Plural Sections Connected In Parallel (e.g., Power Mosfet) Patents (Class 257/341)
  • Patent number: 8283720
    Abstract: A power semiconductor device includes: a first semiconductor layer; a second semiconductor layer and a third semiconductor layer provided in an upper portion of the first semiconductor layer and alternately arranged parallel to an upper surface of the first semiconductor layer; a plurality of fourth semiconductor layers provided on the third semiconductor layer; a fifth semiconductor layer selectively formed in an upper surface of each of the fourth semiconductor layers; a control electrode; a gate insulating film; a first main electrode provided on a lower surface of the first semiconductor layer; and a second main electrode provided on the fourth and the fifth semiconductor layers.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: October 9, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Masakatsu Takashita, Yauto Sumi, Masaru Izumisawa, Wataru Sekine, Hiroshi Ohta, Shoichiro Kurushima
  • Patent number: 8283723
    Abstract: A semiconductor device is formed on a semiconductor substrate. The device includes a drain, an epitaxial layer overlaying the drain, and an active region. The active region includes a body disposed in the epitaxial layer, having a body top surface, a source embedded in the body, extending from the body top surface into the body, a gate trench extending into the epitaxial layer, a gate disposed in the gate trench, an active region contact trench extending through the source and into the body, an active region contact electrode disposed within the active region contact trench, wherein a thin layer of body region separating the active region contact electrode from the drain.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 9, 2012
    Assignee: Alpha & Omega Semiconductor Limited
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Publication number: 20120248534
    Abstract: The invention discloses a manufacture method and structure of a power transistor, which comprises a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode; wherein the two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the surface of the two gate units; the upper electrode covers; the surface of the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance.
    Type: Application
    Filed: March 7, 2012
    Publication date: October 4, 2012
    Inventors: Qin HUANG, Yuming Bai
  • Patent number: 8269272
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer, a third semiconductor layer, a fourth semiconductor layer, first trenches, a second trench, an insulating film, a gate electrode, a first main electrode, a second main electrode, a channel stopper layer and a channel stopper electrode. The second semiconductor layer of the first conductivity type is provided on the first semiconductor layer. The third semiconductor layer of a second conductivity type is provided on the second semiconductor layer. The fourth semiconductor layer of the first conductivity type is provided on the third semiconductor layer. The gate electrode is provided in the first trenches via the insulating film. The first main electrode is provided on the first semiconductor layer. The second main electrode is provided to contact the element part. The channel stopper electrode is provided on the termination part.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: September 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouta Tomita, Noboru Matsuda, Hideyuki Ura
  • Patent number: 8269304
    Abstract: A MOS-gate power semiconductor device includes: a main device area including an active area and an edge termination area; and an auxiliary device area horizontally formed outside the main device area so as to include one or more diodes. Accordingly, it is possible to protect a circuit from an overcurrent and thus to prevent deterioration and/or destruction of a device due to the overcurrent.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 18, 2012
    Assignee: Trinno Technology Co., Ltd.
    Inventors: Kwang-Hoon Oh, Byoung-Ho Choo, Soo-Seong Kim, Chong-Man Yun
  • Patent number: 8269277
    Abstract: A semiconductor device can include a source region near a working top surface of a semiconductor region. The device can also include a gate located above the working top surface and located laterally between the source and a drain region. The source region and the gate can at least partially laterally overlap a body region near the working top surface. The source region can include a first portion having the first conductivity type, a second portion having a second conductivity type, and a third portion having the second conductivity type. The second portion can be located laterally between the first and third portions and can penetrate into the semiconductor region to a greater depth than the third portion but no more than the first portion. The lateral location of the third portion can be determined at least in part using the lateral location of the gate.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: September 18, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jifa Hao
  • Patent number: 8269330
    Abstract: A MOSFET pair with a stack capacitor is disclosed herein. It can regulate the input voltage and optimize a short EMI loop. It has a bottom lead frame and an up lead frame, which can simultaneously dissipate the heat generated by two MOSFETs to achieve excellent thermal-dissipation. It can adopt solder, Ag epoxy, or gold balls to implement the electrical bonding of two MOSFETs with the bottom lead frame and the up lead frame to achieve excellent structural flexibility. A device, such as an IGBT, a diode, an inductor, a choke, and a heat sink, can be stacked above the up lead frame to form a powerful SiP module. A corresponding method of manufacturing the MOSFET pair with a stack capacitor is also disclosed herein, which is simple, time-saving, flexible, cost-effective, and facile.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: September 18, 2012
    Assignee: Cyntec Co., Ltd.
    Inventors: Han-Hsiang Lee, Yi-Cheng Lin, Da-Jung Chen
  • Patent number: 8264035
    Abstract: A power semiconductor device with improved avalanche capability structures is disclosed. By forming at least an avalanche capability enhancement doped regions with opposite conductivity type to epitaxial layer underneath an ohmic contact doped region which surrounds at least bottom of trenched contact filled with metal plug between two adjacent gate trenches, avalanche current is enhanced with the disclosed structures.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 11, 2012
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8264015
    Abstract: A semiconductor device in which a first insulated gate field effect transistor (1) is connected in series with a second field effect transistor, FET, (2), wherein the second field effect transistor (2) has a heavily doped source region (19A) which is electrically connected to a heavily doped drain contact region (191) of the first insulated gate field effect transistor, and further that the breakthrough voltage of the first insulated gate field effect transistor (1) is higher than the pinch voltage, Vp, of the second field effect transistor (2).
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: September 11, 2012
    Inventor: Klas-HÃ¥kan Eklund
  • Patent number: 8258002
    Abstract: A phase change memory device resistant to stack pattern collapse is presented. The phase change memory device includes a silicon substrate, switching elements, heaters, stack patterns, bit lines and word lines. The silicon substrate has a plurality of active areas. The switching elements are connected to the active areas. The heaters are connected to the switching elements. The stack patterns are connected to the heaters. The bit lines are connected to the stack patterns. The word lines are connected to the active areas of the silicon substrate.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 4, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Patent number: 8258032
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 4, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 8258555
    Abstract: A semiconductor device includes a semiconductor substrate having a conductive type, a source metal layer, a gate metal layer, at least one transistor device, a heavily doped region having the conductive type, a capacitor dielectric layer, a conductive layer. The source metal layer and the gate metal layer are disposed on the semiconductor substrate. The transistor device is disposed in the semiconductor substrate under the source metal layer. The heavily doped region, the capacitor dielectric layer and the conductive layer constitute a capacitor structure, disposed under the gate metal layer, and the capacitor structure is electrically connected between a source and a drain of the transistor device.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: September 4, 2012
    Assignee: Sinopower Semiconductor Inc.
    Inventor: Wei-Chieh Lin
  • Patent number: 8253199
    Abstract: A semiconductor memory device has a semiconductor substrate, a plurality of word lines formed on the semiconductor substrate at predetermined intervals, a selecting transistor arranged on each of two sides of each of the plurality of word lines in which a spacing between the selecting transistor and an adjacent one of the word lines is not less than three times a width of each of the word lines, an interlayer insulating film formed to cover upper surfaces of the word lines and selecting transistors, a first cavity portion which is located between each pair of adjacent ones of the word lines and whose upper portion is covered with the interlayer insulating film, a second cavity portion which is formed at a side wall portion of the word line adjacent to each selecting transistor which faces the selecting transistor and whose upper portion is covered with the interlayer insulating film, and a third cavity portion which is formed at a side wall portion of each of the selecting transistors and whose upper portion
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kyoko Ando, Satoshi Nagashima, Kenji Aoyama
  • Patent number: 8253163
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, a p type base region in a first main surface, an n+ type emitter region in the p type base region, an n+ type cathode region adjacent to an end surface of the semiconductor substrate and not penetrating the semiconductor substrate, a p+ type collector region in a second main surface, a first main electrode, a second main electrode, a third main electrode, and a connection portion connecting the second main electrode and the third main electrode. A resistance between the p type base region and the n+ type cathode region is greater than a resistance between the p type base region and the p+ type collector region. In the high voltage semiconductor device in which an IGBT and a free wheel diode are formed in a single semiconductor substrate, occurrence of a snap-back phenomenon is suppressed.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 28, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shigeru Kusunoki, Junji Yahiro, Yoshihiko Hirota
  • Patent number: 8247874
    Abstract: A depletion transistor includes a source region and a drain region of a first conductivity type, a channel region of the first conductivity type arranged between the source region and the drain region and a first gate electrode arranged adjacent the channel region and dielectrically insulated from the channel region by a gate dielectric. The depletion transistor further includes a first discharge region of a second conductivity type arranged adjacent the gate dielectric and electrically coupled to a terminal for a reference potential. The depletion transistor can be included in a charging circuit.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 21, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Anton Mauder, Joachim Weyers, Frank Pfirsch
  • Patent number: 8247866
    Abstract: An inventive semiconductor device includes: a semiconductor layer; a drift region of a first conductivity type provided in the semiconductor layer; a body region of a second conductivity type provided on the drift region in the semiconductor layer; a trench extending from a surface of the body region in the semiconductor layer with its bottom located in the drift region; a gate insulation film provided on an interior surface of the trench; a gate electrode provided in the trench with the intervention of the gate insulation film; a source region of the first conductivity type provided in the surface of the body region; a first impurity region of the second conductivity type provided around the bottom of the trench in spaced relation from the body region; and a second impurity region of the second conductivity type provided on a lateral side of the body region in the semiconductor layer, the second impurity region being isolated from the body region and electrically connected to the first impurity region.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: August 21, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Naoki Izumi
  • Patent number: 8244199
    Abstract: In view of achieving a cost reduction of an antenna switch, a technique is provided which can reduce harmonic distortion generated in the antenna switch as much as possible in particular even when the antenna switch is comprised of a field effect transistor formed over a silicon substrate. Each of a TX series transistor, an RX series transistor, and an RX shunt transistor is comprised of a low voltage MISFET, while a TX shunt transistor is comprised of a high voltage MISFET. Thus, by reducing the number of serial connections of the high voltage MISFETs constituting the TX shunt transistor, the nonuniformity of the voltage amplitudes applied to the respective serially-coupled high voltage MISFETs is suppressed. As a result, the generation of high-order harmonics can be suppressed.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Goto, Tomoyuki Miyake, Masao Kondo
  • Patent number: 8236602
    Abstract: A phase change memory device resistant to stack pattern collapse is presented. The phase change memory device includes a silicon substrate, switching elements, heaters, stack patterns, bit lines and word lines. The silicon substrate has a plurality of active areas. The switching elements are connected to the active areas. The heaters are connected to the switching elements. The stack patterns are connected to the heaters. The bit lines are connected to the stack patterns. The word lines are connected to the active areas of the silicon substrate.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Patent number: 8232583
    Abstract: The objective is to develop a device that generates power with high efficiency and utilizes the obtained electrical energy effectively without external combustion energy such as fossil fuels or the like. Electrical energy is obtained by carriers passing through a potential barrier due to a field effect, and thus energy is pre-supplied to the carriers to increase the number of carriers contributing to electrical energy generation, whereby a highly efficient field power generation device can be realized.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 31, 2012
    Inventor: Norio Akamatsu
  • Patent number: 8232595
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 8227862
    Abstract: A field-effect transistor (142) includes a lowly p-doped region 110 formed on a surface of a substrate (102), an n-doped drain region 112 and n-doped source region 114 arranged on a surface of the lowly p-doped region 110, and a device isolation insulating film 132 and device isolation insulating film 134. Here, the device isolation insulating film 132 is formed greater in film thickness than the device isolation insulating film 134; and in the n-doped source region 114, the peak concentration section having a highest dopant concentration is formed in a deeper position than in the n-doped drain region 112.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 8227315
    Abstract: This invention discloses an inverted field-effect-transistor (iT-FET) semiconductor device that includes a source disposed on a bottom and a drain disposed on a top of a semiconductor substrate. The semiconductor power device further comprises a trench-sidewall gate placed on sidewalls at a lower portion of a vertical trench surrounded by a body region encompassing a source region with a low resistivity body-source structure connected to a bottom source electrode and a drain link region disposed on top of said body regions thus constituting a drift region. The drift region is operated with a floating potential said iT-FET device achieving a self-termination.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 24, 2012
    Assignee: Alpha & Omega Semiconductor, Incorporated
    Inventor: François Hébert
  • Patent number: 8222695
    Abstract: An electronic device, including an integrated circuit, can include a buried conductive region and a semiconductor layer overlying the buried conductive region, wherein the semiconductor layer has a primary surface and an opposing surface lying closer to the buried conductive region. The electronic device can also include a first doped region and a second doped region spaced apart from each other, wherein each is within the semiconductor layer and lies closer to primary surface than to the opposing surface. The electronic device can include current-carrying electrodes of transistors. A current-carrying electrode of a particular transistor includes the first doped region and is a source or an emitter and is electrically connected to the buried conductive region. Another current-carrying electrode of a different transistor includes the second doped region and is a drain or a collector and is electrically connected to the buried conductive region.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: July 17, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 8222694
    Abstract: A semiconductor package may comprise a semiconductor substrate, a MOSFET device having a plurality cells formed on the substrate, and a source region common to all cells disposed on a bottom of the substrate. Each cell comprises a drain region on a top of the semiconductor device, a gate to control a flow of electrical current between the source and drain regions, a source contact proximate the gate; and an electrical connection between the source contact and source region. At least one drain connection is electrically coupled to the drain region. Source, drain and gate pads are electrically connected to the source region, drain region and gates of the devices. The drain, source and gate pads are formed on one surface of the semiconductor package. The cells are distributed across the substrate, whereby the electrical connections between the source contact of each device and the source region are distributed across the substrate.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 17, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8217448
    Abstract: A method of forming a semiconductor device comprises providing a semiconductor substrate, providing a semiconductor layer of a first conductivity type over the semiconductor substrate, forming a first region of the first conductivity type in the semiconductor layer, and forming a control region over the semiconductor layer and over part of the first region. A mask layer is formed over the semiconductor layer and outlines a first portion of a surface of the semiconductor layer over part of the first region. Semiconductor material of a second conductivity type is provided to the outlined first portion to provide a second region in the semiconductor layer.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: July 10, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Evgueniy Stefanov, Alain Deram, Jean-Michel Reynes
  • Patent number: 8217469
    Abstract: The present disclosure provides a device in an integrated circuit. The device includes an active region in a semiconductor substrate; an isolation region adjacent the active region; a gate disposed on the active region and extending to the isolation region in a first direction; and a gate contact disposed within the isolation region, having a portion directly overlying and contacting the gate, and having a geometry horizontally extending to a first dimension in the first direction and a second dimension in a second direction approximately perpendicular to the first direction. The first dimension is greater than the second dimension.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 10, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chin Hou, Yuh-Jier Mii, Kuo-Tung Sung, Li-Chun Tien
  • Patent number: 8216925
    Abstract: A semiconductor device is formed having a trench adjacent to a current carrying region of the device. The trench is formed having a depth greater than the depth of a tub region of the device. Increasing the trench depth moves a region of higher field strength from the tub region to a region along the trench. The region along the trench does not have a junction and may withstand the higher field strength.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 10, 2012
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Robert Bruce Davies
  • Patent number: 8212318
    Abstract: A high voltage NMOS transistor is disclosed where the p-doped body is isolated against the p-doped substrate by a DN well having a pinch-off region where the depth of the DN-well is at minimum. By the forming space charge region at raising drain potentials a shielding of the drain potential results because the space charge region touches the field oxide between source and drain at the pinch-off region. An operation at the high side at enhanced voltage levels is possible.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: July 3, 2012
    Assignee: austriamicrosystems AG
    Inventors: Martin Knaipp, Georg Röhrer, Jong Mun Park
  • Patent number: 8207558
    Abstract: A semiconductor device in which the self-turn-on phenomenon is prevented that can significantly improve power conversion efficiency. The semiconductor device is a system-in-package for power supply applications in which a high-side switch, a low-side switch, and two drivers are included in a single package. The device includes an auxiliary switch disposed between the gate and source of said low-side switch, and a low-side MOSFET 3 for the low-side switch and an auxiliary MOSFET 4 for the auxiliary switch are disposed on the same chip. In this way, the self-turn-on phenomenon can be prevented, allowing the mounting of a low-side MOSFET 3 with a low threshold voltage and thereby significantly improving power conversion efficiency. The gate of the auxiliary MOSFET 4 is driven by the driver for the high-side MOSFET 2, thereby eliminating the need for a new drive circuit and realizing the same pin configuration as existing products, which facilitates easy replacement.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: June 26, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Masaki Shiraishi, Takayuki Iwasaki, Nobuyoshi Matsuura
  • Patent number: 8207575
    Abstract: In a well region, an irregular structure is formed in a gate width direction, and a gate electrode is formed in concave portions and on top surfaces of convex portions via an insulating film. Upper and lower source regions are formed on one side of the gate electrode in a gate length direction, and upper and lower drain regions are formed on the other side thereof. By thus forming the lower source and drain regions in the source and drain regions, current concentration occurring in an upper portion of a channel region, which is generated as the gate length becomes shorter, may be suppressed and a current may be allowed to flow uniformly in the entire channel region, and hence an effective gate width is made wider owing to the irregular structure formed in the well region. Accordingly, an on-resistance of a semiconductor device is reduced to enhance driving performance.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: June 26, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Tomomitsu Risaki, Yuichiro Kitajima
  • Patent number: 8203181
    Abstract: A semiconductor device having a semiconductor body, a source metallization arranged on a first surface of the semiconductor body and a trench including a first trench portion and a second trench portion and extending from the first surface into the semiconductor body is provided. The semiconductor body further includes a pn-junction formed between a first semiconductor region and a second semiconductor region. The first trench portion includes an insulated gate electrode which is connected to the source metallization, and the second trench portion includes a conductive plug which is connected to the source metallization and to the second semiconductor region.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 19, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 8198162
    Abstract: Provided is a manufacturing method of a semiconductor device wherein the generation of voids is prevented in aluminum-based electrodes or the like. The method is suitable for manufacturing a semiconductor device adapted for vehicles, which is required to have a high reliability. However, it is very difficult that power semiconductor devices such as power MOSFETs, in particular, trench gate type power MOS devices are formed without having any void since the thickness of aluminum-based electrodes thereof is as large as about 3500 to 5500 nm (2.5 ?m or more). In the present invention, a method is provided wherein at the time of forming an aluminum-based electrode metal film positioned over a wafer and having a thickness of 2.5 ?m or more over a highland/lowland-repeated region in a line and space form by sputtering, the temperature of the wafer is set to 400° C. or higher and lower than 500° C.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: June 12, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuya Sekiguchi, Yoshio Fukayama, Yuji Takahashi, Tomokuni Chino, Tsuyoshi Kachi, Katsuhiro Mitsui, Daisuke Ono, Tatsuhiko Miura
  • Patent number: 8198676
    Abstract: A second trench in each source electrode portion (Schottky diode portion) is formed to have a depth equal to or larger than the depth of a first trench in each gate electrode portion. The distance between the first and second trenches is set to be not longer than 10 ?m. A source electrode is formed in the second trench and a Schottky junction is formed in the bottom portion of the second trench. In this manner, it is possible to provide a wide band gap semiconductor device which is small-sized, which has low on-resistance and low loss characteristic, in which electric field concentration into a gate insulating film is relaxed to suppress reduction of a withstand voltage, and which has high avalanche breakdown tolerance at turn-off time.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: June 12, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Noriyuki Iwamuro
  • Patent number: 8198678
    Abstract: A semiconductor device includes a source, a drain, and a gate configured to selectively enable a current to pass between the source and the drain. The semiconductor device includes a drift zone between the source and the drain and a first field plate adjacent the drift zone. The semiconductor device includes a dielectric layer electrically isolating the first field plate from the drift zone and charges within the dielectric layer close to an interface of the dielectric layer adjacent the drift zone.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: June 12, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Rudolf Berger, Franz Hirler, Ralf Siemieniec, Hans-Joachim Schulze
  • Patent number: 8198154
    Abstract: Lateral DMOS devices having improved drain contact structures and methods for making the devices are disclosed. A semiconductor device comprises a semiconductor substrate; an epitaxial layer on top of the substrate; a drift region at a top surface of the epitaxial layer; a source region at a top surface of the epitaxial layer; a channel region between the source and drift regions; a gate positioned over a gate dielectric on top of the channel region; and a drain contact trench that electrically connects the drift layer and substrate. The contact trench includes a trench formed vertically from the drift region, through the epitaxial layer to the substrate and filled with an electrically conductive drain plug; electrically insulating spacers along sidewalls of the trench; and an electrically conductive drain strap on top of the drain contact trench that electrically connects the drain contact trench to the drift region.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: June 12, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8193578
    Abstract: A power supply circuit includes first and second switching MOSFETS. A semiconductor device, including the second switching MOSFET, has a plurality of transistor cell regions disposed in a semiconductor substrate. A source electrode of the second MOSFET is disposed over a main surface of the semiconductor substrate and is in contact with a top surface of a source region in each of the plurality of transistor cell regions. A drain electrode of the second MOSFET is disposed over a back surface of the semiconductor substrate and is electrically connected to the semiconductor substrate. A Schottky cell region is disposed between the plurality of transistor cell regions in the semiconductor substrate. The source electrode is in contact with a part of the main surface of the semiconductor so as to form a Schottky junction in the Schottky cell region.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura, Yoshito Nakazawa
  • Patent number: 8193584
    Abstract: A semiconductor component including a drift zone and a drift control zone. One embodiment provides a transistor component having a drift zone, a body zone, a source zone and a drain zone. The drift zone is arranged between the body zone and the drain zone. The body zone is arranged between the source zone and the drift zone.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 5, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Stefan Sedlmaier, Armin Willmeroth
  • Patent number: 8188539
    Abstract: A semiconductor device comprises a semiconductor layer, a body region of a first conductivity type formed in the semiconductor layer and extending from a first surface of the semiconductor layer, a first region of a second conductivity type formed in the body region, and a second region of the first conductivity type formed in the body region. The first region extends from the first surface of the semiconductor layer and provides a current electrode region of the semiconductor device. The second region surrounds the first region. The doping concentration of the first conductivity type in the second region is greater than a doping concentration of the first conductivity type in the body region.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: May 29, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean-Michel Reynes, Isabelle Majoral, Jean-Pierre Pujo, Evgueniy Stefanov
  • Patent number: 8190415
    Abstract: A method for designing a first vertical MOS power transistor having a specified design power level. The method comprises the steps of composing a layout of the vertical MOS power transistor as a combination of at least partly differing layout part pieces, each of the part pieces having known design data, the part pieces including at least one first layout part piece comprising a given number of single transistor cells, and adjusting the specified design power level of the first vertical MOS power transistor by using the known design data of the part pieces and based on the layout combination of the part pieces.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: May 29, 2012
    Assignees: X-FAB Semiconductor Foundries AG, alpha microelectronics GmbH
    Inventors: Ralf Lerner, Wolfgang Miesch
  • Patent number: 8188541
    Abstract: In an embodiment, set forth by way of example and not limitation, a MOSFET power chip includes a first vertical MOSFET and a second vertical MOSFET. The first vertical MOSFET includes a semiconductor body having a first surface defining a source and a second surface defining a drain and a gate structure formed in the semiconductor body near the second surface. A via is formed within the semiconductor body and is substantially perpendicular to the first surface and the second surface. The via has a first end electrically coupled to the first surface and a second end electrically coupled to the gate structure. The second vertical MOSFET includes a semiconductor body having a first surface defining a source, a second surface defining a drain and a gate structure formed in the semiconductor body near the first surface.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 29, 2012
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Ahmad Ashrafzadeh
  • Patent number: 8183631
    Abstract: A semiconductor device has a semiconductor substrate having an upper main surface and a lower main surface. The semiconductor substrate includes a drain layer, a main base region, an underpad base region and a source region. The semiconductor device includes a first main electrode connected to the main base region and the source region and not connected to the underpad base region, a gate electrode opposed to a channel region in the main base region interposed between the drain layer and the source region with a gate insulating film provided therebetween, a conductive gate pad opposed to an exposed surface of the underpad base region in the upper main surface with an insulating layer interposed therebetween and the conductive gate pad is connected to the gate electrode, and a second main electrode connected to the lower main surface.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 22, 2012
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazunari Hatade, Yoshiaki Hisamoto
  • Patent number: 8178409
    Abstract: The invention is related to a semiconductor device with alternately arranged P-type and N-type thin semiconductor layers and method for manufacturing the same. For P-type device, the method includes trench formation, thermal oxide formation on trench sidewalls, N-type silicon formation in trenches, N-type impurity diffusion through thermal oxide into P-type epitaxial layer, oxidation of N-type silicon in trenches and oxide removal. In the semiconductor device, N-type thin semiconductor layers are formed by N-type impurity diffusion through oxide to P-type epitaxial layers, and trenches are filled with oxide. With this method, relatively low concentration impurity in high voltage device can be realized by current mass production process, and the device development cost and manufacturing cost are decreased.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 15, 2012
    Assignee: Shanghai Hua Hong Nec Electronics Company, Limited
    Inventors: Shengan Xiao, Feng Han
  • Patent number: 8178923
    Abstract: A power semiconductor device having low gate input resistance and a manufacturing method thereof are provided. The power semiconductor device includes a substrate, at least a trench transistor, a conductive layer, a metal contact plug, an insulating layer, an interlayer dielectric, a gate metal layer, and a source metal layer. The metal contact plug can serve as a buried gate metal bus line, and the metal contact plug can pass under the source metal layer and keeps the area of the source metal layer complete. Accordingly, the present invention can provide a lower gate input resistance without dividing the source metal layer, so the source metal layer can have a larger and complete area for the following packaging and bonding process.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 15, 2012
    Assignee: Sinopower Semiconductor Inc.
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Jia-Fu Lin, Shian-Hau Liao
  • Patent number: 8174069
    Abstract: A power semiconductor device has a top surface and an opposed bottom surface below a part of which is a thick portion of semiconductor substrate. At least a portion of a drift region of the device has either no or only a thin portion of semiconductor substrate positioned thereunder. The top surface has a high voltage terminal and a low voltage terminal connected thereto to allow a voltage to be applied laterally across the drift region. At least two MOS (metal-oxide-semiconductor) gates are provided on the top surface. The device has at least one relatively highly doped region at its top surface extending between and in contact with said first and second MOS gates. The device has improved protection against triggering of parasitic transistors or latch-up without the on-state voltage drop or switching speed being compromised.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 8, 2012
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Vasantha Pathirana, Tanya Trajkovic, Nishad Udugampola
  • Patent number: 8174070
    Abstract: A dual channel trench LDMOS transistor includes a substrate of a first conductivity type; a semiconductor layer of a second conductivity type formed on the substrate; a first trench formed in the semiconductor layer where a trench gate is formed in an upper portion of the first trench; a body region of the first conductivity type formed in the semiconductor layer adjacent the first trench; a source region of the second conductivity type formed in the body region and adjacent the first trench; a planar gate overlying the body region; a drain region of the second conductivity type spaced apart from the body region by a drain drift region. The planar gate forms a lateral channel in the body region, and the trench gate in the first trench forms a vertical channel in the body region of the LDMOS transistor.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 8, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 8169023
    Abstract: An impurity concentration profile in a vertical direction of a p type base contact layer of a power semiconductor device has a two-stage configuration. In other word, the impurity concentration profile is highest at an upper face of the p type base contact layer, has a local minimum value at a position other than the upper face and a lower face of the base contact layer, and has a local maximum value at a position lower than the position of the local minimum value.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Akiyama, Yusuke Kawaguchi, Yoshihiro Yamaguchi
  • Patent number: 8168985
    Abstract: A semiconductor module having one or more silicon carbide diode elements mounted on a switching element is provided in which the temperature rise is reduced by properly disposing each of the diode elements on the switching element, to thereby provide a thermal dissipation path for the respective diode elements. The respective diode elements are arranged on a non-central portion of the switching element, to facilitate dissipation of the heat produced by each of the diode elements, whereby the temperature rise in the semiconductor module is reduced.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kiyoshi Arai, Gourab Majumdar
  • Publication number: 20120098064
    Abstract: A semiconductor device is disclosed wherein a peripheral region with a high breakdown voltage and high robustness against induced surface charge is manufactured using a process with high mass productivity. The device has n-type drift region and p-type partition region of layer-shape deposited in a vertical direction to one main surface of n-type semiconductor substrate with high impurity concentration form as drift layer, alternately adjacent parallel pn layers in a direction along one main surface. Active region through which current flows and peripheral region enclosing the active region include parallel pn layers.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 26, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yasuhiko ONISHI
  • Patent number: 8164111
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, a p type base region in a first main surface, an n+ type emitter region in the p type base region, an n+ type cathode region adjacent to an end surface of the semiconductor substrate and not penetrating the semiconductor substrate, a p+ type collector region in a second main surface, a first main electrode, a second main electrode, a third main electrode, and a connection portion connecting the second main electrode and the third main electrode. A resistance between the p type base region and the n+ type cathode region is greater than a resistance between the p type base region and the p+ type collector region. In the high voltage semiconductor device in which an IGBT and a free wheel diode are formed in a single semiconductor substrate, occurrence of a snap-back phenomenon is suppressed.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: April 24, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shigeru Kusunoki, Junji Yahiro, Yoshihiko Hirota
  • Patent number: 8164139
    Abstract: A trench Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) structure with guard ling, includes: a substrate including an epi layer region on the top thereof a plurality of source and body regions formed in the epi layer; a metal layer including a plurality of metal layer regions which are connected to respective source and body regions forming metal connections of the MOSFET; a plurality of metal contact plugs connected to respective metal layer regions; an insulating layer deposited on the epi layer formed underneath the metal layer with a plurality of metal contact holes therein for contacting respective source and body regions; and a guard ring wrapping around the trench gates with contact metal plug underneath the gate metal layer.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: April 24, 2012
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh