Depletion Mode Field Effect Transistor Patents (Class 257/348)
  • Patent number: 8507989
    Abstract: An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machine Corporation
    Inventors: Ali Khakifirooz, Kangguo Cheng, Bruce B. Doris
  • Publication number: 20130200459
    Abstract: A planar semiconductor device including a semiconductor on insulator (SOI) substrate with source and drain portions having a thickness of less than 10 nm that are separated by a multi-layered strained channel The multi-layer strained channel of the SOI layer includes a first layer with a first lattice dimension that is present on the buried dielectric layer of the SOI substrate, and a second layer of a second lattice dimension that is in direct contact with the first layer of the multi-layer strained channel portion. A functional gate structure is present on the multi-layer strained channel portion of the SOI substrate. The semiconductor device having the multi-layered channel may also be a finFET semiconductor device.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Davood Shahrjerdi
  • Patent number: 8460976
    Abstract: The present invention relates to a manufacturing method of SOI devices, and in particular, to a manufacturing method of SOI high-voltage power devices.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: June 11, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinhong Cheng, Zhongjian Wang, Yuehui Yu, Dawei He, Dawei Xu, Chao Xia
  • Patent number: 8445963
    Abstract: A multi-gate device is disclosed. In one aspect, the device includes a substrate having a first semiconductor layer of a first carrier mobility enhancing parameter, a buried insulating layer, and a second semiconductor layer with a second carrier mobility enhancing parameter. The device also includes a first active region electrically isolated from a second active region in the substrate. The first active region has a first fin grown on the first semiconductor layer and having the first mobility enhancing parameter. The second active region has a second fin grown on the second semiconductor layer and having the second mobility enhancing parameter. The device also includes a dielectric layer over the second semiconductor layer which is located between the first fin and the second fin. The first and second fins protrude through and above the dielectric layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 21, 2013
    Assignee: IMEC
    Inventors: Stefan Jakschik, Nadine Collaert
  • Publication number: 20130099317
    Abstract: According to one exemplary embodiment, a fin-based adjustable resistor includes a fin channel of a first conductivity type, and a gate surrounding the fin channel. The fin-based adjustable resistor also includes first and second terminals of the first conductivity type being contiguous with the fin channel, and being situated on opposite sides of the fin channel. The fin channel is lower doped relative to the first and second terminals. The resistance of the fin channel between the first and second terminals is adjusted by varying a voltage applied to the gate so as to achieve the fin-based adjustable resistor. The gate can be on at least two sides of the fin channel. Upon application of a depletion voltage, the fin channel can be depleted before an inversion is formed in the fin channel.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Wei Xia, Xiangdong Chen
  • Patent number: 8422288
    Abstract: The present invention discloses a DRAM cell utilizing floating body effect and a manufacturing method thereof. The DRAM cell includes a P type semiconductor region provided on a buried oxide layer, an N type semiconductor region provided on the P type semiconductor region, a gate region provided on the N type semiconductor region, and an electrical isolation region surrounding the P type semiconductor region and the N type semiconductor region. A diode of floating body effect is taken as a storage node. Via a tunneling effect between bands, electrons gather in the floating body, which is defined as a first storage state; via forward bias of PN junction, electrons are emitted out from the floating body or holes are injected into the floating body, which is defined as a second storage state.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 16, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xiaolu Huang, Jing Chen, Xi Wang
  • Patent number: 8420456
    Abstract: An object is to provide a semiconductor device with improved reliability in which a defect stemming from an end portion of a semiconductor layer provided in an island shape is prevented, and a manufacturing method thereof. Over a substrate having an insulating surface, an island-shaped semiconductor layer is formed, a first alteration treatment is performed, a first insulating film is formed on a surface of the island-shaped semiconductor layer, the first insulating film is removed, a second alteration treatment is performed on the island-shaped semiconductor from which the first insulating film is removed, a second insulating film is formed on a surface of the island-shaped semiconductor layer, and a conductive layer is formed over the second insulating film. An upper end portion of the island-shaped semiconductor layer has curvature by the first alteration treatment and the second alteration treatment.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 16, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Satoru Okamoto
  • Patent number: 8421155
    Abstract: A semiconductor device includes a first device isolation insulating film formed in a semiconductor substrate, a first well having a first conductivity type, defined by the first device isolation insulating film, and shallower than the first device isolation insulating film, a second device isolation insulating film formed in the first well, shallower than the first well, and defining a first part of the first well and a second part of the first well, a gate insulating film formed above the first part, a gate electrode formed above the gate insulating film, and an interconnection electrically connected to the second part of the first well and the gate electrode, wherein an electric resistance of the first well in a first region below the second device isolation insulating film is lower than an electric resistance of the first well in a second region other than the first region on the same depth level.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: April 16, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Akira Katakami, Eiji Yoshida
  • Patent number: 8415743
    Abstract: A structure has a functional region having a first type of conductivity and a top surface. The functional region is connected to a bias contact. The structure further includes an insulating layer; a semiconductor layer and first and second transistor devices having the same type of conductivity disposed upon the semiconductor layer. The structure further includes a first back gate region adjacent to the top surface and underlying one of the transistor devices, the first back gate region having a second type of conductivity; and a second back gate region adjacent to the top surface and underlying the other one of the transistor devices, the second back gate region having the first type of conductivity. The first transistor device has a first characteristic threshold voltage and the second transistor device has a second characteristic threshold voltage that differs from the first characteristic threshold voltage.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Robert H Dennard, Ali Khakifirooz
  • Patent number: 8410554
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a structure which comprises a high-leakage dielectric formed in a divot on each side of a segmented FET comprised of active silicon islands and gate electrodes thereon, and a low-leakage dielectric on the surface of the active silicon islands, adjacent the high-leakage dielectric, wherein the low-leakage dielectric has a lower leakage than the high-leakage dielectric. Also provided is a structure and method of fabricating the structure.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8389995
    Abstract: A method for producing a solid-state semiconducting structure, includes steps in which: (i) a monocrystalline substrate is provided; (ii) a monocrystalline oxide layer is formed, by epitaxial growth, on the substrate; (iii) a bonding layer is formed by steps in which: (a) the impurities are removed from the surface of the monocrystalline oxide layer; (b) a semiconducting bonding layer is deposited by slow epitaxial growth; and (iv) a monocrystalline semiconducting layer is formed, by epitaxial growth, on the bonding layer so formed. The solid-state semiconducting heterostructures so obtained are also described.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Guillaume Saint-Girons, Ludovic Largeau, Gilles Patriarche, Philippe Regreny, Guy Hollinger
  • Patent number: 8384156
    Abstract: Improvements in Complementary Metal Oxide Semiconductor (CMOS) devices; in particular, field effect transistors (FETs) and devices using said transistors which are able to take advantage of the higher carrier mobility of electrons compared to holes by replacing the conventional p-channel transistor with an n-channel transistor having a double gate (or vice versa): Such a. Unipolar CMOS (U-CMOS) transistor can be realized by adapting the source and/or the drain such that when the body region undergoes inversion at a first surface current, is able to flow between the drain and the source and when the body region undergoes inversion at a second surface current is not able to flow between the drain and the source. Various logic gates may be constructed using U-CMOS transistors.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 26, 2013
    Assignee: Yale University
    Inventors: Tso-Ping Ma, Minjoo Lee, Xiao Sun
  • Patent number: 8377755
    Abstract: A method of manufacturing a SOI high voltage power chip with trenches is disclosed. The method comprises: forming a cave and trenches at a SOI substrate; filling oxide in the cave; oxidizing the trenches, forming oxide isolation regions for separating low voltage devices at the same time; filling oxide in the oxidized trenches; and then forming drain regions, source regions and gate regions for a high voltage power device and low voltage devices. The process involves depositing an oxide layer overlapping the cave of the SOI substrate. A SOI high voltage power chip thus made will withstand at least above 700V voltage.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: February 19, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinhong Cheng, Zhongjian Wang, Yuehui Yu, Dawei He, Dawei Xu, Chao Xia
  • Patent number: 8373443
    Abstract: An object is to apply a transistor using an oxide semiconductor to a logic circuit including an enhancement transistor. The logic circuit includes a depletion transistor 101 and an enhancement transistor 102. The transistors 101 and 102 each include a gate electrode, a gate insulating layer, a first oxide semiconductor layer, a second oxide semiconductor layer, a source electrode, and a drain electrode. The transistor 102 includes a reduction prevention layer provided over a region in the first oxide semiconductor layer between the source electrode and the drain electrode.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Kengo Akimoto, Masashi Tsubuku
  • Publication number: 20130026575
    Abstract: Roughly described, an integrated circuit device has formed on a substrate a plurality of transistors including a first subset of at least one transistor and a second subset of at least one transistor, wherein all of the transistors in the first subset have one underlap distance and all of the transistors in the second subset have a different underlap distance. The transistors in the first and second subsets preferably have different threshold voltages, and preferably realize different points on the high performance/low power tradeoff.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, James D. Sproch
  • Patent number: 8362522
    Abstract: In a semiconductor film having a heterojunction structure, for example a semiconductor film including a SiGe layer and a Si layer formed on the SiGe layer, impurity concentration is controlled in such a manner that the concentration of impurity in the lower, SiGe layer becomes higher than that in the upper, Si layer by exploiting the fact that there is a difference between the SiGe layer and the Si layer in the diffusion coefficient of the impurity. The impurity contained in the semiconductor film 11 is of the conductivity type opposite to that of the transistor (p-type in the case of an n-type MOS transistor whereas n-type in the case of a p-type MOS transistor). In this way, the mobility in a semiconductor device including a semiconductor film having a heterojunction structure with a compression strain structure is increased, thereby improving the transistor characteristics and reliability of the device.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 29, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8357975
    Abstract: Embodiments of the present invention provide for the removal of excess carriers from the body of active devices in semiconductor-on-insulator (SOI) structures. In one embodiment, a method of fabricating an integrated circuit is disclosed. In one step, an active device is formed in an active layer of a semiconductor-on-insulator wafer. In another step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In another step, an insulator material is removed from a back side of the SOI wafer to form an excavated insulator region. In another step, a conductive layer is deposited on the excavated insulator region. Depositing the conductive layer puts it in physical contact with a body of an active device in a first portion of the excavated insulator region. The conductive layer then couples the body to a contact in a second detached portion of the excavated insulator region.
    Type: Grant
    Filed: April 28, 2012
    Date of Patent: January 22, 2013
    Assignee: IO Semiconductor, Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Paul A. Nygaard
  • Patent number: 8354714
    Abstract: The present invention discloses a SOI MOS device having BTS structure and manufacturing method thereof. The source region of the SOI MOS device comprises: two heavily doped N-type regions, a heavily doped P-type region formed between the two heavily doped N-type regions, a silicide formed above the heavily doped N-type regions and the heavily doped P-type region, and a shallow N-type region which is contact to the silicide; an ohmic contact is formed between the heavily doped P-type region and the silicide thereon to release the holes accumulated in body region of the SOI MOS device and eliminate floating body effects thereof without increasing the chip area and also overcome the disadvantages such as decreased effective channel width of the devices in the BTS structure of the prior art.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: January 15, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Jing Chen, Jiexin Luo, Qingqing Wu, Xiaolu Huang, Xi Wang
  • Publication number: 20130009245
    Abstract: Semiconductor devices with low junction capacitances and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming isolation regions in a substrate to form active areas. The sidewalls of the active areas are enclosed by the isolation regions. The isolation regions are recessed to expose first parts of the sidewalls of the active areas. The first parts of the sidewalls of the active areas are covered with spacers. The isolation regions are etched to expose second parts of the sidewalls of the active area, the second parts being disposed below the first parts. The active areas are etched through the exposed second parts of the sidewalls to form lateral openings. The lateral openings are filled with a spin on dielectric.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Hua Yu
  • Patent number: 8338256
    Abstract: A multi-gate transistor having a plurality of sidewall contacts and a fabrication method that includes forming a semiconductor fin on a semiconductor substrate and etching a trench within the semiconductor fin, depositing an oxide material within the etched trench, and etching the oxide material to form a dummy oxide layer along exposed walls within the etched trench; and forming a spacer dielectric layer along vertical sidewalls of the dummy oxide layer. The method further includes removing exposed dummy oxide layer in a channel region in the semiconductor fin and beneath the spacer dielectric layer, forming a high-k material liner along sidewalls of the channel region in the semiconductor fin, forming a metal gate stack within the etched trench, and forming a plurality of sidewall contacts within the semiconductor fin along adjacent sidewalls of the dummy oxide layer.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Dechao Guo, Shu-Jen Han, Chung-Hsun Lin
  • Publication number: 20120299105
    Abstract: A structure has a functional region having a first type of conductivity and a top surface. The functional region is connected to a bias contact. The structure further includes an insulating layer; a semiconductor layer and first and second transistor devices having the same type of conductivity disposed upon the semiconductor layer. The structure further includes a first back gate region adjacent to the top surface and underlying one of the transistor devices, the first back gate region having a second type of conductivity; and a second back gate region adjacent to the top surface and underlying the other one of the transistor devices, the second back gate region having the first type of conductivity. The first transistor device has a first characteristic threshold voltage and the second transistor device has a second characteristic threshold voltage that differs from the first characteristic threshold voltage.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz
  • Publication number: 20120292703
    Abstract: In view of achieving a cost reduction of an antenna switch, a technique is provided which can reduce harmonic distortion generated in the antenna switch as much as possible in particular even when the antenna switch is comprised of a field effect transistor formed over a silicon substrate. Each of a TX series transistor, an RX series transistor, and an RX shunt transistor is comprised of a low voltage MISFET, while a TX shunt transistor is comprised of a high voltage MISFET. Thus, by reducing the number of serial connections of the high voltage MISFETs constituting the TX shunt transistor, the nonuniformity of the voltage amplitudes applied to the respective serially-coupled high voltage MISFETs is suppressed. As a result, the generation of high-order harmonics can be suppressed.
    Type: Application
    Filed: July 31, 2012
    Publication date: November 22, 2012
    Inventors: Satoshi GOTO, Tomoyuki Miyake, Masao Kondo
  • Patent number: 8306495
    Abstract: A semiconductor device includes a p-type semiconductor layer and an n-type semiconductor layer that are joined by sandwiching a depletion layer with a thickness that allows transmission of a plurality of electrons and holes by direct-tunneling.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 6, 2012
    Assignee: Fujitsu Limited
    Inventor: Tsuyoshi Takahashi
  • Patent number: 8304833
    Abstract: The invention provides various embodiments of a memory cell formed on a semiconductor-on-insulator (SeOI) substrate and comprising one or more FET transistors. Each FET transistor has a source region and a drain region at least portions of which are arranged in the thin layer of the SeOI substrate, a channel region in which a trench is made, and a gate region formed in the trench. Specifically, the source, drain and channel regions also have portions which are arranged also beneath the insulating layer of the SeOI substrate; the portion of channel region beneath the insulating layer extends between the portions of the source and drain regions also beneath the insulating layer; and the trench in the channel region extends into the depth of the base substrate beyond the insulating layer. Also, methods for fabricating such memory cells and memory arrays including a plurality of such memory cells.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 6, 2012
    Assignee: Soitec
    Inventors: Carlos Mazure, Richard Ferrant
  • Publication number: 20120267719
    Abstract: A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
    Type: Application
    Filed: October 19, 2011
    Publication date: October 25, 2012
    Inventors: Christopher N. Brindle, Jie Deng, Alper Genc, Chieh-Kai Yang
  • Patent number: 8288826
    Abstract: A semiconductor-on-insulator structure includes a buried dielectric layer interposed between a base semiconductor substrate and a surface semiconductor layer. The buried dielectric layer comprises an oxide material that includes a nitrogen gradient that peaks at the interface of the buried dielectric layer with at least one of the base semiconductor substrate and surface semiconductor layer. The interface of the buried dielectric layer with the at least one of the base semiconductor substrate and surface semiconductor layer is abrupt, providing a transition in less than about 5 atomic layer thickness, and having less than about 10 angstroms RMS interfacial roughness. A second dielectric layer comprising an oxide dielectric material absent nitrogen may be located interposed between the buried dielectric layer and the surface semiconductor layer.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Toshiharu Furukawa, Wilfried Haensch, Zhibin Ren, Dinkar V. Singh, Jeffrey W. Sleight
  • Patent number: 8288827
    Abstract: A MOSFET transistor comprising a substrate of semiconductor material having a source junction connected to a source electrode, a drain junction connected to a drain electrode, and a gate layer connected to a gate electrode, the source junction or the drain junction being a metal-semiconductor junction.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: October 16, 2012
    Assignee: Universita Degli Studi di Padova
    Inventors: Gaudenzio Meneghesso, Fabio Alessio Marino
  • Publication number: 20120256242
    Abstract: An integrated circuit apparatus is provided and includes first and second silicon-on-insulator (SOI) pads formed on an insulator substrate, each of the first and second SOI pads including an active area formed thereon, a nanowire suspended between the first and second SOI pads over the insulator substrate, one or more field effect transistors (FETs) operably disposed along the nanowire and a planar device operably disposed on at least one of the respective active areas formed on each of the first and second SOI pads.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20120235238
    Abstract: A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes a semiconductor substrate, an insulating layer, a first semiconductor layer, a dielectric layer, a second semiconductor layer, a source and drain junction, a gate, and a spacer. The method includes the steps of forming a semiconductor substrate, forming a shallow trench isolation layer, growing a first epitaxial layer, growing a second epitaxial layer, forming a gate, forming a spacer, performing a reactive ion etching, removing a portion of the first epitaxial layer, filling the void with a dielectric, etching back a portion of the dielectric, growing a silicon layer, implanting a source and drain junction, and forming an extension.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce Doris, Pranita Kulkarni, Ghavam Shahidi
  • Publication number: 20120228709
    Abstract: Disclosed is an integrated circuit having an asymmetric FET as a power gate for an electronic circuit, which has at least two stacked symmetric field effect transistors. The asymmetric FET has an asymmetric halo configuration (i.e., a single source-side halo or a source-side halo with a higher dopant concentration than a drain-side halo) and an asymmetric source/drain extension configuration (i.e., the source extension can be overlapped to a greater extent by the gate structure than the drain extension and/or the source extension can have a higher dopant concentration than the drain extension). As a result, the asymmetric FET has a low off current. In operation, the asymmetric FET is turned off when the electronic circuit is placed in a standby state and, due to the low off current (Ioff), effectively reduces standby leakage current from the electronic circuit.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120228710
    Abstract: A method of fabricating a castellated-gate MOSFET tetrode device capable of fully depleted operation is disclosed. The device is formed on a semiconductor substrate region having an upper portion with a top surface and a lower portion with a bottom surface. A source region and a drain region are formed by ion implantation into the semiconductor substrate region, with adjoined primary and secondary channel-forming regions also disposed therein between the source and drain regions, thereby forming an integrated cascode structure. A plurality of thin semiconductor channel elements are formed by etching a plurality of spaced gate slots to a first predetermined depth into the substrate. The formation of first, second, and additional gate structures are described in two possible embodiments which facilitate the formation of self-aligned source and drain regions.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Inventor: John James Seliskar
  • Publication number: 20120224438
    Abstract: According to one embodiment, a fin formed on a semiconductor substrate, a gate electrode provided on both sides of the fin via a gate dielectric film, a depletion layer that forms a potential barrier, which confines a hole in a body region between channel regions of the fin, in the fin, and a source/drain layer formed in the fin to sandwich the gate electrode are included.
    Type: Application
    Filed: February 21, 2012
    Publication date: September 6, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Satoshi INABA
  • Publication number: 20120217549
    Abstract: Asymmetric, semiconductor memory cells, arrays, devices and methods are described. Among these, an asymmetric, bi-stable semiconductor memory cell is described that includes: a floating body region configured to be charged to a level indicative of a state of the memory cell; a first region in electrical contact with the floating body region; a second region in electrical contact with the floating body region and spaced apart from the first region; and a gate positioned between the first and second regions, such that the first region is on a first side of the memory cell relative to the gate and the second region is on a second side of the memory cell relative to the gate; wherein performance characteristics of the first side are different from performance characteristics of the second side.
    Type: Application
    Filed: September 26, 2011
    Publication date: August 30, 2012
    Inventor: Yuniarto Widjaja
  • Patent number: 8247874
    Abstract: A depletion transistor includes a source region and a drain region of a first conductivity type, a channel region of the first conductivity type arranged between the source region and the drain region and a first gate electrode arranged adjacent the channel region and dielectrically insulated from the channel region by a gate dielectric. The depletion transistor further includes a first discharge region of a second conductivity type arranged adjacent the gate dielectric and electrically coupled to a terminal for a reference potential. The depletion transistor can be included in a charging circuit.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: August 21, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Anton Mauder, Joachim Weyers, Frank Pfirsch
  • Publication number: 20120205743
    Abstract: The present invention discloses a PD SOI device with a body contact structure. The active region of the PD SOI device includes: a body region; a gate region, which is inverted-L shaped, formed on the body region; a N-type source region and a N-type drain region, formed respectively at the two opposite sides of the anterior part the body region; a body contact region, formed at one side of the posterior part of the body region, which is side-by-side with the N-type source region; and a first silicide layer, formed on the body contact region and the N-type source region, which is contact to both of the body contact region and the N-type source region. The body contact region of the device is formed on the border of the source region and the leading-out terminal of the gate electrode.
    Type: Application
    Filed: September 8, 2010
    Publication date: August 16, 2012
    Inventors: Jing Chen, Qingqing Wu, Jiexin Luo, Xiaolu Huang, Xi Wang
  • Publication number: 20120199908
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 9, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D. Trivedi
  • Publication number: 20120193717
    Abstract: A semiconductor device includes a first device isolation insulating film formed in a semiconductor substrate, a first well having a first conductivity type, defined by the first device isolation insulating film, and shallower than the first device isolation insulating film, a second device isolation insulating film formed in the first well, shallower than the first well, and defining a first part of the first well and a second part of the first well, a gate insulating film formed above the first part, a gate electrode formed above the gate insulating film, and an interconnection electrically connected to the second part of the first well and the gate electrode, wherein an electric resistance of the first well in a first region below the second device isolation insulating film is lower than an electric resistance of the first well in a second region other than the first region on the same depth level.
    Type: Application
    Filed: December 2, 2011
    Publication date: August 2, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Akira KATAKAMI, Eiji Yoshida
  • Patent number: 8233312
    Abstract: The present invention discloses a DRAM cell utilizing floating body effect and a manufacturing method thereof. The DRAM cell includes a first N type semiconductor region provided on a buried oxide layer, a P type semiconductor region provided on the first N type semiconductor region, a gate region provided on the P type semiconductor region, and an electrical isolation region surrounding the P type semiconductor region and the N type semiconductor region. A diode is taken as a storage node. Via a tunneling effect between bands, holes gather in the floating body, which is defined as a first storage state; via forward bias of PN junction, holes are emitted out from the floating body or electrons are injected into the floating body, which is defined as a second storage state.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: July 31, 2012
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xiaolu Huang, Jing Chen, Xi Wang
  • Publication number: 20120168865
    Abstract: The invention relates to a transistor and a method for manufacturing the transistor. The transistor according to an embodiment of the invention may comprise: a substrate which comprises at least a back gate of the transistor, an insulating layer and a semiconductor layer stacked sequentially, wherein the back gate of the transistor is used for adjusting the threshold voltage of the transistor; a gate stack formed on the semiconductor layer, wherein the gate stack comprises a gate dielectric and a gate electrode formed on the gate dielectric; a spacer formed on sidewalls of the gate stack; and a source region and a drain region located on both sides of the gate stack, respectively, wherein the height of the gate stack is lower than the height of the spacer. The transistor enables the height of the gate stack to be reduced and therefore the performance of the transistor is improved.
    Type: Application
    Filed: February 25, 2011
    Publication date: July 5, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Publication number: 20120146146
    Abstract: Disclosed are embodiments of a field effect transistor with a gate-to-body tunnel current region (GTBTCR) and a method. In one embodiment, a gate, having adjacent sections with different conductivity types, traverses the center portion of a semiconductor layer to create, within the center portion, a channel region and a GTBTCR below the adjacent sections having the different conductivity types, respectively. In another embodiment, a semiconductor layer has a center portion with a channel region and a GTBTCR. The GTBTCR comprises: a first implant region adjacent to and doped with a higher concentration of the same first conductivity type dopant as the channel region; a second implant region, having a second conductivity type, adjacent to the first implant region; and an enhanced generation and recombination region between the implant regions. A gate with the second conductivity type traverses the center portion.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jiale Liang, Edward J. Nowak
  • Publication number: 20120139048
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET comprises an SOI chip comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; source/drain regions formed in the semiconductor layer; a channel region formed in the semiconductor layer and located between the source/drain regions; and a gate stack comprising a gate dielectric layer on the semiconductor layer, and a gate conductor on the gate dielectric layer, wherein the MOSFET further comprises a backgate formed in a portion of the semiconductor substrate below the channel region, and the backgate has a non-uniform doping profile, and wherein the buried insulating layer serves as a gate dielectric layer of the backgate. The MOSFET has an adjustable threshold voltage by changing the type of dopant and/or the doping profile in the backgate, and reduces a leakage current of the semiconductor device.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 7, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Publication number: 20120104497
    Abstract: An integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel) so that the drain or body region is coupled to the handle wafer through a p-n junction. An integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel) coupled to the handle wafer through a p-n junction, that is electrically isolated from the drain or body region. A process of forming an integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel).
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Philip L. Hower, Sameer Pendharkar
  • Patent number: 8169039
    Abstract: A disclosed semiconductor device includes an MOS transistor having an N-type low-concentration drain region, a source region, an ohmic drain region, a P-type channel region, an ohmic channel region, a gate isolation film, and a gate electrode. The N-type low-concentration drain region includes two low-concentration drain layers in which the N-type impurity concentration of the upper layer is higher than that of the lower layer; the P-type channel region includes two channel layers in which the P-type impurity concentration of the upper layer is lower than that of the lower layer; and the gate electrode is formed on the P-type channel region and the N-type low-concentration drain region and disposed to be separated from the ohmic drain region when viewed from the top.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 1, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Takaaki Negoro
  • Patent number: 8164144
    Abstract: A semiconductor device includes a semiconductor layer on an insulating layer, and a first partially depleted transistor and a first diode in the semiconductor layer. The first transistor has a first gate electrode above the semiconductor layer via an insulating film and a first source or drain of a first conductivity type in the semiconductor layer below both sides of the gate electrode. The first diode has a first impurity layer of a second conductivity type in a shallow portion of the semiconductor layer and a second impurity layer of the first conductivity type in a deep portion of the semiconductor layer. The first and second impurity layers are stacked in a depth direction of the semiconductor layer. The side surfaces of the first and second impurity layers contact the semiconductor layer just below the first gate electrode.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 24, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Yoji Kitano
  • Patent number: 8138791
    Abstract: Integrated circuits with stressed transistors are provided. Stressing transistors may increase transistor threshold voltage without the need to increase channel doping. Stressing transistors may reduce total leakage currents. It may be desirable to compressively stress N-channel metal-oxide-semiconductor (NMOS) transistors and tensilely stress P-channel metal-oxide-semiconductor (PMOS) transistors to reduce leakage currents. Techniques that can be used to alter the amount of stressed experienced by transistors may include forming a stress-inducing layer, forming a stress liner, forming diffusion active regions using silicon germanium, silicon carbon, or standard silicon, implementing transistors in single-finger instead of multi-finger configurations, and implanting particles. Any combination of these techniques may be used to provide appropriate amounts of stress to increase the performance or decrease the total leakage current of a transistor.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: March 20, 2012
    Assignee: Altera Corporation
    Inventors: Albert Ratnakumar, Jun Liu, Jeffrey Xiaoqi Tung, Qi Xiang
  • Patent number: 8134207
    Abstract: In a high breakdown voltage semiconductor element among elements integrated together on an SOI substrate in which its rated voltage is shared between an embedded oxide layer and a drain region formed by an element active layer, both high integration and high breakdown voltage are realized while also securing suitability for practical implementation and practical use. The high breakdown voltage is realized without hampering size reduction of the element by forming an electrically floating layer of a conductivity type opposite to that of the drain region at the surface of the drain region. Further, the thickness of the embedded oxide layer is reduced to a level suitable for the practical implementation and practical use by setting the thickness of the element active layer of the SOI substrate at 30 ?m or more.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Atsuo Watanabe
  • Patent number: 8124975
    Abstract: Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Noda, Toshio Miyazawa, Takuo Kaitoh, Hiroyuki Abe
  • Patent number: 8106457
    Abstract: Structures and a method for detecting ionizing radiation using silicon-on-insulator (SOI) technology are disclosed. In one embodiment, the invention includes a substrate having a buried insulator layer formed over the substrate and an active layer formed over the buried insulator layer. Active layer may be fully depleted. A transistor is formed over the active layer, and includes a first gate conductor, a first gate dielectric and source/drain diffusion regions. The first gate conductor may include a material having a substantially (or fully) depleted doping concentration such that it has a resistivity higher than doped polysilicon such as intrinsic polysilicon. A second gate conductor is formed below the buried insulator layer and provides a second gate dielectric corresponding to the second gate conductor. A channel region between the first gate conductor and the second gate conductor is controlled by the second gate conductor (back gate) such that it acts as a radiation detector.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Edward J. Nowak
  • Publication number: 20120018809
    Abstract: A MOS device having low floating charge and low self-heating effects are disclosed. The device includes a connective layer coupling the active gate channel to the Si substrate. The connective layer provides electrical and thermal passages during device operation, which could eliminate floating effects and self-heating effects. An example of a MOS device having a SiGe connector between a Si active channel and a Si substrate is disclosed in detail and a manufacturing process is provided.
    Type: Application
    Filed: September 8, 2010
    Publication date: January 26, 2012
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Xiaolu Huang, Jing Chen, Xi Wang, Deyuan Xiao
  • Patent number: 8097515
    Abstract: A method for forming a nanowire field effect transistor (FET) device includes forming a nanowire over a semiconductor substrate, forming a gate structure around a portion of the nanowire, forming a capping layer on the gate structure; forming a first spacer adjacent to sidewalls of the gate and around portions of nanowire extending from the gate, forming a hardmask layer on the capping layer and the first spacer, removing exposed portions of the nanowire, epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a source region and a drain region, forming a silicide material in the epitaxially grown doped semiconductor material, and forming a conductive material on the source and drain regions.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Shreesh Narasimha, Jeffrey W. Sleight