Insulated Electrode Device Is Combined With Diverse Type Device (e.g., Complementary Mosfets, Fet With Resistor, Etc.) Patents (Class 257/350)
  • Patent number: 8492801
    Abstract: A semiconductor structure with high breakdown voltage and high resistance and method for manufacturing the same. The semiconductor structure at least comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; two first wells having the first conductive type and formed within the deep well; a second well having the first conductive type and formed between the two first wells within the deep well, and an implant dosage of the second well lighter than an implant dosage of each of the two first wells; and two first doping regions having the first conductive type and respectively formed within the two first wells.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: July 23, 2013
    Assignee: System General Corp.
    Inventors: Chiu-Chih Chiang, Chih-Feng Huang
  • Patent number: 8487308
    Abstract: One embodiment of the present invention is a thin film transistor having a substrate, a gate electrode formed on the substrate, a gate insulating film, a semiconductor layer formed on the gate insulating film, a protective film formed on the semiconductor layer and the gate insulating film and having first and second opening sections which are separately and directly formed on the semiconductor layer, a source electrode formed on the protective film and electrically connected to the semiconductor layer at the first opening section of the protective film, and a drain electrode formed on the protective film and electrically connected to the semiconductor layer at the second opening section of the protective film.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 16, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Noriaki Ikeda, Kodai Murata, Manabu Ito, Chihiro Miyazaki
  • Patent number: 8487313
    Abstract: An emissive device includes a substrate; a switching element disposed on a surface of the substrate; an insulating layer covering the switching element; a contact hole disposed in the insulating layer; a first electrode disposed on a surface of the insulating layer and electrically connected to the switching element via the contact hole in the insulating layer; a second electrode disposed at a side opposite the substrate with respect to the first electrode; a luminescent layer disposed between the first electrode and the second electrode; and a light shield disposed at a side from which light from the luminescent layer emerges and having a portion covering the contact hole when viewed in a direction perpendicular to the substrate.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 16, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Takehiko Kubota
  • Publication number: 20130175627
    Abstract: SRAM integrated circuits are provided having pull up and pull down transistors of an SRAM cell fabricated in and on a silicon substrate. A layer of insulating material overlies the pull up and pull down transistors. Pass gate transistors of the SRAM cell are fabricated in a semiconducting layer overlying the layer of insulating material.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Matthias Goldbach, Peter Baars
  • Patent number: 8481410
    Abstract: Disclosed herein are various methods for better height control of the finFET patterned fins. In one example, this invention begins by depositing or growing an oxide material, for example, silicon dioxide. This oxide material is then patterned and etched to open windows or trenches to the substrate where fins will be grown. If a common channel material is desired, it is epitaxially grown in the windows. Then, some windows are covered and one pole of fins (for example nFET) are epitaxially grown in the exposed windows. The previously masked windows are opened and the newly formed fins are masked. The alternate channel material is then grown. The masked fins are then un-masked and the oxide is recessed to allow the fins to protrude from the oxide. This invention also allows for different channel materials for NMOS and PMOS.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 9, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Nicholas LiCausi, Jeremy Wahl
  • Patent number: 8477006
    Abstract: A manufacturing method for a resistor integrated with a transistor having metal gate includes providing a substrate having a transistor region and a resistor region defined thereon, respectively forming a transistor having a dummy gate in the transistor region and a resistor in the resistor region, removing the dummy gate and portions of the resistor to form a first trench in the transistor and two second trenches in the resistor, forming at least a high-k gate dielectric layer in the first trench and the second trenches, and forming a metal gate in the first trench and metal structures respectively in the second trenches.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 2, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Jie-Ning Yang, Shih-Chieh Hsu, Chun-Hsien Lin, Yao-Chang Wang, Chi-Horn Pai, Chi-Sheng Tseng
  • Patent number: 8476678
    Abstract: A CMOS device with transistors having different gate dielectric materials and a method of manufacture thereof. A CMOS device is formed on a workpiece having a first region and a second region. A first gate dielectric material is deposited over the second region. A first gate material is deposited over the first gate dielectric material. A second gate dielectric material comprising a different material than the first gate dielectric material is deposited over the first region of the workpiece. A second gate material is deposited over the second gate dielectric material. The first gate material, the first gate dielectric material, the second gate material, and the second gate dielectric material are then patterned to form a CMOS device having a symmetric Vt for the PMOS and NMOS FETs.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 2, 2013
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 8476708
    Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor substrate, memory cell array portion, single-crystal semiconductor layer, and circuit portion. The memory cell array portion is formed on the semiconductor substrate, and includes memory cells. The semiconductor layer is formed on the memory cell array portion, and connected to the semiconductor substrate by being formed in a hole extending through the memory cell array portion. The circuit portion is formed on the semiconductor layer. The Ge concentration in the lower portion of the semiconductor layer is higher than that in the upper portion of the semiconductor layer.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi, Masaru Kito, Kiyotaka Miyano, Shinji Mori, Ichiro Mizushima
  • Patent number: 8466521
    Abstract: A hydrogen ion-sensitive field effect transistor and a manufacturing method thereof are provided. The hydrogen ion-sensitive field effect transistor includes a semiconductor substrate, an insulating layer, a transistor gate, and a sensing film. A gate area is defined on the semiconductor substrate having a source area and a drain area. The insulating layer is formed within the gate area on the semiconductor substrate. The transistor gate is deposited within the gate area and includes a first gate layer. Further, the first gate layer is an aluminum layer, and a sensing window is defined thereon. The sensing film is an alumina film formed within the sensing window by oxidizing the first gate layer. Thus, the sensing film is formed without any film deposition process, and consequently the manufacturing method is simplified.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: June 18, 2013
    Assignee: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Chin-Long Wey, Chin-Fong Chiu, Ying-Zong Juang, Hann-Huei Tsai, Chen-Fu Lin
  • Patent number: 8461651
    Abstract: The present invention discloses an ESD protection structure in a SOI CMOS circuitry. The ESD protection structure includes a variety of longitudinal (vertical) PN junction structures having significantly enlarged junction areas for current flow. The resulting devices achieve increased heavy current release capability. Processes of fabricating varieties of the ESD protection longitudinal PN junction are also disclosed. Compatibility of the disclosed fabrication processes with current SOI technology reduces implementation cost and improves the integration robustness.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: June 11, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xiaolu Huang, Xing Wei, Xinhong Cheng, Jing Chen, Miao Zhang, Xi Wang
  • Patent number: 8461629
    Abstract: A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Long Cheng, Sheng-Chen Chung, Kong-Beng Thei, Harry Chuang, Mong-Song Liang
  • Publication number: 20130134518
    Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, William F. Clark, JR., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
  • Patent number: 8450738
    Abstract: An active matrix substrate includes: pixel regions (5L, 5R, and 5M) provided in line and column direction; scan signal lines (16? and 16?); data signal lines (Sp, Sq, sp, and sq) crossing the scan signal lines at right angles; a gate insulating film covering the scan signal lines; and an interlayer insulating film covering the data signal lines, two of the data signal lines (Sq and sp) being provided (i) so as to overlap a gap between two of the pixel regions (5L and 5R) which are adjacent to each other in the line direction or (ii) so as to overlap a region which extends along the gap, the interlayer insulating film having a hollow part K so that the hollow part K and a gap between the two of the data signal lines (Sq and sp) overlap each other, and part of the hollow part K and the scan signal lines (16? and 16?) overlap each other via the gate insulating film.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshihide Tsubata, Toshinori Sugihara
  • Patent number: 8450806
    Abstract: A silicon-on-insulator (SOI) device and structure having locally strained regions in the silicon active layer formed by increasing the thickness of underlying regions of a buried insulating layer separating the silicon active layer from the substrate. The stress transferred from the underlying thickened regions of the insulating layer to the overlying strained regions increases carrier mobility in these confined regions of the active layer. Devices formed in and on the silicon active layer may benefit from the increased carrier mobility in the spaced-apart strained regions.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Charles William Koburger, III, James Albert Slinkman
  • Publication number: 20130127539
    Abstract: There is provided a CMOS integrated circuit capable of avoiding deterioration of NF characteristic and achieving a high degree of linearity in the case in which an LNA circuit is formed on an SOI substrate and an LAN circuit is formed in a bulk CMOS process. The CMOS integrated circuit includes a field effect transistor having a gate electrode connected to a signal input terminal, a drain electrode connected to a power terminal, and a source electrode connected to a ground terminal, wherein the field effect transistor is formed on the SOI substrate and a connection between a body potential and a potential lower than a source potential are formed by a resistor element. The deterioration of NF characteristic can be avoided and a high degree of linearity can be achieved by using this CMOS integrated circuit.
    Type: Application
    Filed: September 12, 2012
    Publication date: May 23, 2013
    Inventor: Tadamasa MURAKAMI
  • Patent number: 8445358
    Abstract: An object of the present invention is to reduce the influence of a foreign substance adhering to a single crystalline semiconductor substrate and manufacture a semiconductor substrate with a high yield. Another object of the present invention is to manufacture, with a high yield, a semiconductor device which has stable characteristics. In the process of manufacturing a semiconductor substrate, when an embrittled region is to be formed in a single crystalline semiconductor substrate, the surface of the single crystalline semiconductor substrate is irradiated with hydrogen ions from oblique directions at multiple (at least two) different angles, thereby allowing the influence of a foreign substance adhering to the single crystalline semiconductor substrate to be reduced and allowing a semiconductor substrate including a uniform single crystalline semiconductor layer to be manufactured with a high yield.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 21, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Keiichi Sekiguchi
  • Publication number: 20130120055
    Abstract: Solutions for optimizing a bulk bias across a substrate of an ETSOI device are disclosed. In one embodiment, an apparatus for optimizing a bulk bias across a substrate of an ETSOI device is disclosed, including: a sensing circuit for sensing at least one predetermined circuit parameter; a charging circuit for applying a bias voltage to the substrate of the ETSOI device; and a processing circuit connected to the sensing circuit and the charging circuit, the processing circuit configured to receive an output of the sensing circuit, and adjust the bias voltage applied to substrate of the ETSOI device in response to determining whether the bias voltage deviates from a target amount.
    Type: Application
    Filed: January 11, 2013
    Publication date: May 16, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Patent number: 8441021
    Abstract: To achieve enlargement and high definition of a display portion, a single crystal semiconductor film is used as a transistor in a pixel, and the following steps are included: bonding a plurality of single crystal semiconductor substrates to a base substrate; separating part of the plurality of single crystal semiconductor substrates to form a plurality of regions each comprising a single crystal semiconductor film over the base substrate; forming a plurality of transistors each comprising the single crystal semiconductor film as a channel formation region; and forming a plurality of pixel electrodes over the region provided with the single crystal semiconductor film and a region not provided with the single crystal semiconductor film. Some of the transistors electrically connecting to the pixel electrodes formed over the region not provided with the single crystal semiconductor film are formed in the region provided with the single crystal semiconductor film.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 14, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kunio Hosoya, Saishi Fujikawa, Takahiro Kasahara
  • Patent number: 8441066
    Abstract: A semiconductor device according to the present invention comprises a first transistor and a second transistor, and functions as an inverter. The first transistor includes an island semiconductor layer, a first gate insulating film surrounding the periphery of the island semiconductor layer, a gate electrode surrounding the periphery of the first gate insulating film, p+-type semiconductor layers formed in the upper and lower part of the island semiconductor layer, respectively. The second transistor includes the gate electrode, a second gate insulating film surrounding a part of the periphery of the gate electrode, an arcuate semiconductor layer contacting a part of the periphery of the second gate insulating film, n+-type semiconductor layers formed in the upper and lower part of the arcuate semiconductor layer, respectively. A first contact electrically connects the p+-type semiconductor layer in the first transistor and the n+-type semiconductor layer in the second transistor.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: May 14, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8441073
    Abstract: In a semiconductor substrate on which are formed an N-type MOS transistor and a P-type MOS transistor, the gate electrode of the N-type MOS transistor comprises a tungsten film, which makes contact with a gate insulation film, and the gate electrode of the P-type MOS transistor comprises a tungsten film, which makes contact with a gate insulation film, and the concentration of carbon contained in the former tungsten film is less than the concentration of carbon contained in the latter tungsten film.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: May 14, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuaki Nakajima, Kyoichi Suguro
  • Patent number: 8436424
    Abstract: A semiconductor device with first and second groups of transistors, the second group transistors each having a lower operating voltage than that of each of said transistors in said first group, the first group transistors have first gate electrodes formed from a silicon based material layer on a semiconductor substrate through a first gate insulating film, the second group transistors have second gate electrodes formed such that metal based gate materials are respectively filled in gate formation trenches formed in an interlayer insulating film on the semiconductor substrate through a second gate insulating film, and a resistor on the substrate has a resistor main body utilizing the silicon based material layer and is formed on the substrate through an insulating film.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: May 7, 2013
    Assignee: Sony Corporation
    Inventor: Harumi Ikeda
  • Patent number: 8436425
    Abstract: In an SOI semiconductor device, substrate diodes may be formed on the basis of a superior design of the contact level and the metallization layer, thereby avoiding the presence of metal lines connecting to both diode electrodes in the critical substrate diode area. To this end, contact trenches may be provided so as to locally connect one type of diode electrodes within the contact level. Consequently, additional process steps for planarizing the surface topography upon forming the contact level may be avoided.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 7, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Kai Frohberg, Kerstin Ruttloff
  • Patent number: 8435851
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8431997
    Abstract: It is an object to solve inhibition of miniaturization of an element and complexity of a manufacturing process thereof. It is another object to provide a nonvolatile memory device and a semiconductor device having the memory device, in which data can be additionally written at a time besides the manufacturing time and in which forgery caused by rewriting of data can be prevented. It is further another object to provide an inexpensive nonvolatile memory device and semiconductor device. A memory element is manufactured in which a first conductive layer, a second conductive layer that is beside the first conductive layer, and conductive fine particles of each surface which is covered with an organic film are deposited over an insulating film. The conductive fine particles are deposited between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 30, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiharu Hirakata
  • Patent number: 8431996
    Abstract: Disclosed is a plasma processing apparatus, wherein a plasma-generating electrode has a plurality of gas exhaust holes which run through the plasma-generating electrode from the surface facing a substrate held by a substrate-holding mechanism, and reach a gas exhaust chamber; gas-feeding pipes, provided connected to a gas-introducing pipe, have gas-feeding ports for discharging source gas toward the inside of the plurality of gas exhaust holes; and the gas-feeding pipes and the gas-feeding ports are arranged in a manner such that extended lines, representing the direction of the flow of the source gas discharged from the gas-feeding ports, intersect the end surface open regions at the interface of the gas exhaust chamber to the gas exhaust holes. Also disclosed is a method of producing the amorphous silicon thin film using the plasma processing apparatus.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: April 30, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Keitaro Sakamoto, Fumiyasu Nomura, Tsunenori Komori
  • Patent number: 8426921
    Abstract: Integrated circuits having complementary metal-oxide semiconductor (CMOS) and photonics circuitry and techniques for three-dimensional integration thereof are provided. In one aspect, a three-dimensional integrated circuit comprises a bottom device layer and a top device layer. The bottom device layer comprises a substrate; a digital CMOS circuitry layer adjacent to the substrate; and a first bonding oxide layer adjacent to a side of the digital CMOS circuitry layer opposite the substrate. The top device layer comprises an analog CMOS and photonics circuitry layer formed in a silicon-on-insulator (SOI) layer having a buried oxide (BOX) with a thickness of greater than or equal to about 0.5 micrometers; and a second bonding oxide layer adjacent to the analog CMOS and photonics circuitry layer. The bottom device layer is bonded to the top device layer by an oxide-to-oxide bond between the first bonding oxide layer and the second bonding oxide layer.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Kuan-Neng Chen, Steven J. Koester, Yuri A. Vlasov
  • Patent number: 8421128
    Abstract: A heat generating component of a semiconductor device is located between two heavily doped semiconductor regions in a semiconductor substrate. The heat generating component may be a middle portion of a diode having a light doping, a lightly doped p-n junction between a cathode and anode of a silicon controlled rectifier, or a resistive portion of a doped semiconductor resistor. At least one thermally conductive via comprising a metal or a non-metallic conductive material is place directly on the heat generating component. Alternatively, a thin dielectric layer may be formed between the heat generating component and the at least one thermally conductive via. The at least one thermally conductive via may, or may not, be connected to a back-end-of-line metal wire, which may be connected to higher level of metal wiring or to a handle substrate through a buried insulator layer.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20130087855
    Abstract: The semiconductor integrated circuit device has a hybrid substrate structure which includes both of an SOI structure and a bulk structure on the side of the device plane of a semiconductor substrate. In the device, the height of a gate electrode of an SOI type MISFET is higher than that of a gate electrode of a bulk type MISFET with respect to the device plane.
    Type: Application
    Filed: September 15, 2012
    Publication date: April 11, 2013
    Inventors: Hideki MAKIYAMA, Yoshiki YAMAMOTO
  • Patent number: 8410555
    Abstract: There is provided a CMOSFET device with a threshold voltage controlled by means of its gate stack configuration and a method of fabricating the same. The CMOSFET device comprises: a semiconductor substrate; am interface layer grown on the silicon substrate; a first high-k gate dielectric layer deposited on the interface layer; a very thin metal layer deposited on the first high-k gate dielectric layer; a second high-k gate dielectric layer deposited on the very thin metal layer; and a gate electrode layer deposited on the second high-k gate dielectric layer.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: April 2, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Wenwu Wang, Huilong Zhu, Shijie Chen, Dapeng Chen
  • Patent number: 8405159
    Abstract: In accordance with an embodiment, a semiconductor device includes an SRAM cell on a substrate. The SRAM cell includes: first and second load transistors each having an n-type source region and a p-type drain region, first and second driver transistors each having a p-type source region and an n-type drain region, and first and second transfer transistors each having an n-type source region and a n-type drain region. The n-type source regions of the first and second load transistors, the n-type drain regions of the first and second driver transistors, and the n-type source regions and the n-type drain regions of the first and second transfer transistors are located in a region other than a region present between any two of the p-type drain regions of the first and second load transistors and the p-type source regions of the first and second driver transistors.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: March 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kanna Adachi, Shigeru Kawanaka, Satoshi Inaba
  • Patent number: 8395217
    Abstract: A semiconductor device structure having an isolation region and method of manufacturing the same are provided. The semiconductor device structure includes a silicon-on-insulator (SOI) substrate. A plurality of gates is formed on the SOI substrate. The semiconductor device structure further includes trenches having sidewalls, formed between each of the plurality of gates. The semiconductor device structure further includes an epitaxial lateral growth layer formed in the trenches. The epitaxial lateral growth layer is grown laterally from the opposing sidewalls of the trenches, so that the epitaxial lateral growth layer encloses a portion of the trenches extended into the SOI substrate. The epitaxial lateral growth layer is formed in such way that it includes an air gap region overlying a buried dielectric layer of the SOI substrate.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Jeffrey B. Johnson, Pranita Kulkarni, Kevin McStay, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8395216
    Abstract: A semiconductor apparatus includes a first substrate and a second substrate located over a first portion of the first substrate and separated from the first substrate by a buried layer. The semiconductor apparatus also includes an epitaxial layer located over a second portion of the first substrate and isolated from the second substrate. The semiconductor apparatus further includes a first transistor formed at least partially in the second substrate and a second transistor formed at least partially in or over the epitaxial layer. The second substrate and the epitaxial layer have bulk properties with different electron and hole mobilities. At least one of the transistors is configured to receive one or more signals of at least about 5V. The first substrate could have a first crystalline orientation, and the second substrate could have a second crystalline orientation.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 12, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Alexander H. Owens
  • Patent number: 8395158
    Abstract: The present invention relates to a semiconductor device including a thin film transistor comprising a microcrystalline semiconductor which forms a channel formation region and includes an acceptor impurity element, and to a manufacturing method thereof. A gate electrode, a gate insulating film formed over the gate electrode, a first semiconductor layer which is formed over the gate insulating film and is formed of a microcrystalline semiconductor, a second semiconductor layer which is formed over the first semiconductor layer and includes an amorphous semiconductor, and a source region and a drain region which are formed over the second semiconductor layer are provided in the thin film transistor. A channel is formed in the first semiconductor layer when the thin film transistor is placed in an on state.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: March 12, 2013
    Assignee: Semiconductor Energy Labortory Co., Ltd.
    Inventors: Shunpei Yamazaki, Makoto Furuno
  • Patent number: 8389993
    Abstract: A display device including a thin film transistor with high electric characteristics and high reliability, and a method for manufacturing the display device with high mass-productivity. In a display device including an inverted-staggered channel-stop-type thin film transistor, the inverted-staggered channel-stop-type thin film transistor includes a microcrystalline semiconductor film including a channel formation region, and an impurity region containing an impurity element of one conductivity type is selectively provided in a region which is not overlapped with source and drain electrodes, in the channel formation region of the microcrystalline semiconductor film.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Kobayashi, Ikuko Kawamata, Koji Dairiki, Shigeki Komori, Toshiyuki Isa, Shunpei Yamazaki
  • Patent number: 8389995
    Abstract: A method for producing a solid-state semiconducting structure, includes steps in which: (i) a monocrystalline substrate is provided; (ii) a monocrystalline oxide layer is formed, by epitaxial growth, on the substrate; (iii) a bonding layer is formed by steps in which: (a) the impurities are removed from the surface of the monocrystalline oxide layer; (b) a semiconducting bonding layer is deposited by slow epitaxial growth; and (iv) a monocrystalline semiconducting layer is formed, by epitaxial growth, on the bonding layer so formed. The solid-state semiconducting heterostructures so obtained are also described.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Guillaume Saint-Girons, Ludovic Largeau, Gilles Patriarche, Philippe Regreny, Guy Hollinger
  • Patent number: 8390026
    Abstract: An electronic device can include a first transistor having a first channel region further including a heterojunction region that, in one aspect, is at most approximately 5 nm thick. In another aspect, the first transistor can include a p-channel transistor including a gate electrode having a work function mismatched with the associated channel region, and the heterojunction region can lie along a surface of a semiconductor layer closer to a substrate than an opposing surface of the substrate. The electronic device can also include an n-channel transistor, and the subthreshold carrier depth of the p-channel and n-channel transistors can have approximately a same value as compared to each other. A process of forming the electronic device can include forming a compound semiconductor layer having an energy band gap greater than approximately 1.2 eV.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Ted R. White
  • Patent number: 8384085
    Abstract: An object is to provide a semiconductor device in which characteristics of a driver circuit portion are improved while the aperture ratio of a pixel portion is increased. Alternatively, it is an object to provide a semiconductor device with low power consumption or to provide a semiconductor device in which the threshold voltage of a transistor can be controlled. The semiconductor device includes a substrate having an insulating surface, a pixel portion provided over the substrate, and at least some of driver circuits for driving the pixel portion. A transistor included in the pixel portion and a transistor included in the driver circuit are top-gate bottom-contact transistors. Electrodes and a semiconductor layer of the transistor in the pixel portion have light-transmitting properties. The resistance of electrodes in the driver circuit is lower than the electrodes included in the transistor in the pixel portion.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: February 26, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Junichiro Sakata, Kohei Toyotaka
  • Patent number: 8384157
    Abstract: An integrated circuit that includes a resistor module with improved linearity is disclosed. The resistor module includes a diffused resistor body of a first conductivity type; a first terminal and a second terminal, each making direct electrical contact with the diffused resistor body; a doped well of a second conductivity type substantially surrounding the diffused resistor body on all but one major surface of the diffused resistor body, the doped well having contact regions; a first amplifier connected to the first terminal and to one contact region of the doped well; and a second amplifier connected to the second terminal and to another contact region of the well, such that the first amplifier and the second amplifier are connected for power supply only to the first terminal and second terminal, respectively. The first and second amplifiers may be unity gain buffer amplifiers or inverting opamps.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: February 26, 2013
    Assignee: International Rectifier Corporation
    Inventor: Sergio Morini
  • Publication number: 20130043520
    Abstract: In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
    Type: Application
    Filed: October 19, 2012
    Publication date: February 21, 2013
    Applicant: International Business Machines Corporation
    Inventor: International Business Machines Corporation
  • Patent number: 8377763
    Abstract: A method is provided for fabricating a microelectronic device and a resistor on a substrate. The method can include forming device regions in a monocrystalline semiconductor region of a substrate, in which the device regions have edges defined according to a first semiconductor feature overlying a major surface of the semiconductor region. A dielectric region is formed having a planarized surface overlying the semiconductor region and overlying a second semiconductor feature disposed above a surface of an isolation region in the substrate. The surface of the isolation region can be disposed below the major surface. The method can further include removing at least a portion of the first semiconductor feature exposed at the planarized surface of the dielectric region to form an opening and forming a gate at least partially within the opening.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 19, 2013
    Assignee: International Business Machines Corporation
    Inventor: Narasimhulu Kanike
  • Patent number: 8378429
    Abstract: A memory cell has N?16 transistors, in which two are access transistors, at least one pair [say (N-2)/2] are pull-up transistors, and at least another pair [say (N-2)/2] are pull-down transistors. The pull-up and pull-down transistors are all coupled between the two access transistors. Each of the access transistors and the pull-up transistors are the same type, p-type or n-type. Each of the pull-down transistors is the other type, p-type or n-type. The access transistors are floating body devices. The pull-down transistors are non-floating body devices. The pull-up transistors may be floating or non-floating body devices. Various specific implementations and methods of making the memory cell are also detailed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: February 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Steven J. Koester, Jeffrey W. Sleight
  • Patent number: 8377761
    Abstract: A substrate diode for an SOI device is formed in accordance with an appropriately designed manufacturing flow, wherein transistor performance enhancing mechanisms may be implemented substantially without affecting the diode characteristics. In one aspect, respective openings for the substrate diode may be formed after the formation of a corresponding sidewall spacer structure used for defining the drain and source regions, thereby obtaining a significant lateral distribution of the dopants in the diode areas, which may therefore provide sufficient process margins during a subsequent silicidation sequence on the basis of a removal of the spacers in the transistor devices. In a further aspect, in addition to or alternatively, an offset spacer may be formed substantially without affecting the configuration of respective transistor devices.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 19, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andreas Gehring, Jan Hoentschel, Andy Wei
  • Patent number: 8373171
    Abstract: A multi-layered gate electrode of a crystalline TFT is constructed as a clad structure formed by deposition of a first gate electrode, a second gate electrode and a third gate electrode, to thereby to enhance the thermal resistance of the gate electrode. Additionally, an n-channel TFT is formed by selective doping to form a low-concentration impunty region which adjoins a channel forming region, and a sub-region overlapped by the gate electrode and a sub-region not overlapped by the gate electrode, to also mitigate a high electric field near the drain of the TFT and to simultaneously prevent the OFF current of the TFT from increasing.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8362562
    Abstract: In a semiconductor device of a silicon on insulator (SOI) structure having uniform transistor properties, a first distance between a gate electrode forming position of an N type transistor and an end of a P type semiconductor region is greater than a second distance between a gate electrode forming position of the P type transistor and an edge of the N type semiconductor region.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 29, 2013
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Masao Okihara
  • Patent number: 8362560
    Abstract: Embodiments of the present invention provide the ability to fabricate devices having similar physical dimensions, yet with different operating characteristics due to the different effective channel lengths. The effective channel length is controlled by forming an abrupt junction at the boundary of the gate and at least one source or drain. The abrupt junction impacts the diffusion during an anneal process, which in turn controls the effective channel length, allowing physically similar devices on the same chip to have different operating characteristics.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Pranita Kulkarni, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Patent number: 8357570
    Abstract: A method for fabricating a pixel structure includes providing a substrate having a pixel area. A first metal layer, a gate insulator and a semiconductor layer are formed on the substrate and patterned by using a first half-tone mask or a gray-tone mask to form a transistor pattern, a lower capacitance pattern and a lower circuit pattern. Next, a dielectric layer and an electrode layer both covering the three patterns are sequentially formed and patterned to expose a part of the lower circuit pattern, a part of the lower capacitance pattern and a source/drain region of the transistor pattern. A second metal layer formed on the electrode layer and the electrode layer are patterned by using a second half-tone mask or the gray-tone mask to form an upper circuit pattern, a source/drain pattern and an upper capacitance pattern. A portion of the electrode layer constructs a pixel electrode.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 22, 2013
    Assignee: Au Optronics Corporation
    Inventor: Yu-Cheng Chen
  • Patent number: 8357974
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 22, 2013
    Assignees: Corning Incorporated, SOITEC
    Inventors: Nadia Ben Mohamed, Ta Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Publication number: 20130015911
    Abstract: Solutions for optimizing a bulk bias across a substrate of an ETSOI device are disclosed. In one embodiment, an apparatus for optimizing a bulk bias across a substrate of an ETSOI device is disclosed, including: a sensing circuit for sensing at least one predetermined circuit parameter; a charging circuit for applying a bias voltage to the substrate of the ETSOI device; and a processing circuit connected to the sensing circuit and the charging circuit, the processing circuit configured to receive an output of the sensing circuit, and adjust the bias voltage applied to substrate of the ETSOI device in response to determining whether the bias voltage deviates from a target amount.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hayden C. Cranford, JR., Terence B. Hook
  • Patent number: 8354717
    Abstract: A LDMOS transistor is implemented in a first impurity region on a substrate. The LDMOS transistor has a source that includes a second impurity region. The second impurity region is implanted into the surface of the substrate within the first impurity region. Additionally, the LDMOS transistor has a drain that includes a third impurity region. The third impurity region is implanted into the surface of the substrate within the first impurity region. The third impurity region is spaced a predetermined distance away from a gate of the LDMOS transistor. The drain of the LDMOS transistor further includes a fourth impurity region within the third impurity region. The fourth impurity region provides an ohmic contact for the drain.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 15, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Budong You, Marco A. Zuniga
  • Patent number: RE43922
    Abstract: A static random access memory (SRAM) is laid out to be balanced so that, when power is applied to the SRAM, the cells of the SRAM have no preferred logic state, In addition, the SRAM is fabricated in a process the emphasizes mismatches so that each individual cell assumes a non-random logic state when power is applied.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: January 15, 2013
    Assignee: National Semiconductor Corporation
    Inventor: Elroy Lucero