Insulated Electrode Device Is Combined With Diverse Type Device (e.g., Complementary Mosfets, Fet With Resistor, Etc.) Patents (Class 257/350)
  • Patent number: 8227867
    Abstract: A portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is patterned into a semiconductor fin having substantially vertical sidewalls. A portion of a body region of the semiconductor fin is exposed on a top surface of the semiconductor fin between two source regions having a doping of a conductivity type opposite to the body region of the semiconductor fin. A metal semiconductor alloy portion is formed directly on the two source regions and the top surface of the exposed body region between the two source regions. The doping concentration of the exposed top portion of the body region may be increased by ion implantation to provide a low-resistance contact to the body region, or a recombination region having a high-density of crystalline defects may be formed. A hybrid surface semiconductor-on-insulator (HSSOI) metal-oxide-semiconductor-field-effect-transistor (MOSFET) thus formed has a body region that is electrically tied to the source region.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8227806
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: July 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Patent number: 8222697
    Abstract: Provided is a CMOS RF IC comprises an inductor that is formed in the uppermost two or more metal layers among a plurality of metal layers; and a DC bias circuit that is formed in a metal layer provided at the bottom of the metal layers in which the inductor is formed.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 17, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Yu Sin Kim, Chang Seok Lee, Nam Jin Oh, Shinichi Iizuka
  • Patent number: 8217469
    Abstract: The present disclosure provides a device in an integrated circuit. The device includes an active region in a semiconductor substrate; an isolation region adjacent the active region; a gate disposed on the active region and extending to the isolation region in a first direction; and a gate contact disposed within the isolation region, having a portion directly overlying and contacting the gate, and having a geometry horizontally extending to a first dimension in the first direction and a second dimension in a second direction approximately perpendicular to the first direction. The first dimension is greater than the second dimension.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 10, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chin Hou, Yuh-Jier Mii, Kuo-Tung Sung, Li-Chun Tien
  • Patent number: 8216907
    Abstract: A method forms a metal high dielectric constant (MHK) transistor and includes: providing a MHK stack disposed on a substrate, the MHK stack including a first layer of high dielectric constant material, a second overlying layer, and a third overlying layer; selectively removing only the second and third layers, without removing the first layer, to form an upstanding portion of a MHK gate structure; forming a first sidewall layer on sidewalls of the upstanding portion of the MHK gate structure; forming a second sidewall layer on sidewalls of the first sidewall layer; removing a portion of the first layer to form exposed surfaces; forming an offset spacer layer over the second sidewall layer and over the first layer, and forming in the substrate extensions that underlie the first and second sidewall layers and that extend under a portion but not all of the upstanding portion of the MHK gate structure.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Jeffrey W. Sleight, Isaac Lauer, Renee T. Mo
  • Publication number: 20120153396
    Abstract: According to an embodiment, a semiconductor device including a switch circuit includes a first gate electrode provided between a source region and a drain region of an FET and a second gate electrode provided between the first gate electrode and the drain region. The semiconductor device also includes a control terminal electrically connected to an intermediate region between the first gate electrode and the second gate electrode, the control terminal being placed at a ground potential corresponding to ON state of the FET, and the control terminal being placed at a positive potential or a negative potential corresponding to OFF state of the FET.
    Type: Application
    Filed: September 8, 2011
    Publication date: June 21, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masayuki Sugiura, Toshiki Seshita, Yoshimoto Sagae
  • Patent number: 8203147
    Abstract: A resin material having a small relative dielectric constant is used as a layer insulation film 114. The resin material has a flat surface. A black matrix or masking film for thin film transistors is formed thereon using a metal material. Such a configuration prevents the problem of a capacity generated between the masking film and a thin film transistor.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 19, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8203135
    Abstract: A semiconductor device, a semiconductor module, an electronic apparatus and methods of fabricating and manufacturing the same are provided. The semiconductor device includes a lower interconnection formed on a substrate, a plurality of control patterns formed on the lower interconnection, a plurality of lower contact plug patterns formed on the control patterns, a plurality of storage patterns formed on the lower contact plug patterns, a plurality of upper electrodes formed on the storage patterns, and a plurality of upper interconnections formed on the upper electrodes. The lower contact plug patterns each include at least two contact holes having different sizes, a plurality of sidewall patterns formed on inner sidewalls of the two contact holes and wherein the sidewall patterns have different thicknesses from one another.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: June 19, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-Rie Sim, Jung-Hoon Park, Yoon-Jong Song, Jae-Min Shin, Shin-Hee Han
  • Patent number: 8202409
    Abstract: A potentiometric sensor with suppressed leak current on the surface of an electrode and improved for a dynamic range and a response speed, in which a redox compound is immobilized through insulative molecules on the surface of a gold electrode, and a current between a source and drain of an insulated gate field-effect transistor along with reaction between an oxidized substance or a reduced substance produced by the reaction of a measured substance in a sample solution injector for supplying the sample solution containing the measured substance and an enzyme and a redox compound on the surface of the gold electrode, is monitored on real time to measure the change of the surface potential.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: June 19, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Yu Ishige, Masao Kamahori
  • Patent number: 8198682
    Abstract: A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120139049
    Abstract: A method is provided for fabricating a microelectronic device and a resistor on a substrate. The method can include forming device regions in a monocrystalline semiconductor region of a substrate, in which the device regions have edges defined according to a first semiconductor feature overlying a major surface of the semiconductor region. A dielectric region is formed having a planarized surface overlying the semiconductor region and overlying a second semiconductor feature disposed above a surface of an isolation region in the substrate. The surface of the isolation region can be disposed below the major surface. The method can further include removing at least a portion of the first semiconductor feature exposed at the planarized surface of the dielectric region to form an opening and forming a gate at least partially within the opening.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Narasimhulu Kanike
  • Publication number: 20120132992
    Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 8188569
    Abstract: The invention relates to a memory device, in particular to a resistively switching memory device such as a Phase Change Random Access Memory (“PCRAM”). In one disclosed method, a nanowire of non-conducting material is formed serving as a mould for producing a nanotube of conducting material. A volume of switching active material is deposited on top of the nanotube, so that the ring-shaped front face of the nanotube couples to the switching active material and thus forms a bottom electrode contact.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 29, 2012
    Assignee: Qimonda AG
    Inventor: Harald Seidl
  • Patent number: 8188478
    Abstract: A display device includes a main body, a support stand, and a display portion. The display portion includes a pixel having a TFT and a capacitor. The capacitor includes a capacitor electrode on an insulating surface, an insulating film on the capacitor electrode, and a pixel electrode of the TFT on the insulating film.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Setsuo Nakajima
  • Patent number: 8188564
    Abstract: A method for manufacturing a semiconductor device including a thin film device unit including a TFT, and a peripheral device unit provided around the thin film device unit and including a semiconductor element, includes a first step of preparing a substrate, a second step of bonding the peripheral device unit directly to the substrate, and a third step of forming the thin film device unit on the substrate to which the peripheral device unit is bonded.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 29, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuhide Tomiyasu, Yutaka Takafuji, Yasumori Fukushima, Kazuo Nakagawa
  • Patent number: 8183634
    Abstract: A stack-type semiconductor device and a method of manufacturing the same are provided. The stack-type semiconductor device includes an insulation layer on a single-crystalline substrate, a contact plug penetrating the insulation layer to contact the single-crystalline substrate, an upper semiconductor pattern including an impurity region and a gate structure positioned between the impurity regions on the upper semiconductor pattern. An upper surface of the contact plug contacts a lower surface of the semiconductor pattern. An operation failure of the stack-type semiconductor device is reduced since the upper semiconductor pattern is electrically connected to the single-crystalline semiconductor substrate.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Beom Park, Soon-Moon Jung, Han-Soo Kim, Jae-Hoon Jang, Jae-Hun Jeong, Jong-In Yun, Mi-So Hwang
  • Publication number: 20120119296
    Abstract: Trench-generated transistor structures, design structures for a trench-generated transistor, and other trench-generated device structures. The source and drain of the transistor are defined by doped regions in the semiconductor material of the handle substrate of a semiconductor-on-insulator (SOI) wafer. The gate electrode may be defined from the semiconductor layer of the SOI wafer, which is separated from the handle wafer by an insulating layer. Alternatively, the gate electrode may be defined as a conventional gate stack on a shallow trench isolation region in the semiconductor layer or as a conventional gate stack in one of the BEOL interconnect levels.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8178902
    Abstract: A CMOS device with transistors having different gate dielectric materials and a method of manufacture thereof. A CMOS device is formed on a workpiece having a first region and a second region. A first gate dielectric material is deposited over the second region. A first gate material is deposited over the first gate dielectric material. A second gate dielectric material comprising a different material than the first gate dielectric material is deposited over the first region of the workpiece. A second gate material is deposited over the second gate dielectric material. The first gate material, the first gate dielectric material, the second gate material, and the second gate dielectric material are then patterned to form a CMOS device having a symmetric Vt for the PMOS and NMOS FETs.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: May 15, 2012
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 8178865
    Abstract: An organic light emitting display device includes a plurality of pixels each coupled to a corresponding one of previous scan lines, a corresponding one of current scan lines, and a data line; first switching elements coupled between the previous scan lines of the pixels and a first test pad, and configured to turn on during a first period of a test period to provide a first test control signal supplied from the first test pad to the pixels; and second switching elements coupled between the current scan lines of the pixels and a second test pad, and configured to turn on during a second period of the test period to provide a second test control signal supplied from the second test pad to the pixels.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 15, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Jin-Tae Jeong
  • Publication number: 20120112283
    Abstract: The present invention discloses an ESD protection structure in a SOI CMOS circuitry. The ESD protection structure includes a variety of longitudinal (vertical) PN junction structures having significantly enlarged junction areas for current flow. The resulting devices achieve increased heavy current release capability. Processes of fabricating varieties of the ESD protection longitudinal PN junction are also disclosed. Compatibility of the disclosed fabrication processes with current SOI technology reduces implementation cost and improves the integration robustness.
    Type: Application
    Filed: December 16, 2010
    Publication date: May 10, 2012
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Xiaolu Huang, Xing Wei, Xinhong Cheng, Jing Chen, Miao Zhang, Xi Wang
  • Publication number: 20120112823
    Abstract: An integrated circuit with a matched transistor pair with a matching resistance heater coupled to each transistor of the matched transistor pair. A method for forming a matching resistance heater. A method for operating an SOI integrated circuit containing a matched transistor pair with a matching resistance heater coupled to each transistor of the matched transistor pair.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Andrew Marshall
  • Publication number: 20120098066
    Abstract: A method and structure comprise a field effect transistor structure that includes a first rectangular fin structure position on a substrate. The first rectangular fin structure has a bottom contacting the substrate, a top opposite the bottom, and sides between the top and the bottom. The structure additionally includes a second rectangular fin structure position on the substrate. Similarly, the second rectangular fin structure also has a bottom contacting the substrate, a top opposite the bottom, and sides between the top and the bottom. The sides of the second rectangular fin structure are parallel to the sides of the first rectangular fin structure. Further, a trench insulator is positioned on the substrate and is positioned between a side of the first rectangular fin structure and a side of the second rectangular fin structure.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8164125
    Abstract: A semiconductor device includes an N type well region in a P type substrate. A source region of a MOSFET is laterally separated from a boundary of the well region, which includes the drain of the MOSFET. An insulated gate of the MOSFET extends laterally from the source region to at least just past the boundary of the well region. A polysilicon layer, which forms a first plate of a capacitive anti-fuse, is insulated from an area of the well region, which forms the second plate of the anti-fuse. The anti-fuse is programmed by application of a voltage across the first and second capacitive plates sufficient to destroy at least a portion of the second dielectric layer, thereby electrically shorting the polysilicon layer to the drain of the HVFET.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 24, 2012
    Assignee: Power Integrations, Inc.
    Inventors: Sujit Banerjee, Martin H. Manley
  • Patent number: 8159031
    Abstract: An improved semiconductor-on-insulator (SOI) substrate is provided, which contains a patterned buried insulator layer at varying depths. Specifically, the SOI substrate has a substantially planar upper surface and comprises: (1) first regions that do not contain any buried insulator, (2) second regions that contain first portions of the patterned buried insulator layer at a first depth (i.e., measured from the planar upper surface of the SOI substrate), and (3) third regions that contain second portions of the patterned buried insulator layer at a second depth, where the first depth is larger than the second depth. One or more field effect transistors (FETs) can be formed in the SOI substrate. For example, the FETs may comprise: channel regions in the first regions of the SOI substrate, source and drain regions in the second regions of the SOI substrate, and source/drain extension regions in the third regions of the SOI substrate.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Zhijiong Luo, Haining S. Yang
  • Patent number: 8159014
    Abstract: A silicon-on-insulator device has a localized biasing structure formed in the insulator layer of the SOI. The localized biasing structure includes a patterned conductor that provides a biasing signal to distinct regions of the silicon layer of the SOI. The conductor is recessed into the insulator layer to provide a substantially planar interface with the silicon layer. The conductor is connected to a bias voltage source. In an embodiment, a plurality of conductor is provided that respectively connected to a plurality of voltage sources. Thus, different regions of the silicon layer are biased by different bias signals.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, John K. Zahurak
  • Publication number: 20120074495
    Abstract: A device includes a first semiconductor fin, and a second semiconductor fin parallel to the first semiconductor fin. A straight gate electrode is formed over the first and the second semiconductor fins, and forms a first fin field-effect transistor (FinFET) and a second FinFET with the first and the second semiconductor fins, respectively, wherein the first and the second FinFETs are of a same conductivity type. A first electrical connection is formed on a side of the straight gate electrode and coupling a first source/drain of the first FinFET to a first source/drain of the second FinFET, wherein a second source/drain of the first FinFET is not connected to a second source/drain of the second FinFET.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiung-Ting Ou, Chih-Chiang Chang
  • Patent number: 8143674
    Abstract: A semiconductor device having a resistor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a first circuit region and a second circuit region. A lower interlayer insulating layer is provided over the semiconductor substrate. A first hole passing through the lower interlayer insulating layer in the first circuit region and a second hole passing through the lower interlayer insulating layer in the second circuit region are provided. A first semiconductor pattern and a second semiconductor pattern are sequentially stacked in the first hole. A first resistor having the same crystalline structure as the second semiconductor pattern is provided in the second hole.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Won Ha, Sang-Yoon Kim
  • Publication number: 20120068267
    Abstract: Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Katherine L. Saenger
  • Patent number: 8134207
    Abstract: In a high breakdown voltage semiconductor element among elements integrated together on an SOI substrate in which its rated voltage is shared between an embedded oxide layer and a drain region formed by an element active layer, both high integration and high breakdown voltage are realized while also securing suitability for practical implementation and practical use. The high breakdown voltage is realized without hampering size reduction of the element by forming an electrically floating layer of a conductivity type opposite to that of the drain region at the surface of the drain region. Further, the thickness of the embedded oxide layer is reduced to a level suitable for the practical implementation and practical use by setting the thickness of the element active layer of the SOI substrate at 30 ?m or more.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Atsuo Watanabe
  • Patent number: 8134162
    Abstract: A method for manufacturing an electronic device comprises a step for forming a coating film (100) on a surface of a conductor portion-containing body (500), a step for forming a photosensitive film (110) on the conductor (500) on which the coating film (100) has been formed, a step for exposing the photosensitive film (110) to a pattern corresponding to a patterned recessed or protruded portion, a step for developing the exposed photosensitive film (110), and a step for baking the developed photosensitive film (110). With this method, an excessive removal of a metal film can be prevented or suppressed.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: March 13, 2012
    Assignee: TPO Hong Kong Holding Limited
    Inventor: Naoki Sumi
  • Publication number: 20120049284
    Abstract: In one exemplary embodiment, a semiconductor structure includes: a semiconductor-on-insulator substrate with a top semiconductor layer overlying an insulation layer and the insulation layer overlies a bottom substrate layer; at least one first device at least partially overlying and disposed upon a first portion of the top semiconductor layer, where the first portion has a first thickness, a first width and a first depth; and at least one second device at least partially overlying and disposed upon a second portion of the top semiconductor layer, where the second portion has a second thickness, a second width and a second depth, where at least one of the following holds: the first thickness is greater than the second thickness, the first width is greater than the second width and the first depth is greater than the second depth.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8124975
    Abstract: Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Noda, Toshio Miyazawa, Takuo Kaitoh, Hiroyuki Abe
  • Patent number: 8119460
    Abstract: A semiconductor device includes a plurality of transistors disposed on a semiconductor substrate, a device isolation layer disposed around the transistors, a guard ring disposed to surround the device isolation layer and the transistors, and a guard region disposed between adjacent transistors.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Sung Lee, Woon-Kyung Lee
  • Patent number: 8120110
    Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 8114719
    Abstract: An easy-to-use and inexpensive memory device is provided while maintaining product specifications and productivity even when a memory is formed on the same substrate as other functional circuits. The memory device of the invention includes a memory cell formed on an insulating surface. The memory cell includes a semiconductor film having two impurity regions, a gate electrode, and two wirings connected to the respective impurity regions. The two wirings are insulated from each other by applying a voltage between the gate electrode and at least one of the two wirings to alter the state of the semiconductor film.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Tetsuji Yamaguchi, Etsuko Asano, Konami Izumi
  • Patent number: 8115278
    Abstract: A semiconductor element formed over the same substrate as a TFT, includes a semiconductor film having an impurity region; an insulating film formed over the semiconductor film; an electrode divided into a plurality of parts over the insulating film by spacing a distance a in a first direction (channel width direction); an insulator with a width b formed to be in contact with a side wall of the electrodes and an insulator formed in a region between the electrodes divided into a plurality of parts; a silicide layer formed over part of the surface of the impurity region; and characteristics of the TFT are evaluated by measuring resistance of the semiconductor film of the semiconductor element.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsuo Isobe
  • Publication number: 20120032264
    Abstract: A novel semiconductor latch is presented. The semiconductor structure is simple and has a reduced number of semiconductor junctions. It offers the advantage of being very small in area, very fast and very efficient. The current conductivity in the structures of the latch circuit is controlled by the gates voltage by means of depleting and enhancing the areas under the gate oxide. The signal isolation is obtained mainly by the carrier depletion of the channel region. By having a reduced number of semiconductor junctions, the intrinsic current leakage can be very small. This latch is the elementary component for volatile memory and logic elements based on this principle.
    Type: Application
    Filed: November 22, 2010
    Publication date: February 9, 2012
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Patent number: 8110874
    Abstract: A hybrid substrate circuit on a common substrate is disclosed. A first circuit formed in a first semiconductor material is isolated via a buried oxide layer from a second circuit formed in a second semiconductor material. The first and second circuits may include CMOS, HEMTs, P-HEMTs, HBTs, radio frequency circuits, MESFETs, and various pFETs and nFETs.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Katsura Miyashita
  • Patent number: 8110467
    Abstract: Multiple threshold voltage (Vt) field-effect transistor (FET) devices and techniques for the fabrication thereof are provided. In one aspect, a FET device is provided including a source region; a drain region; at least one channel interconnecting the source and drain regions; and a gate, surrounding at least a portion of the channel, configured to have multiple threshold voltages due to the selective placement of at least one band edge metal throughout the gate.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Renee T. Mo, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 8110878
    Abstract: There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: February 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Naozumi Morino, Atsushi Hiraiwa, Kazutoshi Oku, Toshiaki Ito, Motoshige Igarashi, Takayuki Sasaki, Masao Sugiyama, Hiroshi Yanagita, Shinichi Watarai
  • Publication number: 20120007182
    Abstract: Shallow trench isolation silicon-on-insulator (SOI) devices are formed with improved charge protection. Embodiments include an SOI film diode and a P+ substrate junction as a charging protection device. Embodiments also include a conductive path from the SOI transistor drain, through a conductive contact, a metal line, a second conductive contact, an SOI diode, isolated from the transistor, a third conductive contact, a second conductive line, and a fourth conductive contact to a P+-doped substrate contact in the bulk silicon layer of the SOI substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jingrong Zhou, David Wu, James F. Buller
  • Patent number: 8093656
    Abstract: The present invention provides a color filter substrate that can include color filters 12, which are formed in at least a display region and each of which are composed of colored portions, and a light shielding layer on a substrate main body. The light shielding layer can be formed on the approximately entire surface of a color filter non-forming region, in addition to the display region. Further, the colored portions can be formed by an inkjet method, and the color filter substrate can further include a resin member for partitioning pixels for forming the respective colored portions, and the resin member can be formed on the approximately entire surface of the color filter non-forming region, in addition to along the peripheries of the respective colored portions.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: January 10, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Tomomi Kawase
  • Patent number: 8093657
    Abstract: According to the present invention, a circuit and methods for enhancing the operation of SOI fabricated devices are disclosed. In a preferred embodiment of the present invention, a pulse discharge circuit is provided. Here, a circuit is designed to provide a pulse that will discharge the accumulated electrical charge on the body of the SOI devices in the memory subarray just prior to the first access cycle. As explained above, once the accumulated charge has been dissipated, the speed penalty for successive accesses to the memory subarray is eliminated or greatly reduced. With a proper control signal, timing and sizing, this can be a very effective method to solve the problem associated with the SOI loading effect. Alternatively, instead of connecting the bodies of all SOI devices in a memory circuit to ground, the bodies of the N-channel FET pull-down devices of the local word line drivers can be selectively connected to a reference ground.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: January 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roy Childs Flaker, Catherine O'Brien, legal representative, Scott Flaker, legal representative, Shirley A. Flaker, legal representative, Bruce Flaker, legal representative, Anne Flaker, legal representative, Heather Flaker, legal representative, Louis C. Hsu, Jente Kuang
  • Patent number: 8084830
    Abstract: The memory cell is located at respective intersections between the first wirings and the second wirings. Each of the memory cells has a rectifier element and a variable resistance element connected in series. The rectifier element includes a p type first semiconductor region, and a n type second semiconductor region. The first semiconductor region is formed of, at least in part, silicon-germanium mixture (Si1-xGex (0<x<=1)). The second semiconductor region is formed of silicon (Si).
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Kanno, Kenichi Murooka, Jun Hirota, Hideyuki Tabata
  • Publication number: 20110309445
    Abstract: Embodiments of the present invention provide the ability to fabricate devices having similar physical dimensions, yet with different operating characteristics due to the different effective channel lengths. The effective channel length is controlled by forming an abrupt junction at the boundary of the gate and at least one source or drain. The abrupt junction impacts the diffusion during an anneal process, which in turn controls the effective channel length, allowing physically similar devices on the same chip to have different operating characteristics.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kulkarni, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20110291193
    Abstract: A high density, asymmetric, butted junction CMOS inverter, formed on an SOI substrate, may include: an asymmetric p-FET that includes a halo implant on only a source side of the p-FET; an asymmetric n-FET that includes a halo implant on only a source side of the n-FET; and a butted junction comprising an area of said SOI substrate where a drain region of the asymmetric n-FET and a drain region of the asymmetric p-FET are in direct physical contact. Asymmetric halo implants may be formed by a sequential process of covering a first FET of the CMOS inverter with an ion-absorbing structure and applying angled ion radiation to only the source side of the second FET, removing the ion-absorbing structure, covering the first FET with a second ion-absorbing structure, and applying angled ion radiation to only the source side of the second FET.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: International Business Machines Corporation
    Inventors: Andres Bryant, Josephine B. Chang, Jeffrey W. Sleight
  • Patent number: 8067772
    Abstract: An object is to provide a semiconductor device with improved reliability and for which a defect due to an end portion of a semiconductor layer provided in an island-shape is prevented, and a manufacturing method thereof. A structure includes an island-shaped semiconductor layer provided over a substrate, an insulating layer provided over a top surface and a side surface of the island-shaped semiconductor layer, and a gate electrode provided over the island-shaped semiconductor layer with the insulating layer interposed therebetween. In the insulating layer provided to be in contact with the island-shaped semiconductor layer, a region that is in contact with the side surface of the island-shaped semiconductor layer is made to have a lower dielectric constant than a region over the top surface of the island-shaped semiconductor layer.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: November 29, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuko Ikeda, Shinya Sasagawa, Hideomi Suzawa, Shunpei Yamazaki
  • Patent number: 8063438
    Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: November 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8058703
    Abstract: A semiconductor transistor device includes a drift region, an insulating structure, a gate insulator, a gate electrode, a source, and a drain. The drift region includes a first lateral portion having a first dopant concentration and a second lateral portion having a second dopant concentration that is higher than the first lateral portion. The insulating structure is formed on the drift region and is disposed over a border between the first and second lateral portions such that hole generation is minimized in the drift region during operation.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Mueng-Ryul Lee
  • Patent number: 8053848
    Abstract: A semiconductor device includes a plurality of transistors disposed on a semiconductor substrate, a device isolation layer disposed around the transistors, a guard ring disposed to surround the device isolation layer and the transistors, and a guard region disposed between adjacent transistors.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Sung Lee, Woon-Kyung Lee