Plural Sections Connected In Parallel (e.g., Power Mosfet) Patents (Class 257/341)
  • Patent number: 9293558
    Abstract: A semiconductor device includes at least two device cells integrated in a semiconductor body. Each device cell includes a drift region, a source region, a drain region arranged between the source region and the drift region, a diode region, a pn junction between the diode region and the drift region, and a trench with a first sidewall, a second sidewall opposite the first sidewall, and a bottom. The body region adjoins the first sidewall, the diode region adjoins the second sidewall, and the pn junction adjoins the bottom of the trench. Each device cell further includes a gate electrode arranged in the trench and dielectrically insulated from the body region, the diode region and the drift region by a gate dielectric. The diode regions of the at least two device cells are distant in a lateral direction of the semiconductor body.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 22, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Dethard Peters, Romain Esteve
  • Patent number: 9293526
    Abstract: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: March 22, 2016
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Ashok Challa, Dean Probst
  • Patent number: 9269661
    Abstract: A semiconductor device includes a semiconductor substrate with doped regions of a first type and doped regions of a second type. A first metallization layer connects to the doped regions of the first type through conductive paths, such that current is able to flow within the metallization layer along a plurality of linear axes. A second metallization layer connects to the doped regions of the second type through conductive paths, such that that current is able to flow within the metallization layer along a plurality of linear axes. Contacts on an exterior surface of the semiconductor device can be arranged concentrically.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: February 23, 2016
    Assignee: VLT, INC.
    Inventors: Patrizio Vinciarelli, Sergey Luzanov
  • Patent number: 9263942
    Abstract: An energy-scavenging interface receives an input signal from a transducer and supplies an output signal to a load. A switch is connected between the transducer and a reference node, and a diode is connected between the transducer and the load. A control circuit closes the switch for a time interval to permit energy storage in the transducer. A scale copy of a peak value of stored electric current is obtained. The switch is opened when the time interval elapses and the stored energy exceeds a threshold. The stored energy is then released to supply the load through the diode. The switch remains open as long as the value of current in the output signal exceeds the value of the scaled copy of the peak value.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: February 16, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Stefano Ramorini, Alessandro Gasparini, Alberto Cattani
  • Patent number: 9236436
    Abstract: A semiconductor device includes: a semiconductor substrate having a main surface having an element formation region, a guard ring, a guard ring electrode, a channel stopper region, a channel stopper electrode, and a field plate disposed over and insulated from the semiconductor substrate. The field plate includes a first portion located between the main surface of the semiconductor substrate and the guard ring electrode, and a second portion located between the main surface of the semiconductor substrate and the channel stopper electrode. The first portion has a portion overlapping with the guard ring electrode when viewed in a plan view. The second portion has a portion overlapping with the channel stopper electrode when viewed in the plan view. In this way, a semiconductor device allowing for stabilized breakdown voltage can be obtained.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: January 12, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuo Takahashi, Takami Otsuki
  • Patent number: 9231780
    Abstract: A radio frequency (RF) switching circuit may include: a first switching circuit unit connected between a first signal port for signal transmission and reception and a common connection node connected to an antenna port and operated according to a first gate signal; a second switching circuit unit connected between a second signal port for signal transmission and reception and the common connection node and operated according to a second gate signal; a negative voltage generating unit generating a negative voltage using a voltage of an RF signal from the common connection node; and a gate signal generating unit generating the first and second gate signals using the negative voltage from the negative voltage generating unit and an operating voltage.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: January 5, 2016
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hyun Jin Yoo, Hyun Hwan Yoo, Yoo Hwan Kim, Jong Myeong Kim, Dae Seok Jang, Yoo Sam Na
  • Patent number: 9231581
    Abstract: According to an embodiment of a method, a semiconductor device is operated in a reverse biased unipolar mode before operating the semiconductor device in an off-state in a forward biased mode. The semiconductor device includes at least one floating parasitic region disposed outside a cell region of the device.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: January 5, 2016
    Assignee: Infineon Technologies AG
    Inventors: Frank Pfirsch, Dorothea Werber, Anton Mauder, Carsten Schaeffer
  • Patent number: 9224804
    Abstract: The present invention provides a guarding ring structure of a semiconductor high voltage device and the manufacturing method thereof. The guarding ring structure comprises a first N type monocrystalline silicon substrate (3), a second N type monocrystalline silicon substrate (8), a discontinuous oxide layer (2), a metal field plate (1), a device region (9), multiple P+ type diffusion rings (5) and an equipotential ring (4). The second N type monocrystalline silicon substrate (8) is a single N type crystalline layer epitaxially formed on the first N type monocrystalline silicon substrate (3) and has lower doping concentration than the first N type monocrystalline silicon substrate (3). N type diffusion rings (6) are embedded in the inner side of the P+ type diffusion rings (5) and are fully depleted at zero bias voltage. The guarding ring structure can achieve the same withstand voltage with less area and design time.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: December 29, 2015
    Assignee: Shanghai IC R&D Center Co., Ltd.
    Inventor: Deming Sun
  • Patent number: 9214521
    Abstract: A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 15, 2015
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Frank Pfirsch, Hans-Joachim Schulze, Carsten Schaeffer, Volodymyr Komarnitskyy, Anton Mauder
  • Patent number: 9209854
    Abstract: A radio frequency switching circuit may include a first switching circuit unit including first to nth (n is a natural number greater than at least 2) transistors M1 to Mn connected in series between a first signal port for transmission and reception of signals and a common connection node connected to an antenna port and operated according to a first gate signal; a second switching circuit unit connected in series between the common connection node and a second signal port for transmission and reception of signals and operated according to a second gate signal; and a first impedance adjuster forming an alternating current (AC) ground path between a ground and a gate of the first transistor of the first switching circuit unit when the first switching circuit unit is in an off-state.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 8, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yoo Hwan Kim, Yoo Sam Na, Hyun Jin Yoo, Jong Myeong Kim, Hyun Hwan Yoo
  • Patent number: 9209292
    Abstract: A field-effect semiconductor device includes a semiconductor body having a first surface and an edge, an active area, and a peripheral area between the active area and the edge, a source metallization on the first surface and a drain metallization. In the active area, first conductivity type drift portions alternate with second conductivity type compensation regions. The drift portions contact the drain metallization and have a first maximum doping concentration. The compensation regions are in Ohmic contact with the source metallization. The peripheral area includes a first edge termination region and a second semiconductor region in Ohmic contact with the drift portions having a second maximum doping of the first conductivity type which lower than the first maximum doping concentration by a factor of ten. The first edge termination region of the second conductivity type adjoins the second semiconductor region and is in Ohmic contact with the source metallization.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 8, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Anton Mauder, Joachim Weyers, Franz Hirler, Markus Schmitt, Armin Willmeroth, Björn Fischer, Stefan Gamerith
  • Patent number: 9202692
    Abstract: An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 1, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Patent number: 9202909
    Abstract: A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 1, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Joachim Krumrey, Franz Hirler, Walter Rieger
  • Patent number: 9190408
    Abstract: A semiconductor device with multiple transistor devices includes a semiconductor layer of a first conductivity type formed on a substrate; a first trench formed in the semiconductor layer including a first trench gate; a second trench formed in the semiconductor layer and extending into the substrate and including a second trench gate; a first transistor device being an LDMOS transistor formed in the semiconductor layer between the first trench and the second trench; and a second transistor device formed in the semiconductor layer on the other side of the second trench. The first transistor device is electrically isolated from the second transistor device by the second trench.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: November 17, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 9190469
    Abstract: There is provided a super junction semiconductor device and a method of manufacturing the same. A super junction semiconductor device includes an n-type semiconductor region disposed in a substrate, two or more p-type semiconductor regions disposed adjacent to the n-type semiconductor region alternately in a direction parallel to a surface of the substrate, a p-type body region disposed on at least one of the p-type semiconductor regions, and a source region disposed in the p-type body region, and an n-type ion implantation region is formed along a lower end of the n-type semiconductor region and lower ends of the p-type semiconductor regions.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: November 17, 2015
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Kwang Yeon Jun, Chang Yong Choi, Hyuk Woo, Moon Soo Cho, Soon Tak Kwon
  • Patent number: 9184277
    Abstract: A super junction semiconductor device may include one or more doped zones in a cell area. A drift layer is provided between a doped layer of a first conductivity type and the one or more doped zones. The drift layer includes first regions of the first conductivity type and second regions of a second conductivity type, which is the opposite of the first conductivity type. In an edge area that surrounds the cell area, the first regions may include first portions separating the second regions in a first direction and second portions separating the second regions in a second direction orthogonal to the first direction. The first and second portions are arranged such that a longest second region in the edge area is at most half as long as a dimension of the edge area parallel to the longest second region.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans Weber, Markus Schmitt, Thomas Wahls, Rolf Weis
  • Patent number: 9184283
    Abstract: A method of forming a device is presented. The method includes providing a substrate having a device region which includes a source region, a gate and a drain region defined thereon. The method also includes implanting the gate. The gate comprises one or more doped portions with different dopant concentrations. A source and a drain are formed in the source region and drain region. The drain is separated from the gate on a second side of the gate and the source is adjacent to a first side of the gate.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: November 10, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventor: Guowei Zhang
  • Patent number: 9178050
    Abstract: In a semiconductor device, a trench gate has a bottom portion in a drift layer and a communication portion extending from a surface of a base layer to communicate with the bottom portion. A distance between adjacent bottom portions is smaller than a distance between adjacent communication portions in a x-direction. A region between adjacent trench gates is divided in a y-direction into an effective region as an electron injection source and an ineffective region which does not serve as the electron injection source. An interval L1 (>0) of the ineffective region in the y-direction, a length D1 of the communication portion in the z-direction, and a length D2 of the bottom portion in the z-direction satisfy L1?2(D1+D2). The z-direction is orthogonal to a x-y plane defined by the x-direction and the y-direction which are orthogonal to each other.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 3, 2015
    Assignee: DENSO CORPORATION
    Inventors: Yasushi Higuchi, Shigemitsu Fukatsu, Masakiyo Sumitomo
  • Patent number: 9166046
    Abstract: A semiconductor device includes a gate structure, and a source region and a drain region on opposite sides of the gate structure. The source region comprises a first region of a first conductivity type, and a second region of a second conductivity type, the second conductivity type opposite to the first conductivity type. The first region is arranged between the second region and the gate structure. The second region comprises at least one projection protruding into the first region and toward the gate structure.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 20, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Ming Huang, Shen-Ping Wang, Lieh-Chuan Chen, Chih-Heng Shen, Po-Tao Chu
  • Patent number: 9166009
    Abstract: A semiconductor apparatus invention includes a substrate (1), an epitaxial layer (2) formed on the substrate (1), a gate electrode (3), a source electrode (4), and a drain electrode (5) that are formed on the epitaxial layer. The source electrode (4) and the drain electrode (5) each include at least two first divided electrodes that are formed to extend in parallel to each other in a first direction, inter-electrode distances Ps and Pd between the first divided electrodes are greater than or equal to a radius of an abnormal growth portion formed on a surface of the epitaxial layer (2), and widths of the first divided electrodes are less than or equal to the radius of the abnormal growth portion.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 20, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Kohji Ishikura
  • Patent number: 9166487
    Abstract: A package structure integrating a start-up component, a controller, and a power switch for a power converter, wherein the power converter has a coil having a first end and a second end, and the first end is coupled to a rectifier, the package structure including: a first die pad for carrying a chip of the controller; a second die pad for carrying a chip of the start-up component and a chip of the power switch, wherein the chip of the start-up component has a bottom surface providing a first drain contact; and the chip of the power switch has a bottom surface providing a second drain contact; and a plurality of external connection leads, of which one is connected with the second die pad via a wire and is used to couple with the second end of the coil.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: October 20, 2015
    Assignee: ZENTEL ELECTRONICS CORP.
    Inventors: Jun Hsiung Huang, Yu Wen Chang
  • Patent number: 9159789
    Abstract: An field effect transistor has a plurality of cells provided on a first straight line. Each cell has a plurality of multi-finger electrodes and is connected to a gate terminal electrode and a drain terminal electrode. The multi-finger electrode has at least two finger gate electrodes, a finger drain electrode, and a finger source electrode. The gate terminal electrode connects the finger gate electrodes of two adjoining cells in common. The drain terminal electrode connects the finger drain electrodes of two adjoining cells in common. The finger gate electrode of one cell of two adjoining cells and the finger gate electrode of another cell of the two adjoining cells cross perpendicularly. The gate terminal electrode and the drain terminal electrode are provided alternately in a region where the finger gate electrodes of the two adjoining cells cross.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: October 13, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kazutaka Takagi
  • Patent number: 9159804
    Abstract: Described here are transistors and fabrication methods thereof. In one implementation, a transistor includes an n-well region implanted into a surface of a substrate, and a trench in the n-well region. The trench extends from the surface to a first depth. The trench includes a gate of conductive material in the trench, and dielectric material filling a volume of the trench not filled by the conductive material. The transistor also includes a p-type material in a first region extending from a second depth to a third depth, the second depth and the third depth being greater than the first depth. The transistor further includes a source region and a drain region.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: October 13, 2015
    Assignee: Volterra Semiconductor LLC
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 9159785
    Abstract: Semiconductor devices having a buried layer and methods for forming the same are disclosed. In an exemplary method, a hard mask layer can be provided on a semiconductor substrate. The hard mask layer can have a plurality of through-openings. A plurality of deep trenches can be formed in the semiconductor substrate using the hard mask layer as a mask. A bottom of each of the plurality of deep trenches in the semiconductor substrate can be doped to form a plurality of heavily-doped regions. One or more of the plurality of heavily-doped regions can be connected to form the buried layer in the semiconductor substrate. There is thus no need to use an epitaxial process to form active regions. In addition, lateral isolation structures can be simultaneously formed in the semiconductor substrate.
    Type: Grant
    Filed: September 7, 2013
    Date of Patent: October 13, 2015
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Jiwei He, Gangning Wang, Shannon Pu, Mike Tang, Amy Feng
  • Patent number: 9136371
    Abstract: A monolithic bidirectional switching device includes a drift layer having a first conductivity type and having an upper surface, and first and second vertical metal-oxide semiconductor (MOS) structures at the upper surface of the drift layer. The drift layer provides a common drain for the first and second vertical MOS structures. The first and second vertical MOS structures are protected by respective first and second edge termination structures at the upper surface of the drift layer. A monolithic bidirectional switching device according to further embodiments includes a vertical MOS structure at the upper surface of the drift layer, and a diode at the upper surface of the drift layer. The drift layer provides a drain for the vertical MOS structure and a cathode for the diode, and the vertical MOS structure and the diode are protected by respective first and second edge termination structures.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: September 15, 2015
    Assignee: Cree, Inc.
    Inventor: Sei-Hyung Ryu
  • Patent number: 9136372
    Abstract: In a silicon carbide semiconductor device, a plurality of trenches has a longitudinal direction in one direction and is arranged in a stripe pattern. Each of the trenches has first and second sidewalls extending in the longitudinal direction. The first sidewall is at a first acute angle to one of a (11-20) plane and a (1-100) plane, the second sidewall is at a second acute angle to the one of the (11-20) plane and the (1-100) plane, and the first acute angle is smaller than the second acute angle. A first conductivity type region is in contact with only the first sidewall in the first and second sidewalls of each of the trenches, and a current path is formed on only the first sidewall in the first and second sidewalls.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: September 15, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichiro Miyahara, Masahiro Sugimoto, Hidefumi Takaya, Yukihiko Watanabe, Narumasa Soejima, Tsuyoshi Ishikawa
  • Patent number: 9123801
    Abstract: A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: September 1, 2015
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser, Thorsten Meyer
  • Patent number: 9105470
    Abstract: A switching component includes a control element and an integrated circuit. The integrated circuit includes a first transistor element and a second transistor element electrically connected in parallel to the first transistor element. The first transistor element includes first transistors, gate electrodes of which are disposed in first trenches in a first main surface of a semiconductor substrate. The second transistor element includes second transistors, gate electrodes of which are disposed in second trenches in the first main surface, and a second gate conductive line in contact with the gate electrodes in the second trenches. The control element is configured to control a potential applied to the second gate conductive line.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: August 11, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Noebauer, Christoph Kadow, Donald Dibra, Robert Illing
  • Patent number: 9105713
    Abstract: A semiconductor device includes a semiconductor substrate, a body region of a first conductivity type in the substrate, a source region of a second conductivity type opposite the first conductivity type adjacent the body region, and a trench extending into the substrate adjacent the source and body regions. The trench contains a polysilicon gate electrode insulated from the substrate. The device further includes a dielectric layer on the substrate, a gate metallization on the dielectric layer and covering part of the substrate and a source metallization on the dielectric layer and electrically connected to the source region. The source metallization is spaced apart from the gate metallization and covers a different part of the substrate than the gate metallization. A metal-filled groove in the polysilicon gate electrode is electrically connected to the gate metallization, and extends along a length of the trench underneath at least part of the source metallization.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 11, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Oliver Blank, Li Juin Yip
  • Patent number: 9105656
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device includes: a first conductive type substrate in which isolation regions are formed for defining a device region; agate formed on the first conductive type substrate; a source and a drain formed in the device region and located at both sides of the gate respectively, and doped with second conductive type impurities; a second conductive type well, which is formed in the first conductive type substrate, and surrounds the drain from top view; and a first deep trench isolation structure, which is formed in the first conductive type substrate, and is located in the second conductive type well between the source and the drain from top view, wherein the depth of the first deep trench isolation structure is deeper than the second conductive type well from the cross-sectional view.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: August 11, 2015
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Kuo-Hsuan Lo
  • Patent number: 9099322
    Abstract: Process for manufacturing a semiconductor power device, wherein a trench is formed in a semiconductor body having a first conductivity type; the trench is annealed for shaping purpose; and the trench is filled with semiconductor material via epitaxial growth so as to obtain a first column having a second conductivity type. The epitaxial growth is performed by supplying a gas containing silicon and a gas containing dopant ions of the second conductivity type in presence of a halogenide gas and occurs with uniform distribution of the dopant ions. The flow of the gas containing dopant ions is varied according to a linear ramp during the epitaxial growth; in particular, in the case of selective growth of the semiconductor material in the presence of a hard mask, the flow decreases; in the case of non-selective growth, in the absence of hard mask, the flow increases.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 4, 2015
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Simona Lorenti, Cateno Marco Camalleri, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 9093300
    Abstract: A semiconductor device is formed having a trench adjacent to a current carrying region of the device. The trench is formed having a depth greater than the depth of a tub region of the device. Increasing the trench depth moves a region of higher field strength from the tub region to a region along the trench. The region along the trench does not have a junction and may withstand the higher field strength.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: July 28, 2015
    Assignee: Estivation Properties LLC
    Inventor: Robert Bruce Davies
  • Patent number: 9093474
    Abstract: A manufacturing method of an electric power semiconductor device includes following processes. A plurality of first second conductivity type impurity implantation layers are formed in a surface of a second semiconductor layer of a first conductivity type. A first trench is formed between a first non-implantation region and one of the plurality of first second conductivity type impurity implantation layers. An epitaxial layer of the first conductivity type is formed and covers the plurality of first second conductivity type impurity implantation layers. A plurality of second second conductivity type impurity implantation layers are formed in a surface of the epitaxial layer. A second trench is formed between a second non-implantation region and one of the plurality of second second conductivity type impurity implantation layers. A third semiconductor layer of the first conductivity type is formed and covers the plurality of second second conductivity type impurity implantation layers.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 28, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Toshiyuki Naka, Shunji Taniuchi, Hiroaki Yamashita
  • Patent number: 9093361
    Abstract: A semiconductor device capable of suppressing time variation of a threshold voltage and a method of manufacturing the same. A semiconductor device according to the present invention comprises a drift layer formed on a semiconductor substrate, first well regions formed in a surface layer of the drift layer, being apart from one another, a gate insulating film formed, extending on the drift layer and each of the first well regions, a gate electrode selectively formed on the gate insulating film, a source contact hole penetrating through the gate insulating film and reaching the inside of each of the first well regions, and a residual compressive stress layer formed on at least a side surface of the source contact hole, in which a compressive stress remains.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: July 28, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shiro Hino, Naruhisa Miura, Akihiko Furukawa, Yukiyasu Nakao, Tomokatsu Watanabe, Masayoshi Tarutani, Yuji Ebiike, Masayuki Imaizumi, Sunao Aya
  • Patent number: 9082751
    Abstract: According to one embodiment, a half-FinFET semiconductor device comprises a gate structure formed over a semiconductor body. The semiconductor body includes a source region comprised of a plurality of fins extending beyond a first side of the gate structure and a continuous drain region adjacent a second side of the gate structure opposite the plurality of fins. The continuous drain region causes the half-FinFET semiconductor device to have a reduced ON-resistance. A method for fabricating a semiconductor device having a half-FinFET structure comprises designating source and drain regions in a semiconductor body, etching the source region to produce a plurality of source fins while masking the drain region during the etching to provide a continuous drain region, thereby resulting in the half-FinFET structure having a reduced ON-resistance.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 14, 2015
    Assignee: BROADCOM CORPORATION
    Inventors: Xiangdong Chen, Wei Xia
  • Patent number: 9082813
    Abstract: A semiconductor device is provided which includes a semiconductor body having a base region and a main horizontal surface, and a first electrode arranged on the main horizontal surface. The semiconductor body further includes a plurality of vertical trenches having gate electrodes in a vertical cross-section. A body region forms a first pn-junction with the base region and extends between two of the vertical trenches. A source region is in ohmic contact with the first electrode and arranged between the two vertical trenches. An anti-latch-up region is arranged between the two vertical trenches and in ohmic contact with the first electrode. The anti-latch-up region has a maximum doping concentration which is higher than a maximum doping concentration of the body region. An anode region forms a rectifying pn-junction with the base region only and adjoins a third one of the vertical trenches, and has ohmic contact with the first electrode.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: July 14, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Frank Pfirsch
  • Patent number: 9076779
    Abstract: The present disclosure includes novel techniques to provide wafer level fan-outs in electronic circuit packages housing one or more circuit devices, at least one of which has input and/or output nodes disposed on opposite facings.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: July 7, 2015
    Assignee: International Rectifier Corporation
    Inventors: Florian Bieck, Robert J. Montgomery
  • Patent number: 9064947
    Abstract: A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: June 23, 2015
    Assignee: GAN SYSTEMS INC.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Patent number: 9064704
    Abstract: An integrated circuit with ESD protection comprises at least one ESD protection circuit block, which comprises a DC blocking capacitor connected in parallel with at least one compound semiconductor enhancement mode FET as an ESD protection device. The ESD protection circuit block that is built in an integrated circuit provides ESD protection while minimizing the generation of unwanted nonlinear signals resulting from the ESD protection. An integrated circuit comprises a high frequency circuit, a switching element, and two ESD protection circuit blocks, in which the high frequency circuit is connected between a first terminal and a second terminal for inputting or outputting the RF signals, the first ESD protection circuit block is connected from a branch node between the first terminal and the high frequency circuit to the switching element, and the second ESD protection circuit block is connected from the switching element to the ground.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 23, 2015
    Assignee: WIN SEMICONDUCTORS CORP.
    Inventors: Shinichiro Takatani, Jung-Tao Chung, Chih-Wei Wang, Cheng-Guan Yuan, Shih-Ming Joseph Liu
  • Patent number: 9059238
    Abstract: Some aspects of the invention include a trench gate structure including a p base layer, an n+ emitter region, a trench, a gate oxide film, and a doped polysilicon gate electrode is provided in an active region. A p-type extension region formed by extending the p base layer to an edge termination structure region can be provided in the circumference of a plurality of trenches. One or more annular outer trenches which are formed at the same time as the plurality of trenches are provided in the p-type extension region. The annular outer trenches can surround all of the trenches. A second gap between the annular outer trench and the outermost trench or between adjacent annular outer trenches is less than a first gap between adjacent trenches.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 16, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Naoko Kurata, Seiji Momota, Hitoshi Abe
  • Patent number: 9054184
    Abstract: A semiconductor device includes a semiconductor substrate having a first gate groove having first and second side walls facing to each other. A first gate insulating film covers the first and second side walls. A first gate electrode is disposed on the first gate insulating film and in a lower portion of the first gate groove. A first burying insulating film buries the first gate groove and covers the first gate electrode. A first diffusion region is adjacent to a first upper portion of the first gate insulating film. The first upper portion is positioned on an upper portion of the first side wall of the first gate groove. A second diffusion region is in contact with an upper portion of the second side wall of the first gate groove.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 9, 2015
    Assignee: PS4 LUXCO S.A.R.L.
    Inventor: Noriaki Mikasa
  • Patent number: 9041101
    Abstract: A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 26, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Masaru Izumisawa, Hiroshi Ohta, Hiroaki Yamashita
  • Patent number: 9041070
    Abstract: When forming a super junction by the embedded epitaxial method, adjusting a taper angle of dry etching to form an inclined column is generally performed in trench forming etching, in order to prevent a reduction in breakdown voltage due to fluctuations in concentration in an embedded epitaxial layer. However, according to the examination by the present inventors, it has been made clear that such a method makes design more and more difficult in response to the higher breakdown voltage. In the present invention, the concentration in an intermediate substrate epitaxy column area in each substrate epitaxy column area configuring a super junction is made more than that in other areas within the substrate epitaxy column area, in a vertical power MOSFET having the super junction by the embedded epitaxial method.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: May 26, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Satoshi Eguchi, Yoshito Nakazawa, Tomohiro Tamaki
  • Patent number: 9035377
    Abstract: A semiconductor device of an embodiment has a first conductive type first semiconductor layer, a second conductive type second semiconductor layer provided in the first semiconductor layer having a first lateral surface and a first bottom portion contacting the first semiconductor layer. The second semiconductor layer has a first void portion inside. A second conductive type impurity concentration decreases from the first lateral surface toward the first void portion. And the device has a second conductive type third semiconductor layer provided in the first semiconductor layer such that the first semiconductor layer is sandwiched between the third semiconductor layer and the second semiconductor layer. The third semiconductor layer has a second lateral surface and a second bottom portion contacting the first semiconductor layer. The third semiconductor layer has a second void portion inside.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 19, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shinya Sato
  • Patent number: 9029235
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: May 12, 2015
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 9029945
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region. The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 12, 2015
    Assignee: Cree, Inc.
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Patent number: 9029236
    Abstract: A termination structure with multiple embedded potential spreading capacitive structures (TSMEC) and method are disclosed for terminating an adjacent trench MOSFET atop a bulk semiconductor layer (BSL) with bottom drain electrode. The BSL has a proximal bulk semiconductor wall (PBSW) supporting drain-source voltage (DSV) and separating TSMEC from trench MOSFET. The TSMEC has oxide-filled large deep trench (OFLDT) bounded by PBSW and a distal bulk semiconductor wall (DBSW). The OFLDT includes a large deep oxide trench into the BSL and embedded capacitive structures (EBCS) located inside the large deep oxide trench and between PBSW and DBSW for spatially spreading the DSV across them. In one embodiment, the EBCS contains interleaved conductive embedded polycrystalline semiconductor regions (EPSR) and oxide columns (OXC) of the OFLDT, a proximal EPSR next to PBSW is connected to an active upper source region and a distal EPSR next to DBSW is connected to the DBSW.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 12, 2015
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaobin Wang, Anup Bhalla, Hamza Yilmaz, Daniel Ng
  • Patent number: 9029946
    Abstract: A power transistor includes a plurality of transistor cells. Each transistor cell has a first electrode coupled to a first electrode interconnection region overlying a first major surface, a control electrode coupled to a control electrode interconnection region overlying the first major surface, and a second electrode coupled to a second electrode interconnection region overlying a second major surface. Each transistor cell has an approximately constant doping concentration in the channel region. A dielectric platform is used as an edge termination of an epitaxial layer to maintain substantially planar equipotential lines therein. The power transistor finds particular utility in radio frequency applications operating at a frequency greater than 500 megahertz and dissipating more than 5 watts of power. The semiconductor die and package are designed so that the power transistor can efficiently operate under such severe conditions.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Estivation Properties LLC
    Inventor: Robert Bruce Davies
  • Patent number: 9029947
    Abstract: A field device and method of operating high voltage semiconductor device applied with the same are provided. The field device includes a first well having a second conductive type and second well having a first conductive type both formed in the substrate (having the first conductive type) and extending down from a surface of the substrate, the second well adjacent to one side of the first well and the substrate is at the other side of the first well; a first doping region having the first conductive type and formed in the second well, the first doping region spaced apart from the first well; a conductive line electrically connected to the first doping region and across the first well region; and a conductive body insulatively positioned between the conductive line and the first well, and the conductive body correspondingly across the first well region.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 12, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: An-Li Cheng, Miao-Chun Chung, Chih-Chia Hsu, Yin-Fu Huang
  • Patent number: 9029261
    Abstract: There is provided a method of fabricating a semiconductor device, the method including: forming a semiconductor component portion at a first surface of a substrate; applying a grinding treatment to a second surface of the substrate that is opposite from the first surface to form a fracture surface; applying a fracture surface removal treatment to predetermined positions of the fracture surface of the second surface; and forming an electrode at the second surface.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: May 12, 2015
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Yuichi Kaneko