Plural Sections Connected In Parallel (e.g., Power Mosfet) Patents (Class 257/341)
  • Patent number: 9748377
    Abstract: A semiconductor device includes a gate structure, a source region and a drain region. The source region and the drain region are on opposite sides of the gate structure. The source region includes a first region of a first conductivity type and a second region of a second conductivity type. The second conductivity type is opposite to the first conductivity type. The first region is between the second region and the gate structure. The second region includes at least one projection protruding into the first region and toward the gate structure.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: August 29, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Ming Huang, Shen-Ping Wang, Lieh-Chuan Chen, Chih-Heng Shen, Po-Tao Chu
  • Patent number: 9748356
    Abstract: Incorporation of metallic quantum dots (e.g., silver bromide (AgBr) films) into the source and drain regions of a MOSFET can assist in controlling the transistor performance by tuning the threshold voltage. If the silver bromide film is rich in bromine atoms, anion quantum dots are deposited, and the AgBr energy gap is altered so as to increase Vt. If the silver bromide film is rich in silver atoms, cation quantum dots are deposited, and the AgBr energy gap is altered so as to decrease Vt. Atomic layer deposition (ALD) of neutral quantum dots of different sizes also varies Vt. Use of a mass spectrometer during film deposition can assist in varying the composition of the quantum dot film. The metallic quantum dots can be incorporated into ion-doped source and drain regions. Alternatively, the metallic quantum dots can be incorporated into epitaxially doped source and drain regions.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 29, 2017
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9748370
    Abstract: To prevent a malfunction of an overcurrent protection circuit without increasing an on-voltage, and to suppress a short circuit capacity, thus further reducing a switching loss, a trench gate IGBT is provided in which is incorporated a sense IGBT connected in parallel to a main IGBT, where only the sense IGBT portion includes a p-type channel region all over in a semiconductor substrate between adjacent parallel striped trenches, so that the capacitance of the MOS gate of the sense IGBT is smaller than the capacitance of the MOS gate of the main IGBT.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 29, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Keishirou Kumada
  • Patent number: 9748341
    Abstract: A semiconductor device includes a drift layer disposed on a substrate. The drift layer has a non-planar surface having a plurality of repeating features oriented parallel to a length of a channel of the semiconductor device. Further, each the repeating features have a dopant concentration higher than a remainder of the drift layer.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 29, 2017
    Assignee: General Electric Company
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 9742389
    Abstract: A semiconductor device includes a switching element chip, in which a switching element is formed; a first sensing element, which is provided in the switching element chip and is configured to detect first output voltage based on an operating current of the switching element; a second sensing element, which is provided outside the switching element chip and is configured to detect second output voltage based on the operating current of the switching element; and a control circuit, which detects the operating current based on the second output voltage and interrupts the switching element, based on the first output voltage of the first sensing element and the detected operating current, when the switching element is overheated.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 22, 2017
    Assignee: Sanken Electric Co., LTD.
    Inventors: Yuya Maekawa, Katsuyuki Torii
  • Patent number: 9735229
    Abstract: A semiconductor device includes a semiconductor substrate in which an active region and an edge termination region are defined, a semiconductor element formed in the active region, and first to fourth P layers formed in a region spanning from an edge portion of the active region to the edge termination region in the surface of the semiconductor substrate. The first to fourth P layers respectively have surface concentrations P(1) to P(4) that decrease in this order, bottom-end distances D(1) to D(4) that increase in this order, and distances B(1) to B(4) to the edge of the semiconductor substrate that increase in this order. The surface concentration P(4) is 10 to 1000 times the impurity concentration of the semiconductor substrate, and the bottom-end distance D(4) is in the range of 15 to 30 ?m.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: August 15, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Ze Chen, Katsumi Nakamura
  • Patent number: 9728632
    Abstract: A vertical DMOS device implements one or more deep silicon via (DSV) plugs, thereby significantly reducing the layout area and on-resistance (RDSON) of the device. The DSV plugs extend through a semiconductor substrate to contact a conductively doped buried diffusion region, which forms the drain of the vertical DMOS device. Methods for fabricating the vertical DMOS device are compatible with conventional sub-micron VLSI processes, such that the vertical DMOS device can be readily fabricated on the same integrated circuit as CMOS devices and analog devices, such as lateral double-diffused MOS (LDMOS) devices.
    Type: Grant
    Filed: November 30, 2014
    Date of Patent: August 8, 2017
    Assignee: Tower Semiconductor Ltd.
    Inventors: Sharon Levin, Zachary K. Lee, Shye Shapira
  • Patent number: 9711637
    Abstract: A control electrode GE1 is formed in a lower portion of a trench TR1 formed in a semiconductor substrate SUB, and a gate electrode GE2 is formed in an upper portion inside the trench TR1. An insulating film G1 is formed between the control electrode GE1 and a side wall and a bottom surface of the trench TR1, an insulating film G2 is formed between the side wall of the trench TR1 and the gate electrode GE2, and an insulating film G3 is formed between the control electrode GE1 and the gate electrode GE2. A region adjacent to the trench TR1 includes an n+-type semiconductor region NR for a source, a p-type semiconductor region PR for a channel formation, and a semiconductor region for a drain. A wiring connected to the control electrode GE1 is not connected to a wiring connected to the gate electrode GE2, and is not connected to a wiring connected to the n+-type semiconductor region NR for a source.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: July 18, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Hideo Numabe, Nobuyuki Shirai, Hirokazu Kato, Tomoaki Uno, Kazuyuki Umezu
  • Patent number: 9698217
    Abstract: A semiconductor device of trench gate type is provided that has achieved both large on-current and high off-state breakdown voltage. Around trench T and between it and electric field relaxation p-layer 16, low resistance n-layer 17 is provided. Low resistance n-layer 17 is formed deeper than trench T, and shallower than electric field relaxation p-layer 16, being connected to n?-layer (drift layer) 12 just thereunder, and thus low resistance n-layer 17 and n?-layer 12 are integrated to form a drift layer. Although low resistance n-layer 17 is n-type as is n?-layer 12, donor concentration thereof is set higher than that of n?-layer 12, thereby low resistance n-layer 17 having a resistivity lower than that of n?-layer 12. This low resistance n-layer 17 is provided in on-current path (between electric field relaxation p-layer 16 and trench T), whereby low resistance n-layer 17 can lower the resistance to on-current.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 4, 2017
    Assignee: KYOCERA Document Solutions Inc.
    Inventors: Ryohei Baba, Toru Yoshie, Tomonori Hotate, Yuki Tanaka
  • Patent number: 9691842
    Abstract: A semiconductor device includes first semiconductor regions of a first conductivity type spaced apart from each other and second semiconductor regions of a second conductivity type between adjacent first semiconductor regions. At least one second semiconductor region includes a void having at least one outer surface with a crystal plane orientation of (100). A third semiconductor region of the second conductivity type is on each second semiconductor region and a fourth semiconductor region of the first conductivity type is on the third semiconductor region. A gate electrode on is disposed on each first semiconductor region to be adjacent to a third semiconductor region via a gate insulation layer.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: June 27, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sato, Tomoyuki Sakuma, Noboru Yokoyama, Shizue Matsuda
  • Patent number: 9685869
    Abstract: GaN-based half bridge power conversion circuits employ control, support and logic functions that are monolithically integrated on the same devices as the power transistors. In some embodiments a low side GaN device communicates through one or more level shift circuits with a high side GaN device. Both the high side and the low side devices may have one or more integrated control, support and logic functions. Some devices employ electro-static discharge circuits and features formed within the GaN-based devices to improve the reliability and performance of the half bridge power conversion circuits.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 20, 2017
    Assignee: Navitas Semiconductor, Inc.
    Inventors: Daniel M. Kinzer, Santosh Sharma, Ju Jason Zhang
  • Patent number: 9673350
    Abstract: A semi-conducting component including a semi-conducting layer of a first conductivity type including a plurality of semi-conducting zones of a second conductivity type opposite that of the semi-conducting layer, and an insulating layer. The component further includes a first bias mechanism configured to bias the semi-conducting layer and a second bias mechanism configured to bias a semi-conducting zone. The first bias mechanism includes a conducting layer in contact with the insulating layer and which includes passageways for each second bias mechanism with the spacing between the conducting layer and the second bias mechanism which is located facing the corresponding semi-conducting zone.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: June 6, 2017
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Francois Boulard, Olivier Gravrand
  • Patent number: 9673316
    Abstract: A semiconductor device including a VDMOS device formed therein includes a terminal, or contact, to the drain region of the VDMOS device from the frontside of the device. In one or more implementations, a semiconductor device includes a semiconductor substrate having a first surface and a second surface and a vertical diffused metal-oxide-semiconductor device formed within the semiconductor substrate. The vertical diffused metal-oxide-semiconductor device includes at least one source region formed proximate to the first surface and at least one drain region formed proximate to the second surface. A through-substrate via is formed within the semiconductor substrate, and the through-substrate via electrically connected to the drain region. The through-substrate via provides an electrical interconnection to the drain region from the first surface.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 6, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Christopher S. Blair, Albert Bergemont, Sudarsan Uppili, Fanling H. Yang, Guillaume Bouche
  • Patent number: 9653912
    Abstract: An inrush current limiter for electronic fuses detects the type of load connected to the electronic fuse at ignition. By detecting the type of load, the limiter prevents a large peak current from flowing through the fuse. When a short circuit occurs, the limiter ensures that the electronic fuse only operates once in linear mode.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 16, 2017
    Assignee: NXP B.V.
    Inventor: Luc van Dijk
  • Patent number: 9647078
    Abstract: A semiconductor power device supported on a semiconductor substrate that includes a plurality of transistor cells, each cell has a source and a drain region disposed on opposite sides of a gate region in the semiconductor substrate. A gate electrode is formed as an electrode layer on top of the gate region for controlling an electric current transmitted between the source and the drain regions. The gate electrode layer disposed on top of the semiconductor substrate is patterned into a wave-like shaped stripes for substantially increasing an electric current conduction area between the source and drain regions across the gate.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 9, 2017
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Shekar Mallikararjunaswamy
  • Patent number: 9627284
    Abstract: A semiconductor device includes: a resin case that houses a semiconductor element; a parallel plate that is disposed inside the resin case while being connected with the semiconductor element, the parallel plate including two flat plates parallel to each other with an insulating material therebetween; and two electrodes that are each led out from an upper end of the parallel plate and are disposed on an upper surface of the resin case at a predetermined interval. Upper end portions of the two flat plates of the parallel plate between two electrode lead-out portions are bent toward the outside being a direction in which the upper end portions of the two flat plates become more distant from each other, the two electrodes being led out from the corresponding two electrode lead-out portions.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 18, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideki Tsukamoto, Mituharu Tabata
  • Patent number: 9627383
    Abstract: A semiconductor device includes a first MOS transistor and a second MOS transistor of a second conductivity type. The first MOS transistor includes a first main electrode connected to a first potential and a second main electrode connected to a second potential. The second MOS transistor includes a first main electrode connected to a control electrode of the first MOS transistor and a second main electrode connected to the second potential. The control electrodes of the first and second MOS transistors are connected in common. The first and second MOS transistors are formed on a common wide bandgap semiconductor substrate. In the first MOS transistor, a main current flows in a direction perpendicular to a main surface of the wide bandgap semiconductor substrate. In the second MOS transistor, a main current flows in a direction parallel to the main surface of the wide bandgap semiconductor substrate.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: April 18, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naoto Kaguchi, Eisuke Suekawa, Masaaki Ikegami
  • Patent number: 9620424
    Abstract: Improved linearity performance for radio-frequency (RF) switches. In some embodiments, a switching device can include a first terminal and a second terminal, and a plurality of switching elements connected in series to form a stack between the first terminal and the second terminal. The switching elements can have a non-uniform distribution of a parameter that results in the stack having a first linearity performance that is better than a second linearity performance corresponding to a similar stack having a substantially uniform distribution of the parameter.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: April 11, 2017
    Assignee: Skyworks Solutions, Inc.
    Inventors: Guillaume Alexandre Blin, Aniruddha B. Joshi, Christophe Masse
  • Patent number: 9620614
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate includes rows of multiple horizontal columns of thin layers of alternate conductivity types in a drift region of the semiconductor substrate where each of the thin layers having a thickness to enable a punch through the thin layers when the semiconductor power device is turned on. In a specific embodiment the thickness of the thin layers satisfying charge balance equation q*ND*WN=q*NA*WP and a punch through condition of WP<2*WD*[ND/(NA+ND)] where ND and WN represent the doping concentration and the thickness of the N type layers 160, while NA and WP represent the doping concentration and thickness of the P type layers; WD represents the depletion width; and q represents an electron charge, which cancel out. This device allows for a near ideal rectangular electric field profile at breakdown voltage with sawtooth like ridges.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 11, 2017
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Madhur Bobde
  • Patent number: 9613969
    Abstract: The present invention provides a semiconductor structure, including a substrate, a plurality of fin structures, a plurality of gate structures, a dielectric layer and a plurality of contact plugs. The substrate has a memory region. The fin structures are disposed on the substrate in the memory region, each of which stretches along a first direction. The gate structures are disposed on the fin structures, each of which stretches along a second direction. The dielectric layer is disposed on the gate structures and the fin structures. The contact plugs are disposed in the dielectric layer and electrically connected to a source/drain region in the fin structure. From a top view, the contact plug has a trapezoid shape or a pentagon shape. The present invention further provides a method for forming the same.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: April 4, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Wei-Cyuan Lo, Ming-Jui Chen, Chia-Lin Lu, Jia-Rong Wu, Yi-Hui Lee, Ying-Cheng Liu, Yi-Kuan Wu, Chih-Sen Huang, Yi-Wei Chen, Tan-Ya Yin, Chia-Wei Huang, Shu-Ru Wang, Yung-Feng Cheng
  • Patent number: 9601612
    Abstract: A semiconductor device includes MOSFET cells having a drift region of a first conductivity type. A first and second active area trench are in the drift region. A split gate uses the active trenches as field plates or includes planar gates between the active trenches including a MOS gate electrode (MOS gate) and a diode gate electrode (diode gate). A body region of the second conductivity type in the drift region abutts the active trenches. A source of the first conductivity type in the body region includes a first source portion proximate to the MOS gate and a second source portion proximate to the diode gate. A vertical drift region uses the drift region below the body region to provide a drain. A connector shorts the diode gate to the second source portion to provide an integrated channel diode. The MOS gate is electrically isolated from the first source portion.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: March 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Christopher Boguslaw Kocon, John Manning Savidge Neilson
  • Patent number: 9601580
    Abstract: A semiconductor device includes a first transistor having a first conductivity type SiC layer, a second conductivity type SiC well region, a first conductivity type SiC first source region, a first conductivity type SiC first drain region, and a first gate electrode provided on the well region sandwiched between the first source region and the first drain region. The device includes a second transistor having a second conductivity type SiC second source region, a second conductivity type SiC second drain region provided on the SiC layer, and a second gate electrode provided on the SiC layer sandwiched between the second source region and the second drain region. There is an angle between a direction of a channel forming portion of first transistor and that of the second transistor. The device includes an element isolation region having a bottom positioned in the SiC layer.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: March 21, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryosuke Iijima, Kazuto Takao, Tatsuo Shimizu
  • Patent number: 9583478
    Abstract: A lateral power MOSFET structure is disclosed. In some embodiments, a semiconductor device comprises substantially concentric source, channel, and drain regions; a metal layer at least in part comprising a drain plane disposed over the source, channel, and drain regions; and a metal layer at least in part comprising a source plane disposed over the source, channel, and drain regions.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 28, 2017
    Assignee: Silego Technology, Inc.
    Inventor: Marcelo A. Martinez
  • Patent number: 9583560
    Abstract: A power semiconductor device of stripe cell geometry including a substrate, a plurality of striped power semiconductor units, and a guard ring structure is provided. The substrate has an active area and a termination area surrounding the active area defined thereon. The striped semiconductor unit includes a striped gate conductive structure. The striped semiconductor units are located in the active area. The guard ring structure is located in the termination area and includes at least a ring-shaped conductive structure surrounding the striped power semiconductor units. The ring-shaped conductive structure and the striped gate conductive structures are formed on the same conductive layer, and at least one of the striped gate conductive structures is separated from the nearby ring-shaped conductive structure and electrically connected to the nearby ring-shaped conductive structure through the gate metal pad.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: February 28, 2017
    Assignee: UBIQ SEMICONDUCTOR CORP.
    Inventors: Kao-Way Tu, Yi-Yun Tsai, Yuan-Shun Chang
  • Patent number: 9577631
    Abstract: A single-pole multi-throw switch includes a set of selection switches. The set of selection switches includes a set of primary switches, a first set and a second set of secondary switches. The primary set of switches includes a plurality of primary transistors coupled in series for transmitting radio frequency signals. The first set of secondary switches is coupled to the primary set of switches and includes a plurality of first secondary transistors coupled in series for transmitting the radio frequency signals when the primary transistors and the first secondary transistors are turned on. The second set of secondary switches is coupled to the primary set of switches and includes a plurality of second secondary transistors coupled in series for transmitting the radio frequency signals when the primary transistors and the second secondary transistors are turned on.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: February 21, 2017
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Ching-Wen Hsu
  • Patent number: 9570566
    Abstract: A semiconductor device includes a semiconductor substrate and a first trench extending into or through the semiconductor substrate from a first side. The first trench is at least partially filled with a conductive material and electrically connected to the semiconductor substrate via a doped semiconductor layer at a sidewall of the first trench. A semiconductor layer adjoins the semiconductor substrate at the first side, and caps the first trench at the first side. A contact is disposed at a second side of the semiconductor substrate opposite to the first side. A method of manufacturing the semiconductor device is also provided.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: February 14, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Reinhard Ploss, Hans-Joachim Schulze
  • Patent number: 9564436
    Abstract: A semiconductor device is described, including a substrate including a first area and a second area, a first MOS element of a first conductivity type in the first area, and a second MOS element of the first conductivity type in the second area. The first area is closer to a pick-up region of the substrate than the second area. The substrate has a second conductivity type. The bottom depth of a first electrical conduction path in the substrate in the first area is smaller than that of a second electrical conduction path in the substrate in the second area.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 7, 2017
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Ju Wen, Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9553184
    Abstract: A semiconductor device includes a semiconductor layer disposed at a substrate and a plurality of active cells disposed at the semiconductor layer. Each active cell includes a trench extending into the semiconductor layer and a body region disposed in the semiconductor layer adjacent to a sidewall of the trench and at a first depth below the surface of the semiconductor layer. The semiconductor device further includes a termination cell disposed at the semiconductor layer adjacent to an edge of the plurality of active cells. The termination cell includes a trench extending into the semiconductor layer, and further includes a body region disposed in the semiconductor layer adjacent to a sidewall of the trench of the termination cell and at a second depth less than the first depth. The body regions of the active cells and of the termination cell have a conductivity type different than that of the semiconductor layer.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: January 24, 2017
    Assignee: NXP USA, INC.
    Inventors: Moaniss Zitouni, Edouard de Frésart, Pon Sung Ku, Ganming Qin
  • Patent number: 9543396
    Abstract: A vertical power transistor device includes a semiconductor layer of a first conductivity type, with a plurality of cylindrically-shaped dielectric regions disposed in the semiconductor layer. The cylindrically-shaped dielectric regions extend in a vertical direction from a top surface of the semiconductor layer downward. Adjacent ones of the cylindrically-shaped dielectric regions being laterally separated along a common diametrical axis by a narrow region of the semiconductor layer having a first width. Each dielectric region has a cylindrically-shaped, conductive field plate member centrally disposed therein. The cylindrically-shaped, conductive field plate member extends in the vertical direction from the top surface downward to near a bottom of the dielectric region. The dielectric region laterally separates the cylindrically-shaped, conductive field plate member from the narrow region.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: January 10, 2017
    Assignee: Power Integrations, Inc.
    Inventors: Sorin Stefan Georgescu, Wayne Byran Grabowski, Kamal Raj Varadarajan, Lin Zhu, Kuo-Chang Robert Yang
  • Patent number: 9515067
    Abstract: A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: December 6, 2016
    Assignee: DENSO CORPORATION
    Inventors: Hirotaka Saikaku, Tsuyoshi Yamamoto, Shoji Mizuno, Masakiyo Sumitomo, Tetsuo Fujii, Jun Sakakibara, Hitoshi Yamaguchi, Yoshiyuki Hattori, Rie Taguchi, Makoto Kuwahara
  • Patent number: 9515137
    Abstract: A super junction semiconductor device includes a super junction structure that is formed in a semiconductor body having a first and a second, parallel surface. The super junction structure includes first areas of the first conductivity type and second areas of a second conductivity type which is the opposite of the first conductivity type. In a cell area surrounded by an edge area, the super junction structure has a first nominal breakdown voltage in a first portion and a second nominal breakdown voltage, which differs from the first nominal breakdown voltage, in a second portion to provide improved avalanche ruggedness.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: December 6, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Gerald Deboy
  • Patent number: 9502501
    Abstract: A lateral field effect transistor device has a plurality of source and drain cells. Each source cell has a central semiconductor source region, and each drain cell has a central semiconductor drain region. The device has a first metallic conductive path which extends from a source electrode to join the source regions, thereby connecting the source cells in series to the source electrode. The device has a second metallic conductive path which extends from a drain electrode to join the drain regions, thereby connecting the drain cells in series to the drain electrode. The device has a gate path which extends from a gate electrode around the edges of the cells to form boundaries between neighboring source and drain cells, thereby forming respective field effect transistors between the source and drain regions of neighboring cells. The source cells and drain cells tessellate to cover an area of the device.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 22, 2016
    Assignee: ROLLS-ROYCE PLC
    Inventor: Priyanka De Souza
  • Patent number: 9496151
    Abstract: In aspects of the invention, an n-type epitaxial layer that forms an n? type drift layer is formed on the upper surface of an n-type semiconductor substrate formed by being doped with a high concentration of antimony. A p-type anode layer is formed on a surface of the n? type drift layer. An n-type contact layer is formed with an impurity concentration in the same region as the impurity concentration of the n-type cathode layer, or higher than the impurity concentration of the n-type cathode layer, on the lower surface of the n-type cathode layer. A cathode electrode is formed so as to be in contact with the n-type contact layer. The n-type contact layer is doped with phosphorus and, without allowing complete recrystallization using a low temperature heat treatment of 500° C. or less, lattice defects are allowed to remain.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: November 15, 2016
    Assignee: FUJI ELECTRIC CO.,LTD.
    Inventor: Mitsuaki Kirisawa
  • Patent number: 9490358
    Abstract: An electronic device can include a buried conductive region and a semiconductor layer over the buried conductive region. The electronic device can further include a horizontally-oriented doped region and a vertical conductive region, wherein the vertical conductive region is electrically connected to the horizontally-oriented doped region and the buried conductive region. The electronic device can still further include an insulating layer overlying the horizontally-oriented doped region, and a first conductive electrode overlying the insulating layer and the horizontally-oriented doped region, wherein a portion of the vertical conductive region does not underlie the first conductive electrode. The electronic device can include a Schottky contact that allows for a Schottky diode to be connected in parallel with a transistor. Processes of forming an electronic device allow a vertical conductive region to be formed after a conductive electrode, a gate electrode, a source region, or both.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 8, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 9490354
    Abstract: A semiconductor body of an IGBT includes: a first base region of a second conductivity type; a source region of a first conductivity type different from the second conductivity type and forming a first pn-junction with the first base region; a drift region of the first conductivity type and forming a second pn-junction with the first base region; a collector region of the second conductivity type; at least one trench filled with a gate electrode and having a first trench portion of a first width and a second trench portion of a second width, the second width being different from the first width; and a field stop region having the first conductivity type and located between the drift region and the collector region. The field stop region includes a plurality of buried regions having the second conductivity type.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: November 8, 2016
    Assignee: Infineon Technologies AG
    Inventors: Holger Huesken, Frank Dieter Pfirsch, Hans-Joachim Schulze
  • Patent number: 9466707
    Abstract: A planar MOSFET includes a plurality of MOSFET cells. Each MOSFET cell includes an epitaxial layer of a first conductivity type, a body region of a second conductivity type inside the epitaxial layer, the second conductivity type having a polarity opposite to the first conductivity type, a source region inside the body region, a source contact portion to provide electrical contact with the source region, and a gate portion. A drift region is defined in the epitaxial layer between body regions of adjacent MOSFET cells and the gate portions of the adjacent MOSFET cells across said drift region are separated from each other with electrical insulation. A charge induction terminal is provided on the drift region to induce and store electric charge at said drift region upon application of a charge induction voltage at said charge induction terminal.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 11, 2016
    Inventor: Mau Lam Lai
  • Patent number: 9461034
    Abstract: There are disclosed herein various implementations of a group III-V composite transistor having a switched substrate. Such a group III-V composite transistor includes a composite field-effect transistor (FET) including a depletion mode group III-V high electron mobility transistor (HEMT) situated over a substrate. The depletion mode group III-V HEMT is cascoded with an enhancement mode group IV FET to produce the composite FET. The group III-V composite transistor also includes a transistor configured to selectably couple the substrate of the depletion mode group III-V HEMT to ground and to selectably decouple the substrate from ground. That transistor is configured to ground the substrate when the depletion mode group III-V HEMT is in an off-state and to cause the substrate to float when the depletion mode group III-V HEMT is in an on-state.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: October 4, 2016
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Yang Pan, Mohamed Imam
  • Patent number: 9461164
    Abstract: A semiconductor device includes a semiconductor body having a first surface and a second surface opposite to the first surface. The semiconductor device further includes first and second trenches extending from the first surface into the semiconductor body. The semiconductor device further includes at least one lateral IGFET including a first load terminal at the first surface, a second load terminal at the first surface and a gate electrode within the first trenches. The semiconductor device further includes at least one vertical IGFET including a first load terminal at the first surface, a second load terminal at the second surface and a gate electrode within the second trenches.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 4, 2016
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Werner Schwetlick
  • Patent number: 9450050
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: September 20, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingping Guan, Yeeheng Lee, John Chen
  • Patent number: 9450084
    Abstract: A semiconductor device having high reliability and high load short circuit withstand capability while maintaining a low ON resistance is provided, by using a WBG semiconductor as a switching element of an inverter circuit. In the semiconductor device for application to a switching element of an inverter circuit, a band gap of a semiconductor material is wider than that of silicon, a circuit that limits a current when a main transistor is short circuited is provided, and the main transistor that mainly serves to pass a current, a sensing transistor that is connected in parallel to the main transistor and detects a microcurrent proportional to a current flowing in the main transistor, and a lateral MOSFET that controls a gate of the main transistor on the basis of an output of the sensing transistor are formed on the same semiconductor.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 20, 2016
    Assignee: FUJI ELECTRIC SYSTEMS CO. LTD.
    Inventor: Katsunori Ueno
  • Patent number: 9443974
    Abstract: Methods of fabricating a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device are described. A column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 13, 2016
    Assignee: Vishay-Siliconix
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Patent number: 9425306
    Abstract: In a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device, a column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 23, 2016
    Assignee: Vishay-Siliconix
    Inventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
  • Patent number: 9385119
    Abstract: A semiconductor arrangement includes a semiconductor body with a first active region, a second active region and an isolation region arranged between the first and the second active regions. At least one source region and at least one body region of a first transistor are integrated in the first active region. At least one source region and at least one body region of a second transistor are integrated in the second active region. Source and body regions of a third transistor are integrated in the second active region. The second transistor and the third transistor have a common source electrode. The first transistor, the second transistor and the third transistor have a common drain electrode.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 5, 2016
    Assignee: Infineon Technologies AG
    Inventors: Armin Willmeroth, Marc Fahlenkamp
  • Patent number: 9385188
    Abstract: A semiconductor device which can suppress the influence of the external electric charge and can be efficiently manufactured is provided. The semiconductor device is provided with an active region in which a semiconductor element is disposed and a termination region between the active region and an edge surface of the semiconductor substrate. An insulating layer is disposed on at least a part of an upper surface of the termination region. A plurality of floating electrodes is disposed at an interval in the insulating layer in a direction from the active region toward the edge surface of the semiconductor substrate, and a width of the plurality of floating electrodes in a thickness direction of the semiconductor substrate is greater than a width of the plurality of floating electrodes in the direction from the active region toward the edge surface of the semiconductor substrate.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: July 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Hirabayashi, Akinori Sakakibara
  • Patent number: 9379698
    Abstract: Embodiments include an apparatus, system, and method related to a switching circuit. In some embodiments, the switching circuit may include first switch including an n-channel field effect transistor (FET) in the signal path. The switching circuit may further include a second switch in shunt to the first switch. The second switch may include a discharge transistor to provide a discharge path for a body of a switch transistor. Other embodiments may be described and claimed.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 28, 2016
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: George Nohra
  • Patent number: 9379068
    Abstract: A semiconductor substrate (1) is provided with a source region (2) and a drain region (3) of a first type of electrical conductivity arranged at a surface (10) at a distance from one another, a channel region (4) of a second type of electrical conductivity, which is opposite to the first type of electrical conductivity, arranged between the source region (2) and the drain region (3), and a gate electrode (6) arranged above the channel region (4). A substrate well (7) of the first type of electrical conductivity is arranged in the substrate (1) at a distance from the source region (2). The substrate well (7) is contiguous with the drain region (3), and the distance between the source region (2) and the substrate well (7) is larger than the distance between the source region (2) and the drain region (3).
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: June 28, 2016
    Assignee: AMS AG
    Inventor: Wolfgang Reinprecht
  • Patent number: 9379235
    Abstract: In a semiconductor power device such as a power MOSFET having a super-junction structure in each of an active cell region and a chip peripheral region, an outer end of a surface region of a second conductivity type coupled to a main junction of the second conductivity type in a surface of a drift region of a first conductivity type and having a concentration lower than that of the main junction is located in a middle region between an outer end of the main junction and an outer end of the super-junction structure in the chip peripheral region.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: June 28, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Tomohiro Tamaki, Yoshito Nakazawa
  • Patent number: 9379216
    Abstract: According to an embodiment, a method for manufacturing a semiconductor device includes forming a gate trench extending into a first semiconductor layer; forming a gate insulating film on an internal wall of the gate trench; forming a polysilicon in the gate trench; etching the polysilicon into the gate trench; forming an interlayer insulating film on the polysilicon; etching the first semiconductor layer so as to project the interlayer insulating film from the first semiconductor layer; forming a second semiconductor layer on the first semiconductor layer; forming a third semiconductor layer on the second semiconductor layer; forming a sidewall contacting a side face of the interlayer insulating film; forming a fourth semiconductor layer of the second conductivity type in the second semiconductor layer; and forming a first electrode electrically connected to the third semiconductor layer and the fourth semiconductor layer.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: June 28, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuya Nishiwaki, Yoshitaka Hokomoto, Masatoshi Arai
  • Patent number: 9369121
    Abstract: According to example embodiments, a method of driving a power switch device includes applying a first voltage to a gate electrode of the power switch device, and applying a drive voltage to the gate electrode of the power switch device after applying the first voltage to the gate electrode of the power switch device. The first voltage is higher than the drive voltage of the power switch device in a turn-on state.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 14, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Jae Jeon, Jang-pyo Park, Jae-jung Yun, Kyu-bum Han
  • Patent number: 9368644
    Abstract: Semiconductor devices and methods of producing the devices are disclosed. The devices are formed by forming a gate structure on a substrate. The gate structure includes a charge trapping dielectric formed between the substrate and a first poly layer. A top dielectric is formed over the poly layer and a sidewall dielectric is formed on a side of the poly layer. A second poly layer is formed over the gate structure such that a portion of the second poly layer includes a vertical portion that is in contact with the sidewall dielectric and a top portion that is in contact with the top dielectric. The top portion of the second poly layer can then be removed through, for instance, planarization.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 14, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Shenqing Fang, Chun Chen, David Matsumoto, Mark Ramsbey