated circuits is provided. Embodiments include forming, in a substrate, a first trench with a first oxide layer on side surfaces, a narrower second trench, below the first trench with a second oxide layer on side and bottom surfaces, and spacers on sides of the first and second trenches; removing a portion of the second oxide layer from the bottom surface of the second trench between the spacers; filling the first and second trenches with a first poly-silicon to form a drain region; removing the spacers, exposing side surfaces of the first poly-silicon; forming a third oxide layer on side and top surfaces of the first poly-silicon; and filling a remainder of the first and second trenches with a second poly-silicon to form a gate region on each side of the drain region.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 28, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Purakh Raj Verma, Yi Liang, Dong Yemin
  • Publication number: 20140021540
    Abstract: An integrated circuit includes a high voltage n-channel MOS power transistor integrated with a high voltage n-channel MOS blocking transistor. The power transistor and the blocking transistor have electrically coupled drain contact regions. In one embodiment, a drain area of the power transistor is separate from a drain area of the blocking transistor. In another embodiment, the drain area of the power transistor is contiguous with the drain area of the blocking transistor. The power transistor and the blocking transistor have drain extensions with drift areas. The power transistor drift area is laterally adjacent to both sides of the blocking transistor drift area. The drift areas are aligned so that breakdown does not occur between the power transistor and the blocking transistor. The body of the blocking transistor is isolated from the substrate.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Joseph Maurice Khayat, Marie Denison
  • Patent number: 8633541
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 21, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Farzan Farbiz, Akram A. Salman
  • Publication number: 20140008724
    Abstract: A MOS transistor comprises a substrate of a first conductivity, a first region of the first conductivity formed over the substrate, a second region of the first conductivity formed in the first region, a first drain/source region of a second conductivity formed in the second region, a second drain/source region of the second conductivity and a body contact region of the first conductivity, wherein the body contact region and the first drain/source region are formed in an alternating manner from a top view.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsueh-Liang Chou, Chun-Wai Ng, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20140001547
    Abstract: A semiconductor device includes a doped layer which contains a first dopant of a first conductivity type. In the doped layer, a counter-doped zone is formed in an edge area that surrounds an element area of the semiconductor device. The counter-doped zone contains at least the first dopant and a second dopant of a second conductivity type, which is the opposite of the first conductivity type. A concentration of the second dopant is at least 20% and at most 100% of a concentration of the first dopant. The dopants in the counter-doped zone decrease charge carrier mobility and minority carrier lifetime such that the dynamic robustness of the semiconductor device is increased.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Franz Hirler
  • Publication number: 20140001549
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within a portion of the substrate contained by the isolation structure, and a resistor circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region, which is separated from the isolation structure by a portion of the semiconductor substrate having the first conductivity type. The resistor circuit is connected between the isolation structure and the body region. The resistor circuit may include one or more resistor networks and, optionally, a Schottky diode and/or one or more PN diode(s) in series and/or parallel with the resistor network(s).
    Type: Application
    Filed: November 7, 2012
    Publication date: January 2, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: HUBERT M. BODE, Weize Chen, Richard J. De Souza, Patrice M. Parris
  • Publication number: 20140001550
    Abstract: A circuit includes first, second, third and fourth terminals, and first and second switches. The first switch switches a first signal from the first terminal to the second terminal or from the first terminal to the fourth terminal. The second switch switches a second signal from the third terminal to the second terminal or from the third terminal to the fourth terminal. The first switch comprises a first switching element with a first high-frequency switching transistor connected between the first terminal and the second terminal, and a second switching element with a second high-frequency switching transistor connected between the first terminal and the fourth terminal. The second switch comprises a third switching element with a third high-frequency transistor connected between the third terminal and the second terminal and comprises a fourth switching element with a fourth high-frequency switching transistor connected between the third terminal and the fourth terminal.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Applicant: Infineon Technologies AG
    Inventors: Reinhard Losehand, Hans Taddiken, Udo Gerlach
  • Publication number: 20140001473
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Publication number: 20140001545
    Abstract: A multi-region (81, 83) lateral-diffused-metal-oxide-semiconductor (LDMOS) device (40) has a semiconductor-on-insulator (SOI) support structure (21) on or over which are formed a substantially symmetrical, laterally internal, first LDMOS region (81) and a substantially asymmetric, laterally edge-proximate, second LDMOS region (83). A deep-trench isolation (DTI) wall (60) substantially laterally terminates the laterally edge-proximate second LDMOS region (83). Electric field enhancement and lower source-drain breakdown voltages (BVDSS) exhibited by the laterally edge-proximate second LDMOS region (83) associated with the DTI wall (60) are avoided by providing a doped SC buried layer region (86) in the SOI support structure (21) proximate the DTI wall (60), underlying a portion of the laterally edge-proximate second LDMOS region (83) and of opposite conductivity type than a drain region (31) of the laterally edge-proximate second LDMOS region (83).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140001548
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: November 7, 2012
    Publication date: January 2, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: WEIZE CHEN, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Publication number: 20140001546
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within a portion of the substrate contained by the isolation structure, and a resistor circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a current carrying region (e.g., a source region of the first conductivity type and/or a drain region of the second conductivity type), and the resistor circuit is connected between the isolation structure and the current carrying region. The resistor circuit may include one or more resistor networks and, optionally, a Schottky diode and/or one or more PN diode(s) in series and/or parallel with the resistor network(s).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: HUBERT M. BODE, WEIZE CHEN, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Publication number: 20130341717
    Abstract: A device includes a semiconductor substrate, a body region in the semiconductor substrate, having a first conductivity type, and including a channel region through which charge carriers flow, a drain region in the semiconductor substrate, having a second conductivity type, and spaced from the body region along a first lateral dimension, a drift region in the semiconductor substrate, having the second conductivity type, and electrically coupling the drain region to the channel region, and a plurality of floating reduced surface field (RESURF) regions in the semiconductor substrate adjacent the drift region, having the first conductivity type, and around which the charge carriers drift through the drift region under an electric field arising from a voltage applied to the drain region. Adjacent floating RESURF regions of the plurality of floating RESURF regions are spaced from one another along a second lateral dimension of the device by a respective gap.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Richard J. De Souza, Patrice M. Parris
  • Publication number: 20130334599
    Abstract: A MOSFET device includes one or more active device structures and one or more dummy structures formed from semiconductor drift region and body regions. The dummy structures are electrically connected in parallel to the active device structures. Each dummy structure includes an electrically insulated snubber electrode formed proximate the body region and the drift region, an insulator portion formed over the snubber electrode and a top surface of the body region, and one or more electrical connections between the snubber electrode and portions of the body region and a source electrode. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Ji Pan, Daniel Ng, Anup Bhalla
  • Publication number: 20130334600
    Abstract: A transistor device and a manufacturing method thereof are provided. The transistor device includes a substrate, a first well, a second well, a shallow trench isolation (STI), a source, a drain and a gate. The first well is disposed in the substrate. The second well is disposed in the substrate. The STI is disposed in the second well. The STI has at least one floating diffusion island. The source is disposed in the first well. The drain is disposed in the second well. The electric type of the floating diffusion island is different from or the same with that of the drain. The gate is disposed above the first well and the second well, and partially overlaps the first well and the second well.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Shun Hsu, Wen-Peng Hsu, Ke-Feng Lin, Min-Hsuan Tsai, Chih-Chung Wang
  • Publication number: 20130334583
    Abstract: The semiconductor device includes word lines on a semiconductor substrate, common gates connected to each of the word lines and vertically disposed in the semiconductor substrate, buried bit lines intersecting the word lines at a non-right angle in a plan view, and a pair of vertical transistors sharing each of the common gates. The pair of vertical transistors is disposed on both sides of one of the word lines. Further, the pair of vertical transistors is electrically connected to the two adjacent buried bit lines. Electronic systems including the semiconductor device and related methods are also provided.
    Type: Application
    Filed: December 18, 2012
    Publication date: December 19, 2013
    Applicant: SK HYNIX INC.
    Inventor: Ki Ho YANG
  • Publication number: 20130320443
    Abstract: A vertical DMOS device implements one or more deep silicon via (DSV) plugs, thereby significantly reducing the layout area and on-resistance (RDSON) of the device. The DSV plugs extend through a semiconductor substrate to contact a conductively doped buried diffusion region, which forms the drain of the vertical DMOS device. Methods for fabricating the vertical DMOS device are compatible with conventional sub-micron VLSI processes, such that the vertical DMOS device can be readily fabricated on the same integrated circuit as CMOS devices and analog devices, such as lateral double-diffused MOS (LDMOS) devices.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Sharon Levin, Zachary K. Lee, Shye Shapira
  • Publication number: 20130320444
    Abstract: An integrated circuit and component is disclosed. In one embodiment, the component is a compensation component, configuring the compensation regions in the drift zone in V-shaped fashion in order to achieve a convergence of the space charge zones from the upper to the lower end of the compensation regions is disclosed.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Holger Kapels
  • Publication number: 20130313641
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device. The DMOS device is formed in a substrate, and includes a high voltage well, a first field oxide region, a first gate, a first source, a drain, a body region, a body electrode, a second field oxide region, a second gate, and a second source. The second field oxide region and the first field oxide region are separated by the high voltage well and the body region. A part of the second gate is on the second field oxide region, and another part of the second gate is on the body region. The second gate is electrically connected to the first gate, and the second source is electrically connected to the first source, such that when the DMOS device is ON, a surface channel and a buried channel are formed.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Patent number: 8592902
    Abstract: Gate cross diffusion in a semiconductor structure is substantially reduced or eliminated by forming multiple n-type gate regions with different dopant concentrations and multiple p-type gate regions with different dopant concentrations so that the n-type gate region with the lowest dopant concentration touches the p-type gate region with the lowest dopant concentration.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Texas Instrument Incorporated
    Inventor: Manoj Mehrotra
  • Patent number: 8587058
    Abstract: The present invention provides a lateral diffused metal-oxide-semiconductor device including a first doped region, a second doped region, a third doped region, a gate structure, and a contact metal. The first doped region and the third doped region have a first conductive type, and the second doped region has a second conductive type. The second doped region, which has a racetrack-shaped layout, is disposed in the first doped region, and has a long axis. The third doped region is disposed in the second doped region. The gate structure is disposed on the first doped region and the second doped region at a side of the third doped region. The contact metal is disposed on the first doped region at a side of the second doped region extending out along the long axis, and is in contact with the first doped region.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: November 19, 2013
    Assignee: United Microelectronics Corp.
    Inventors: An-Hung Lin, Hong-Ze Lin, Bo-Jui Huang, Wei-Shan Liao, Ting-Zhou Yan, Kun-Yi Chou, Chun-Wei Chen, Ming-Yong Jian
  • Patent number: 8581344
    Abstract: A laterally diffused metal oxide semiconductor transistor. The laterally diffused metal oxide semiconductor transistor includes a substrate, a drain formed thereon, a source formed on the substrate, comprising a plurality of individual sub-sources respectively corresponding to various sides of the drain, a plurality of channels formed in the substrate between the sub-sources and the drain, a gate overlying a portion of the sub-sources and the channels, and a drift layer formed in the substrate underneath the drain.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: November 12, 2013
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Ya-Sheng Liu
  • Publication number: 20130292765
    Abstract: An inventive semiconductor device includes a semiconductor layer, a source region provided in a surface layer portion of the semiconductor layer, a drain region provided in the surface of the semiconductor layer in spaced relation from the source region, a gate insulation film provided in opposed relation to a portion of the surface of the semiconductor layer present between the source region and the drain region, a gate electrode provided on the gate insulation film, and a drain-gate isolation portion provided between the drain region and the gate insulation film for isolating the drain region and the gate insulation film from each other in non-contact relation.
    Type: Application
    Filed: July 13, 2013
    Publication date: November 7, 2013
    Inventors: Mitsuo KOJIMA, Shoji TAKEI
  • Patent number: 8575693
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device. The DMOS device is formed in a substrate, and includes a high voltage well, a first field oxide region, a first gate, a first source, a drain, a body region, a body electrode, a second field oxide region, a second gate, and a second source. The second field oxide region and the first field oxide region are separated by the high voltage well and the body region. A part of the second gate is on the second field oxide region, and another part of the second gate is on the body region. The second gate is electrically connected to the first gate, and the second source is electrically connected to the first source, such that when the DMOS device is ON, a surface channel and a buried channel are formed.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 5, 2013
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Patent number: 8569836
    Abstract: A semiconductor device includes an output port that has a first lateral double diffused metal oxide semiconductor (LDMOS) device and an electrostatic discharge protection device that has a second LDMOS device and a bipolar transistor and that protects the output port from electrostatic discharge. A breakdown voltage of the second LDMOS device is equal to or lower than a breakdown voltage of the first LDMOS device.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 29, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Mueng-Ryul Lee
  • Publication number: 20130277739
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Patent number: 8552585
    Abstract: A semiconductor device includes a semiconductor substrate, a first p-channel laterally diffused metal oxide semiconductor (LDMOS) transistor formed over the semiconductor substrate and additional p-channel LDMOS transistors formed over the semiconductor substrate. First drain and gate electrodes are formed over the substrate and are coupled to the first LDMOS transistor. Additional drain and gate electrodes are formed over the substrate and are coupled to the second LDMOS transistor. A common source electrode for the first and second LDMOS transistors is also formed over the substrate.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 8, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jacek Korec, Stephen L. Colino
  • Patent number: 8546880
    Abstract: An anti punch-through leakage current MOS transistor and a manufacturing method thereof are provided. A high voltage deep first type well region and a first type light doping region are formed in a second type substrate. A mask with a dopant implanting opening is formed on the second type substrate. An anti punch-through leakage current structure is formed by implanting the first type dopant through the dopant implanting opening. A doping concentration of the first type dopant of the high voltage deep first type well region is less than that of the anti punch-through leakage current structure and greater than that of the high voltage deep first type well region. A second type body is formed by implanting a second type dopant through the dopant implanting opening. A gate structure is formed on the second type substrate.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: October 1, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Yao Lee, Chin-Lung Chen, Wei-Chun Chang, Hung-Te Lin, Han-Min Huang
  • Patent number: 8546221
    Abstract: A voltage converter includes an output circuit having a high side device and a low side device which can be formed on a single die (i.e. a “PowerDie”) and connected to each other through a semiconductor substrate. Both the high side device and the low side device can include lateral diffused metal oxide semiconductor (LDMOS) transistors. Because both output transistors include the same type of transistors, the two devices can be formed simultaneously, thereby reducing the number of photomasks over other voltage converter designs. The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with, the PowerDie.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 1, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Francois Hebert
  • Patent number: 8541838
    Abstract: A monolithically-integrated dual surge protective device and its fabrication method are disclosed. The exemplary dual surge protective device includes a LDMOS device and a diode assembly which is consisted of multiple diodes series-wound on back-to-back basis and whose one end is connected to drain electrode of the LDMOS device and the other end is connected to gate electrode of the LDMOS device. The diode assembly can be fabricated directly in the gate electrode area of the LDMOS device after fabrication of the LDMOS device is completed. The protective device is equivalent to combination of diodes and LDMOS in respect to operating principles and structures, with the advantage of enhanced effect of surge prevention and cost reduction of surge device as it can be integrated into a chip.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: September 24, 2013
    Assignee: North China University of Technology
    Inventor: Yanfeng Jiang
  • Publication number: 20130234244
    Abstract: Dummy structures between a high voltage (HV) region and a low voltage (LV) region of a substrate are disclosed, along with methods of forming the dummy structures. An embodiment is a structure comprising a HV gate dielectric over a HV region of a substrate, a LV gate dielectric over a LV region of the substrate, and a dummy structure over a top surface of the HV gate dielectric. A thickness of the LV gate dielectric is less than a thickness of the HV gate dielectric. The dummy structure is on a sidewall of the HV gate dielectric.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huei-Ru Liu, Chien-Chih Chou, Kong-Beng Thei, Gwo-Yuh Shiau
  • Patent number: 8530286
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 10, 2013
    Assignee: SuVolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Patent number: 8530965
    Abstract: A semiconductor device comprising a substrate in which a first region and a second region are defined, a gate line which extends in a first direction and traverses the first region and the second region, a source region including a portion formed in the first region, a first part of a body region which is formed under the portion of the source region in the first region and has a first width, a first well which is formed under the first part of the body region in the first region and has a second width greater than the first width, a second part of the body region which is formed in the second region and has a third width, and a second well which is formed under the second part of the body region in the second region and has a fourth width smaller than the third width.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min-Hwan Kim
  • Patent number: 8513730
    Abstract: A semiconductor component with vertical structures having a high aspect ratio and method. In one embodiment, a drift zone is arranged between a first and a second component zone. A drift control zone is arranged adjacent to the drift zone in a first direction. A dielectric layer is arranged between the drift zone and the drift control zone wherein the drift zone has a varying doping and/or a varying material composition at least in sections proceeding from the dielectric.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 20, 2013
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Helmut Strack, Armin Willmeroth, Hans-Joachim Schulze
  • Patent number: 8507986
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (P type) and two parallel sources (N type) formed within the well. A Number of source rungs (doped N) connect sources at multiple locations. Regions between two rungs comprise a body (P type). These features are formed on an N-type epitaxial layer, which is formed on an N-type substrate. A contact extends across and contacts a number of source rungs and bodies. Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Peter Micah Sandvik, Zachary Matthew Stum, Peter Almren Losee, James Jay McMahon
  • Patent number: 8507984
    Abstract: A semiconductor device includes a source region embedded in the surface of the second semiconductor region, a drain region embedded in the surface of the first semiconductor region separated from the second semiconductor region, a gate electrode located on the second semiconductor region, an insulation film located on the first semiconductor region between the second semiconductor region and the drain region, a voltage dividing element dividing the voltage between the gate electrode and the drain region, and a charge transfer limiting element limiting transfer of charge from the voltage dividing element to the drain region.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: August 13, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Satoshi Kondou
  • Patent number: 8507981
    Abstract: A method for forming an NMOS transistor includes forming a P-substrate; forming an N-well on the P-substrate; forming an N-drift region on the N-well; forming an n+ drain on the N-drift region; forming a plurality of first contacts on the n+ drain along a longitudinal direction; forming a P-body on the N-well; forming a source on the P-body, the source including a plurality of n+ doped regions and at least one p+ doped region arranged along the longitudinal direction; forming a plurality of second contacts on the plurality of n+ doped regions and the at least one p+ doped region; forming a polygate on the P-body; and forming a gate oxide between the polygate and the source.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 13, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Lu-An Chen, Tai-Hsiang Lai, Tien-Hao Tang
  • Patent number: 8508052
    Abstract: A power converter can include an output circuit having a high-side device and a low-side device which can be formed on a single die (a “PowerDie”). The power converter can further include a controller integrated circuit (IC) formed on a different die which can be electrically coupled to, and co-packaged with, the PowerDie. The PowerDie can be attached to a die pad of a leadframe, and the controller IC die can be attached to an active surface of the first die such that the first die is interposed between the controller IC die and the die pad.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 13, 2013
    Assignee: Intersil Americas Inc.
    Inventors: David B. Bell, Francois Hebert, Nikhil Kelkar
  • Patent number: 8502308
    Abstract: A low cost integration method for a plurality of deep isolation trenches on the same chip is provided. The trenches have an additional n-type or p-type doped region surrounding the trench—silicon interface. Providing such variations of doping the trench interface is achieved by using implantation masking layers or doped glass films structured by a simple resist mask. By simple layout variation of the top dimension of the trench various trench depths at the same time can be ensured. Using this method, wider trenches will be deeper and smaller trenches will be shallower.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 6, 2013
    Assignee: AMS AG
    Inventors: Martin Schrems, Jong Mun Park