With Means To Increase Breakdown Voltage Patents (Class 257/339)
  • Patent number: 8969161
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8963239
    Abstract: A superjunction device includes a substrate having first and second main surfaces and a first doping concentration of a first dopant. A first semiconductor layer having a second doping concentration of the first dopant is formed on the substrate. A second semiconductor layer is formed on the first layer and has a main surface. At least one trench extends from the main surface at least partially into the first semiconductor layer. A first region having a third doping concentration of the first dopant extends at least partially between the main surface and the first layer. A second region having a fourth doping concentration of a second dopant is disposed between the first region and a trench sidewall and extends at least partially between the main surface and the first layer. A third region having a fifth doping concentration of the first dopant is disposed proximate the main surface.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 24, 2015
    Assignee: Icemos Technology, Ltd.
    Inventors: Samuel Anderson, Takeshi Ishiguro, Kenji Sugiura
  • Publication number: 20150041892
    Abstract: There are provided a semiconductor device and a method of manufacturing the same. The semiconductor device includes a source region disposed apart from a drain region, a first body region surrounding the source region, a deep well region disposed below the drain region, and a second body region disposed below the first body region. A bottom surface of the second body region is not coplanar with a bottom surface of the deep well region, and the first body region has a different conductivity type from the second body region.
    Type: Application
    Filed: March 18, 2014
    Publication date: February 12, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Francois HEBERT, I-Shan SUN, Youngbae KIM, Youngju KIM, Kwangil KIM, Intaek OH, Jinwoo MOON
  • Publication number: 20150041890
    Abstract: Disclosed are semiconductor structures. Each semiconductor structure can comprise a substrate and at least one laterally double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) on the substrate. Each LDMOSFET can have a fully-depleted deep drain drift region (i.e., a fully depleted deep ballast resistor region) for providing a relatively high blocking voltage. Different configurations for the drain drift regions are disclosed and these different configurations can also vary as a function of the conductivity type of the LDMOSFET. Additionally, each semiconductor structure can comprise an isolation band positioned below the LDMOSFET and an isolation well positioned laterally around the LDMOSFET and extending vertically to the isolation band such that the LDMOSFET is electrically isolated from both a lower portion of the substrate and any adjacent devices on the substrate.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: John B. Campi, JR., Robert J. Gauthier, JR., Junjun Li, Rahul Mishra, Souvick Mitra, Mujahid Muhammad
  • Publication number: 20150041894
    Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
  • Publication number: 20150041891
    Abstract: Embodiments for the present disclosure include a semiconductor device, an ultra-high voltage (UHV) laterally-diffused metal-oxide-semiconductor (LDMOS) transistor, and methods of forming the same. An embodiment includes a first well region of a first conductivity type in a top surface of a substrate, and a second well region of a second conductivity type in the top surface of the substrate. The second well region laterally separated from the first well region by a portion of the substrate. The embodiment further includes a third region of the second conductivity type in the first well region, and a first field oxide region in the first well region, a second field oxide region in the second well region, the second field oxide region having a second bottom surface, and the first field oxide region having a first bottom surface lower than the second bottom surface and on and directly contacting the third region.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Ming Huang, Chia-Chia Kan, Shen-Ping Wang, Lieh-Chuan Chen, Po-Tao Chu
  • Publication number: 20150041893
    Abstract: Various embodiments provide LDMOS devices and fabrication methods. An N-type buried isolation region is provided in a P-type substrate. A P-type epitaxial layer including a first region and a second region is formed over the P-type substrate. The first region is positioned above the N-type buried isolation region, and the second region surrounds the first region. An annular groove is formed in the second region to surround the first region and to expose a surface of the N-type buried isolation region. Isolation layers are formed on both sidewalls of the annular groove. An annular conductive plug is formed in the annular groove between the isolation layers. The annular conductive plug is in contact with the N-type buried isolation region at the bottom of the annular conductive plug. A gate structure of an LDMOS transistor is formed over the first region of the P-type epitaxial layer.
    Type: Application
    Filed: April 8, 2014
    Publication date: February 12, 2015
    Applicants: Semiconductor Manufacturing International (Beijing) Corporation, Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: GANGNING WANG, CHIH-CHUNG TAI, GUANGLI YANG, JIWEI HE, XIANYONG PU
  • Patent number: 8952393
    Abstract: A first drift layer has a first surface facing a first electrode and electrically connected to a first electrode, and a second surface opposite to the first surface. The first drift layer has an impurity concentration NA. A relaxation region is provided in a portion of the second surface of the first drift layer. The first drift layer and the second drift layer form a drift region in which the relaxation region is buried. The second drift layer has an impurity concentration NB, NB>NA being satisfied. A body region, a source region, and a second electrode are provided on the second drift layer.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: February 10, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
  • Publication number: 20150035055
    Abstract: A method for manufacturing a semiconductor device includes providing a substrate, forming a pseudo-gate stack and sidewalls on the substrate, forming an S/D region on both sides of the pseudo-gate stack, and forming a stop layer and a first interlayer dielectric layer covering the entire semiconductor device; removing part of the stop layer to expose the pseudo-gate stack, and further removing the pseudo-gate stack to expose the channel region; etching the channel region to form a groove structure; forming a new channel region to flush with the upper surface of the substrate, wherein the new channel region includes a buffer layer, a Ge layer, and a Si cap layer; forming a gate stack. Accordingly, the present application also discloses a semiconductor device. The present application can effectively improve the carrier mobility and the performance of the semiconductor device by replacing Si with Ge to form a new channel region.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 5, 2015
    Applicant: INSTITUTE OF MICROELECTORNICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Guilei Wang
  • Patent number: 8946817
    Abstract: A semiconductor device includes a semiconductor body including an inner region, and an edge region, a first doped device region of a first doping type in the inner region and the edge region and coupled to a first terminal, and at least one second doped device region of a second doping type complementary to the first doping type in the inner region and coupled to a second terminal. Further, the semiconductor device includes a minority carrier converter structure in the edge region. The minority carrier converter structure includes a first trap region of the second doping type adjoining the first doped device region, and a conductor electrically coupling the first trap region to the first doped device region.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 8946769
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: February 3, 2015
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Publication number: 20150028417
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate includes isolation regions defining a device region. The high voltage device includes: a drift region, located in the device region, doped with second conductive type impurities; a gate in the device region and on the surface of the substrate; and a second conductive type source and drain in the device region, at different sides of the gate respectively. From top view, the concentration of the second conductive type impurities of the drift region is distributed substantially periodically along horizontal and vertical directions.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 29, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8940609
    Abstract: A semiconductor device and method of forming the semiconductor device are disclosed, where the semiconductor device includes additional implant regions in the source and drain areas of the device for improving Ron-sp and BVD characteristics of the device. The device includes a gate electrode formed over a channel region that separates first and second implant regions in the device substrate. The first implant region has a first conductivity type, and the second implant region has a second conductivity type. A source diffusion region is formed in the first implant region, and a drain diffusion region is formed in the second implant region.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: January 27, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Chien-Chung Chen, Ming-Tung Lee, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20150014770
    Abstract: A method for fabricating a high-voltage field-effect transistor includes forming a body region, a source region, and a drain region in a semiconductor substrate. The drain region is separated from the source region by the body region. Forming the drain region includes forming an oxide layer on a surface of the semiconductor substrate over the drain region and performing a plurality of ion implantation operations through the oxide layer while tilting the semiconductor substrate such that ion beams impinge on the oxide layer at an angle that is offset from perpendicular. The plurality of ion implantation operations form a corresponding plurality of separate implanted layers within the drain region. Each of the implanted layers is formed at a different depth within the drain region.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Vijay PARTHASARATHY, Sujit BANERJEE
  • Publication number: 20150014769
    Abstract: A high-voltage LDMOS device with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming a continuous gate structure over a deep well region and a body of a substrate. The method further includes forming oppositely doped, alternating segments in the continuous gate structure. The method further includes forming a contact in electrical connection with a tip of the continuous gate structure and a drain region formed in the substrate. The method further includes forming metal regions in direct electrical contact with segments of at least one species of the oppositely doped, alternating segments.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: John J. ELLIS-MONAGHAN, Theodore J. LETAVIC, Santosh SHARMA, Yun SHI, Michael J. ZIERAK
  • Publication number: 20150014768
    Abstract: A lateral double-diffused metal-oxide-semiconductor transistor device includes a substrate having at least a shallow trench isolation formed therein, an epitaxial layer encompassing the STI in the substrate, a gate, and a drain region and a source region formed in the substrate at respective two sides of the gate. The epitaxial layer, the source region and the drain region include a first conductivity type. The gate includes a first portion formed on the substrate and a second portion extending into the STI.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 15, 2015
    Inventors: Wei-Lin Chen, Tseng-Hsun Liu, Kuan-Yu Chen, Chiu-Ling Lee, Chiu-Te Lee, Chih-Chung Wang
  • Patent number: 8928077
    Abstract: In one general aspect, a power device includes an active region having a plurality of pillars of a first conductivity type alternately arranged with a plurality of pillars of a second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width. The power device includes a termination region surrounding at least a portion of the active region and having a plurality of pillars of the first conductivity type alternately arranged with a plurality of pillars of the second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width and are smaller than each width of the pillars of the second conductivity type in the termination region. The power device includes a transition region disposed between the active region and the termination region.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 6, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: JaeGil Lee, Chongman Yun, Hocheol Jang, Christopher L. Rexer, Praveen Muraleedharan Shenoy, Dwayne S. Reichl, Joseph A. Yedinak
  • Patent number: 8928043
    Abstract: A high voltage FET device provides drain voltage information with less overall silicon area consumption by forming a spiral resistance poly structure over a drift region of the high voltage FET device. The spiral resistance poly structure has an inner most end coupled to a drain region, and an outer most end coupled to a reference ground.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 6, 2015
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Joseph Urienza
  • Patent number: 8928078
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: a first conductive type substrate, a second conductive type high voltage well, a gate, a first conductive type body region, a second conductive type source, a second conductive type drain, a first conductive type body electrode, and a first conductive type floating region. The floating region is formed in the body region, which is electrically floating and is electrically isolated from the source and the gate, such that the electrostatic discharge (ESD) effect is mitigated.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: January 6, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tzu-Cheng Kao, Jian-Hsing Lee, Jin-Lian Su, Huan-Ping Chu, Hung-Der Su
  • Publication number: 20150001619
    Abstract: A high side DMOS provides high breakdown voltage with small termination area. The high side DMOS has three parts which may comprise a stair-field plate in the termination part of the poly gate.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Ji-Hyoung Yoo, Lei Zhang, Daping Fu, Yanjie Lian
  • Publication number: 20150001620
    Abstract: A semiconductor device has: a gate region having a dielectric layer and a conducting layer; an N-type drain region having a lightly doped drift region and a highly doped drain contact region formed in the drift region, wherein the drain region is at a first side of the gate region; a P-type body region adjacent to the drain region, the body region having a lightly doped first portion body region, a second portion body region, and a highly doped body contact region; and an N-type highly doped source region in the body region, wherein the source region is at a second side of the gate region; wherein the first portion body region is doped with boron, the second portion body region is doped with boron and indium in the first portion body region, and the second portion body region is located adjacent to and beneath the source region.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Joel M. McGregor, Jeesung Jung, Eric K. Braun, Ji-Hyoung Yoo
  • Patent number: 8921936
    Abstract: An ultra high voltage MOS transistor device includes a substrate having a first conductivity type and a first recess formed thereon, a gate positioned on the first recess, and a pair of source region and drain region having a second conductivity type formed in two sides of the gate, respectively.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Sung-Nien Tang, Sheng-Hsiong Yang
  • Patent number: 8921932
    Abstract: The substrate is made of a compound semiconductor and has a plurality of first recesses, each of which opens at one main surface thereof and has a first side wall surface. The gate insulating film is disposed on and in contact with the first side wall surface. The gate electrode is disposed on and in contact with the gate insulating film. The substrate include: a source region having first conductivity type and disposed to face itself with a first recess interposed therebetween, when viewed in a cross section along the thickness direction; and a body region having second conductivity type and disposed to face itself with the first recess interposed therebetween. Portions of the source region facing each other are connected to each other in a region interposed between the first recess and another first recess adjacent to the first recess, when viewed in a plan view.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi
  • Patent number: 8912599
    Abstract: A semiconductor device is provided. The semiconductor device includes a drain region, a source region, a channel region and a hybrid doped region. The drain region of a first conductivity type is located in a substrate. The source region of the first conductivity type is located in the substrate and surrounding the drain region. The channel region is located in the substrate between the source region and the drain region. The hybrid doped region includes a top doped region and a compensation doped region. The top doped region is of a second conductivity type, having a doping concentration decreased from a region near the channel region to a region near the drain region, and located in the substrate between the channel region and the drain region. The compensation doped region of the first conductivity type is located in the top doped region to compensate the top doped region.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: December 16, 2014
    Assignee: Nuvoton Technology Corporation
    Inventors: Po-An Chen, Gene Sheu, Shao-Ming Yang, MD Imran Siddiqui
  • Patent number: 8912598
    Abstract: A semiconductor device can include a source region near a working top surface of a semiconductor region. The device can also include a gate located above the working top surface and located laterally between the source and a drain region. The source region and the gate can at least partially laterally overlap a body region near the working top surface. The source region can include a first portion having the first conductivity type, a second portion having a second conductivity type, and a third portion having the second conductivity type. The second portion can be located laterally between the first and third portions and can penetrate into the semiconductor region to a greater depth than the third portion but no more than the first portion. The lateral location of the third portion can be determined at least in part using the lateral location of the gate.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: December 16, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 8901651
    Abstract: A power semiconductor device is provided, which can prevent an electric field from concentrating on a diode region, and can improve a breakdown voltage by creating an impurity concentration gradient in the diode region to increase from a termination region to an active cell region to cause reverse current to be distributed to the active cell region.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: December 2, 2014
    Assignee: KEC Corporation
    Inventor: Tae Wan Kim
  • Publication number: 20140346597
    Abstract: High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an insulator layer of varying depth over a drift region and a body of a substrate. The method further includes forming a control gate and a split gate region by patterning a layer of material on the insulator layer. The split gate region is formed on a first portion of the insulator layer and the control gate is formed on a second portion of the insulator layer, which is thinner than the first portion.
    Type: Application
    Filed: June 7, 2013
    Publication date: November 27, 2014
    Inventors: Natalie B. Feilchenfeld, Theodore J. Letavic, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Publication number: 20140339634
    Abstract: A transistor component includes an active transistor region arranged in the semiconductor body. And insulation region surrounds the active transistor region in the semiconductor body in a ring-shaped manner. A source zone, a drain zone, a body zone and a drift zone are disposed in the active transistor region. The source zone and the drain zone are spaced apart in a lateral direction of the semiconductor body and the body zone is arranged between the source zone and the drift zone and the drift zone is arranged between the body zone and the drain zone. A gate and field electrode is arranged over the active transistor region. The dielectric layer has a first thickness in a region near the body zone and a second thickness in a region near the drift zone.
    Type: Application
    Filed: July 1, 2014
    Publication date: November 20, 2014
    Inventors: Erhard Landgraf, Thomas Bertrams, Claus Dahl, Henning Feick, Andreas Pribil
  • Publication number: 20140339635
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, and a second semiconductor layer of a second conductivity type provided on part of the first semiconductor layer in each of a first region and a second region separated from each other. A first distance is a distance between both ends of the first insulating film in a direction connecting the fourth semiconductor layer and the sixth semiconductor layer. The first distance in the first region is longer than the first distance in the second region. A second distance is a distance between the third semiconductor layer and the seventh semiconductor layer. The second distance in the first region is longer than the second distance in the second region.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 20, 2014
    Inventors: Kanako KOMATSU, Mariko SHIMIZU, Jun MORIOKA, Keita TAKAHASHI, Masahito NISHIGOORI
  • Publication number: 20140339632
    Abstract: A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate and extending down from a surface of the substrate; a first well and a second well respectively having the first and second conductive types formed in the deep well, and extending down from the surface of the substrate; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion comprising at least two fingers penetrating into the isolation, and the fingers spaced apart and electrically connected to each other.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Kun-Huang Yu
  • Publication number: 20140339633
    Abstract: A semiconductor device includes a transistor. The transistor includes a source region, a drain region, a body region, a drift zone, and a gate electrode adjacent to the body region. The body region, the drift zone, the source region and the drain region are disposed in a first semiconductor layer having a first main surface. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. Trenches are disposed in the first semiconductor layer, the trenches extending in the first direction. The transistor further includes a drift control region arranged adjacent to the drift zone. The drift control region and the gate electrode are disposed in the trenches.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Inventors: Andreas Meiser, Till Schloesser, Anton Mauder, Franz Hirler
  • Publication number: 20140332846
    Abstract: A transistor-type protection device includes: a semiconductor substrate; a well including a first-conductivity-type semiconductor formed in the semiconductor substrate; a source region including a second-conductivity-type semiconductor formed in the well; a gate electrode formed above the well via a gate insulating film at one side of the source region; a drain region including the second-conductivity-type semiconductor formed within the well apart at one side of the gate electrode; and a resistive breakdown region including a second-conductivity-type semiconductor region in contact with the drain region at a predetermined distance apart from the well part immediately below the gate electrode, wherein a metallurgical junction form and a impurity concentration profile of the resistive breakdown region are determined so that a region not depleted at application of a drain bias when junction breakdown occurs in the drain region or the resistive breakdown region may remain in the resistive breakdown region.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Tsutomu Imoto, Kouzou Mawatari
  • Publication number: 20140332885
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 13, 2014
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schaeffer
  • Patent number: 8884368
    Abstract: Some embodiments include transistors having a channel region under a gate, having a source/drain region laterally spaced from the channel region by an active region, and having one or more dielectric features extending through the active region in a configuration which precludes any straight-line lateral conductive path from the channel region to the source/drain region. The dielectric features may be spaced-apart islands in some configurations. The dielectric features may be multi-branched interlocking structures in some configurations.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 11, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Michael A. Smith
  • Patent number: 8884367
    Abstract: A power semiconductor device which includes a source field electrode, and at least one insulated gate electrode adjacent a respective side of the source field electrode, the source field electrode and the gate electrode being disposed in a common trench.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: November 11, 2014
    Assignee: International Rectifier Corporation
    Inventors: Dev Alok Girdhar, Timothy Donald Henson
  • Patent number: 8878287
    Abstract: The present invention provides an FET which includes an epitaxial layer and first and second body regions formed over the epitaxial layer. Further, the FET includes a first trench formed in the epitaxial layer between the first and the second body regions. The FET also includes a conductive layer formed on the sidewall of the first trench. The conductive layer acts as gate of the FET. The FET also includes a second trench formed at the bottom of the first trench, a first dielectric layer formed over the conductive layer and on the sidewall of the second trench, and a second dielectric layer formed on the first dielectric layer. Further, the FET includes a conductive layer, which acts as drain, deposited in the first and the second trenches. The FET also includes first and a second source regions formed in the first and second body regions, respectively.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: November 4, 2014
    Assignee: Micrel, Inc.
    Inventor: Paul McKay Moore
  • Publication number: 20140312418
    Abstract: In a semiconductor power device such as a power MOSFET having a super-junction structure in each of an active cell region and a chip peripheral region, an outer end of a surface region of a second conductivity type coupled to a main junction of the second conductivity type in a surface of a drift region of a first conductivity type and having a concentration lower than that of the main junction is located in a middle region between an outer end of the main junction and an outer end of the super-junction structure in the chip peripheral region.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Tomohiro TAMAKI, Yoshito NAKAZAWA
  • Publication number: 20140312417
    Abstract: A semiconductor device formed in a semiconductor substrate includes an isolation trench in the semiconductor substrate to laterally insulate adjacent components of the semiconductor device. A lateral isolation layer is disposed in the isolation trench. The semiconductor device further includes a source region and a drain region, and a body region and a drift region disposed between the source region and the drain region. The semiconductor device additionally includes a gate electrode adjacent to at least a portion of the body region and a field plate adjacent to at least a portion of the drift region. A field dielectric layer is disposed between the drift region and the field plate. A top surface of the field dielectric layer is disposed at a greater height measured from a first main surface of the semiconductor substrate than a top surface of the lateral isolation layer.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 23, 2014
    Inventors: Marc Strasser, Karl-Heinz Gebhardt, Andreas Meiser, Till Schloesser
  • Patent number: 8866221
    Abstract: A drift layer of a super junction semiconductor device includes first portions of a first conductivity type and second portions of a second conductivity type opposite to the first conductivity type. The first and second portions are formed both in a cell area and in an edge area surrounding the cell area, wherein an on-state or forward current through the drift layer flows through the first portions in the cell area. At least one of the first and second portions other than the first portions in the cell area includes an auxiliary structure or contains auxiliary impurities to locally reduce the avalanche rate. Locally reducing the avalanche rate increases the total voltage blocking capability of the super junction semiconductor device.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Hans Weber, Hans-Joachim Schulze, Uwe Wahl
  • Patent number: 8859373
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a substrate. The high voltage device includes: a gate, a source and drain, a drift region, and a mitigation region. The gate is formed on an upper surface of the substrate. The source and drain are located at both sides of the gate below the upper surface respectively, and the source and drain are separated by the gate. The drift region is located at least between the gate and the drain. The mitigation region is formed below the drift region, and the drift region has an edge closer to the source. A vertical distance between this edge of the drift region and the mitigation region is less than or equal to five times of a depth of the drift region.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 14, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Publication number: 20140299887
    Abstract: Semiconductor devices comprising a getter material are described. The getter material can be located in or over the active region of the device and/or in or over a termination region of the device. The getter material can be a conductive or an insulating material. The getter material can be present as a continuous or discontinuous film. The device can be a SiC semiconductor device such as a SiC vertical MOSFET. Methods of making the devices are also described.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Monolith Semiconductor, Inc.
    Inventors: Kevin Matocha, Kiran Chatty, Larry Rowland, Kalidas Chatty
  • Patent number: 8853777
    Abstract: A semiconductor device according an aspect of the present disclosure may include an isolation layer formed within a substrate and formed to define an active region, a junction formed in the active region, well regions formed under the isolation layer, and a plug embedded within the substrate between the junction and the well regions and formed extend to a greater depth than the well regions.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: October 7, 2014
    Assignee: SK Hynix Inc.
    Inventor: Wan Cheul Shin
  • Patent number: 8853780
    Abstract: A device includes a semiconductor substrate, source and drain regions in the semiconductor substrate, a channel region in the semiconductor substrate between the source and drain regions through which charge carriers flow during operation from the source region to the drain region, and a drift region in the semiconductor substrate, on which the drain region is disposed, and through which the charge carriers drift under an electric field arising from application of a bias voltage between the source and drain regions. A PN junction along the drift region includes a first section at the drain region and a second section not at the drain region. The drift region has a lateral profile that varies such that the first section of the PN junction is shallower than the second section of the PN junction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Won Gi Min, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 8847278
    Abstract: A semiconductor device includes an active section for a main current flow and a breakdown withstanding section for breakdown voltage. An external peripheral portion surrounds the active section on one major surface of an n-type semiconductor substrate. The breakdown withstanding section has a ring-shaped semiconductor protrusion, with a rectangular planar pattern including a curved section in each of four corners thereof, as a guard ring. The ring-shaped semiconductor protrusion has a p-type region therein, is sandwiched between a plurality of concavities deeper than the p-type region, and has an electrically conductive film across an insulator film on the surface thereof. Because of this, it is possible to manufacture at low cost a breakdown withstanding structure with which a high breakdown voltage is obtained in a narrow width, wherein there is little drop in breakdown voltage, even when there are variations in a patterning process of a field oxide film.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Manabu Takei, Yusuke Kobayashi
  • Publication number: 20140284715
    Abstract: According to one embodiment, in a method of manufacturing a semiconductor device, a plurality of first impurity layers of a second conductivity type are formed. A first epitaxial layer of a first conductivity type is formed. A plurality of second impurity layers of a second conductivity type are formed. Thereafter, a second epitaxial layer of a first conductivity type having a smaller thickness than the first epitaxial layer is formed. The first impurity layers of a second conductivity type and the second impurity layers of a second conductivity type are bonded to each other by heat treatment thus forming a plurality of pillar layers of a second conductivity type. A second semiconductor layer of a second conductivity type which is brought into contact with the pillar layers of a second conductivity type is formed over a surface of the second epitaxial layer.
    Type: Application
    Filed: September 3, 2013
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tatsuo FUKUDA
  • Patent number: 8841723
    Abstract: The present invention discloses an LDMOS device having an increased punch-through voltage and a method for making same. The LDMOS device includes: a substrate; a well of a first conductive type formed in the substrate; an isolation region formed in the substrate; a body region of a second conductive type in the well; a source in the body region; a drain in the well; a gate structure on the substrate; and a first conductive type dopant region beneath the body region, for increasing a punch-through voltage.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: September 23, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Huan-Ping Chu, Ching-Yao Yang, Hung-Der Su
  • Publication number: 20140264580
    Abstract: A semiconductor device comprises a transistor. The transistor includes a source region, a drain region, a body region, a drift zone, and a gate electrode being adjacent to the body region. The body region, the drift zone, the source region and the drain region are disposed in a first semiconductor layer having a first main surface. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The transistor further comprises a drift control region arranged adjacent to the drift zone, the drift control region being disposed over the first main surface.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20140264581
    Abstract: A semiconductor device is provided having a dual dielectric layer structure defined by a thin dielectric layer adjacent to a thick dielectric layer. More particularly, a high voltage metal oxide semiconductor transistor having a dual gate oxide layer structure comprising a thin gate oxide layer adjacent to a thick oxide/thin oxide layer may be provided. Such structures may be used in extended drain metal oxide semiconductor field effect transmitters, laterally diffused metal oxide field effect transistors, or any high voltage metal oxide semiconductor transistor. Methods of fabricating an extended drain metal oxide semiconductor transistor device are also provided.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 18, 2014
    Inventors: Wing-Chor Chan, Shyi-Yuan Wu
  • Publication number: 20140264579
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type and an upper surface, forming first regions in the drift layer and adjacent the upper surface, the first regions having a second conductivity type that is opposite the first conductivity type and being spaced apart from one another, forming a body layer on the drift layer including the source regions, forming spaced apart source regions in the body layer above respective ones of the first regions, forming a vertical conduction region in the body layer between the source regions, the vertical conduction region having the first conductivity type and defining channel regions in the body layer between the vertical conduction region and respective ones of the source regions, forming a gate insulator on the body layer, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Cree, Inc.
    Inventors: Vipindas Pala, Lin Cheng, Jason Henning, Anant Agarwal, John Palmour
  • Patent number: RE45365
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Components Industries
    Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna