Single Crystal Islands Of Semiconductor Layer Containing Only One Active Device Patents (Class 257/353)
  • Patent number: 9496397
    Abstract: The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Zhi-Chang Lin, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 9455246
    Abstract: A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: September 27, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9425257
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a channel layer formed of a Germanium compound having a Germanium concentration B formed on a semiconductor substrate having a Germanium concentration of A, the Germanium concentration of the substrate A being less than the Germanium concentration of the channel layer B. The structure further includes a capping layer formed to separate the channel layer from a metal gate, the capping layer having a Germanium concentration of C, the Germanium concentration of the channel layer B being greater than the Germanium concentration of the capping layer C.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: August 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Ka-Hing Fung
  • Patent number: 9368515
    Abstract: A thin film transistor array panel may include a channel layer including an oxide semiconductor and formed in a semiconductor layer, a source electrode formed in the semiconductor layer and connected to the channel layer at a first side, a drain electrode formed in the semiconductor layer and connected to the channel layer at an opposing second side, a pixel electrode formed in the semiconductor layer in a same portion of the semiconductor layer as the drain electrode, an insulating layer disposed on the channel layer, a gate line including a gate electrode disposed on the insulating layer, a passivation layer disposed on the source and drain electrodes, the pixel electrode, and the gate line, and a data line disposed on the passivation layer. A width of the channel layer may be substantially equal to a width of the pixel electrode in a direction parallel to the gate line.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: June 14, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Dong Jo Kim, Ji Seon Lee, Jong Chan Lee, Yoon Ho Khang, Sang Ho Park, Yong Su Lee, Jung Kyu Lee
  • Patent number: 9349866
    Abstract: The present disclosure provides an embodiment of a fin-like field-effect transistor (FinFET) device. The device includes a fin structure disposed over a substrate. The fin structure includes a semiconductor oxide layer disposed over the substrate, which has a top surface facing away from the substrate, a first semiconductor material layer disposed over and spaced apart from the semiconductor oxide layer, which has a top surface facing away from the substrate and an opposing bottom surface facing the substrate, and a dielectric sidewall spacer disposed along a sidewall of the semiconductor oxide layer and extending to the first semiconductor material layer. The device also includes a gate dielectric layer disposed over the fin structure and a gate electrode layer disposed over the gate dielectric layer. The gate electrode extends between the top surface of the semiconductor oxide layer and the bottom surface of the first semiconductor material layer.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 24, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Kuo-Cheng Ching
  • Patent number: 9331064
    Abstract: A fin diode structure includes a doped well formed in a substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well isolated from ins of first conductivity type by STIs, at least one doped region of first conductivity type in the substrate between the fins of first conductivity type, the STIs and the doped well and connecting with the fins of first conductivity type, and at least one doped region of second conductivity type in the substrate between the fins of second conductivity type, the STIs and the doped well and connecting with the fins of second conductivity type. The doping concentration of the fins of first conductivity type is greater than that of the doped region of first conductivity type whose doping concentration is greater than that of the doped well of first conductivity type.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: May 3, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9305883
    Abstract: A low resistance contact to a finFET source/drain can be achieved by forming a defect free surface on which to form such contact. The fins of a finFET can be exposed to epitaxial growth conditions to increase the bulk of semiconductive material in the source/drain. Facing growth fronts can merge or can form unmerged facets. A dielectric material can fill voids within the source drain region. A trench spaced from the finFET gate can expose the top portion of faceted epitaxial growth on fins within said trench, such top portions separated by a smooth dielectric surface. A silicon layer selectively formed on the top portions exposed within the trench can be converted to a semiconductor-metal layer, connecting such contact with individual fins in the source drain region.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sebastian Naczas, Vamsi Paruchuri, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 9245884
    Abstract: A design structure for a semiconductor structure is disclosed. The semiconductor structure can include a substrate, a set of semiconductor fins positioned on the substrate and positioned approximately parallel lengthwise to one another, a first gate layer and a second gate layer deposited on the substrate and on the set of semiconductor fins approximately perpendicular lengthwise to the set of semiconductor fins. The semiconductor structure can include an interconnect layer deposited on the substrate and on the set of semiconductor fins approximately perpendicular lengthwise to the set of semiconductor fins. The interconnect layer can be positioned between the first gate layer and the second gate layer at a first interconnect distance from the first gate layer and a second interconnect distance from the second gate layer.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: January 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann
  • Patent number: 9184087
    Abstract: Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a first fin partially surrounded by a first isolation structure and protruding through a top surface thereof. The semiconductor device also includes a second fin partially surrounded by a second isolation structure and protruding through a top surface thereof. The top surface of the first isolation structure is higher than the top surface of the second isolation structure such that the second fin has a height higher than that of the first fin. The second isolation structure has a dopant concentration higher than that of the first isolation structure.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: November 10, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yu Chiang, Chung-Wei Lin, Kuang-Hsin Chen, Bor-Zen Tien
  • Patent number: 9166023
    Abstract: Methods and structures for forming fully insulated finFETs beginning with a bulk semiconductor substrate are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first epitaxial layer may be sacrificial. A final gate structure may be formed around the fin structures, and the first epitaxial layer removed to form a void between a fin and the substrate. The void may be filled with an insulator to fully insulate the fin.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 20, 2015
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES, INC.
    Inventors: Nicolas Loubet, Prasanna Khare, Jin Cho
  • Patent number: 9142628
    Abstract: A metal oxide thin film transistor (TFT) includes a gate electrode, a gate insulating layer, a metal oxide active layer, a source electrode, and a drain electrode. The gate electrode is formed on a substrate. The gate insulating layer is formed on the substrate and covers the gate electrode. The metal oxide active layer is formed on the gate insulating layer. The drain electrode and the source electrode are formed on two opposite ends of the metal oxide active layer in a spaced-apart manner, in which at least one of the orthographic projection of the source electrode and the orthographic projection of the drain electrode on the substrate does not overlap the gate electrode.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 22, 2015
    Assignee: E Ink Holdings Inc.
    Inventors: Chia-Chun Yeh, Henry Wang, Xue-Hung Tsai, Chih-Hsuan Wang
  • Patent number: 9135964
    Abstract: A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line (BL) and an input connected to a second bit line complementary to the first bit line and a second CMOS inverter having an output connected to the second bit line (/BL) and an input connected to the first bit line. Each CMOS inverter includes pull-up and pull-down transistors, wherein the sources of either of the pull-up transistors or the pull-down transistors are electrically coupled and connected to a pull-up voltage source or a pull-down voltage source without an intermediate transistor between the sources of the transistors and the voltage source.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 15, 2015
    Assignee: Soitec
    Inventors: Richard Ferrant, Roland Thewes
  • Patent number: 9047433
    Abstract: A die includes at least one standard cell, which includes a first boundary and a second boundary opposite to the first boundary. The first boundary and the second boundary are parallel to a first direction. The at least one standard cell further includes a first plurality of FinFETs including first semiconductor fins parallel to the first direction. The die further includes at least one memory macro, which has a third boundary and a fourth boundary opposite to the third boundary. The third boundary and the fourth boundary are parallel to the first direction. The at least one memory macro includes a second plurality of FinFETs including second semiconductor fins parallel to the first direction. All semiconductor fins in the at least one standard cell and the at least one memory macro have pitches equal to integer times of a minimum pitch of the first and the second semiconductor fins.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Nan Yang, Chou-Kun Lin, Jerry Chang-Jui Kao, Yi-Chuin Tsai, Chien-Ju Chao, Chung-Hsing Wang
  • Patent number: 9006829
    Abstract: Among other things, a semiconductor device comprising an aligned gate and a method for forming the semiconductor device are provided. The semiconductor device comprises a gate formed according to a multi-gate structure, such as a gate-all-around structure. A first gate portion of the gate is formed above a first channel of the semiconductor device. A second gate portion of the gate is formed below the first channel, and is aligned with the first gate portion. In an example of forming the gate, a cavity is etched within a semiconductor layer formed above a substrate. A dielectric layer is formed around at least some of the cavity to define a region of the cavity within which the second gate portion is to be formed in a self-aligned manner with the first gate portion. In this way, the semiconductor device comprises a first gate portion aligned with a second gate portion.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jean-Pierre Colinge, Kuo-Cheng Ching, Zhiqiang Wu
  • Patent number: 8999779
    Abstract: A low resistance contact to a finFET source/drain can be achieved by forming a defect free surface on which to form such contact. The fins of a finFET can be exposed to epitaxial growth conditions to increase the bulk of semiconductive material in the source/drain. Facing growth fronts can merge or can form unmerged facets. A dielectric material can fill voids within the source drain region. A trench spaced from the finFET gate can expose the top portion of faceted epitaxial growth on fins within said trench, such top portions separated by a smooth dielectric surface. A silicon layer selectively formed on the top portions exposed within the trench can be converted to a semiconductor-metal layer, connecting such contact with individual fins in the source drain region.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Sebastian Naczas, Vamsi Paruchuri, Alexander Reznicek, Dominic J. Schepis
  • Patent number: 8987828
    Abstract: A finFET block architecture uses end-to-end finFET blocks in which the fin lengths are at least twice the contact pitch, whereby there is enough space for interlayer connectors to be placed on the proximal end and the distal end of a given semiconductor fin, and on the gate element on the given semiconductor fin. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. Interlayer connectors can be aligned over corresponding semiconductor fins which connect to gate elements.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 24, 2015
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Deepak D. Sherlekar
  • Patent number: 8963251
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a substrate, a fin structure disposed over the substrate in the gate region. The fin structure includes a first semiconductor material layer as a lower portion of the fin structure, a semiconductor oxide layer as a middle portion of the fin structure and a second semiconductor material layer as an upper portion of the fin structure. The semiconductor device also includes a dielectric feature disposed between two adjacent fin structures over the substrate. A top surface of the dielectric feature located, in a horizontal level, higher than the semiconductor oxide layer with a distance d. The semiconductor device also includes a high-k (HK)/metal gate (MG) stack disposed in the gate region, including wrapping over a portion of the fin structure.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung Ying Lee, Yu-Lien Huang, Chung-Hsien Chen, Chi-Wen Liu
  • Patent number: 8946038
    Abstract: A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
  • Patent number: 8941214
    Abstract: Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventor: Bernhard Sell
  • Patent number: 8921940
    Abstract: To fabricate a semiconductor device, a fin is formed to protrude from a substrate. The fin is extended in a first direction. A gate line is formed on the fin and the substrate. The gate line is extended in a second direction crossing the first direction. An amorphous material layer is conformally formed to cover the substrate, the fin, and the gate line. The amorphous material layer is partially removed, thereby forming a first remaining amorphous layer on side walls of the fin and a second remaining amorphous layer on side walls of the gate line. The first remaining amorphous layer and the second remaining amorphous layer are annealed and the first remaining amorphous material layer and the second remaining amorphous material layer are crystallized into a monocrystalline material layer and a polycrystalline material layer, respectively. The polycrystalline material layer is removed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Suk-Hun Choi
  • Patent number: 8901658
    Abstract: A thin film transistor (TFT) is provided, which includes a gate, a semiconductor layer, an insulation layer, a source and a drain. The semiconductor layer has a first end and a second end opposite to the first end. The insulation layer is disposed between the gate and the semiconductor layer. The source clamps the first end of the semiconductor layer and the drain clamps the second end of the semiconductor layer.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: December 2, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Henry Wang, Chia-Chun Yeh, Xue-Hung Tsai, Ted-Hong Shinn
  • Patent number: 8884300
    Abstract: A semiconductor element is operated without being affected even when the substrate is largely affected by heat shrink such as a large substrate. Furthermore, a thin film semiconductor circuit and a thin film semiconductor device each having the semiconductor element. Also, a semiconductor element is operated without being affected even if there is slight mask deviation. In view of them, a plurality of gate electrodes formed so as to overlap a lower concentration impurity region of a semiconductor layer than drain regions on a drain region side. Also, source regions and the drain regions corresponding to the respective gate electrodes are formed so that current flows in opposite directions each other through channel regions corresponding to the gate electrodes. Further, the number of the channel regions in which a current flows in a first direction is equal to the number of the channel regions in which a current flows in a direction opposite to the first direction.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Arao, Hiroyuki Miyake
  • Patent number: 8872225
    Abstract: An embodiment uses a very thin layer nanostructure (e.g., a Si or SiGe fin) as a template to grow a crystalline, non-lattice matched, epitaxial (EPI) layer. In one embodiment the volume ratio between the nanostructure and EPI layer is such that the EPI layer is thicker than the nanostructure. In some embodiments a very thin bridge layer is included between the nanostructure and EPI. An embodiment includes a CMOS device where EPI layers covering fins (or that once covered fins) are oppositely polarized from one another. An embodiment includes a CMOS device where an EPI layer covering a fin (or that once covered a fin) is oppositely polarized from a bridge layer covering a fin (or that once covered a fin). Thus, various embodiments are disclosed from transferring defects from an EPI layer to a nanostructure (that is left present or removed). Other embodiments are described herein.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 28, 2014
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Van Le, Robert Chau, Sansaptak Dasgupta, Gilbert Dewey, Niti Goel, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Willy Rachmady, Marko Radosavljevic, Han Wui Then, Nancy Zelick
  • Patent number: 8860029
    Abstract: A photoelectric conversion element including a first gate electrode, a first gate insulating layer, a crystalline semiconductor layer, an amorphous semiconductor layer, an impurity semiconductor layer, a source electrode and a drain electrode in contact with the impurity semiconductor layer, a second gate insulating layer covering a region between the source electrode and the drain electrode, and a second gate electrode over the second gate insulating layer. In the photoelectric conversion element, a light-receiving portion is provided in the region between the source electrode and the drain electrode, the first gate electrode includes a light-shielding material and overlaps with the entire surface of the crystalline semiconductor layer and the amorphous semiconductor layer, the second gate electrode includes a light-transmitting material and overlaps with the light-receiving portion, and the first gate electrode is electrically connected to the source electrode or the drain electrode is provided.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tsudoi Nagi, Koji Dairiki
  • Patent number: 8829617
    Abstract: A method including providing a plurality of fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the plurality of fins and the nitride layer, removing a portion of the plurality of fins to form an opening, and forming a dielectric spacer on a sidewall of the opening. The method may also include filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer, removing the nitride layer to form a gap between the plurality of fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the plurality of fins and the fill material to widen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Balasubramanian S. Haran, Sanjay Mehta, Shom Ponoth, Ravikumar Ramachandran, Stefan Schmitz, Theodorus E. Standaert
  • Patent number: 8823105
    Abstract: There is provided an electronic device including at least a first electrode, a second electrode disposed to be spaced apart from the first electrode, and an active layer disposed over the second electrode from above the first electrode and formed of an organic semiconductor material. A charge injection layer is formed between the first electrode and the active layer and between the second electrode and the active layer, and the charge injection layer is formed of an organic material having an increased electric conductivity when the charge injection layer is oxidized.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Sony Corporation
    Inventor: Mao Katsuhara
  • Patent number: 8802491
    Abstract: There is provided an electronic device including at least a first electrode, a second electrode disposed to be spaced apart from the first electrode, and an active layer disposed over the second electrode from above the first electrode and formed of an organic semiconductor material. A charge injection layer is formed between the first electrode and the active layer and between the second electrode and the active layer, and the charge injection layer is formed of an organic material having an increased electric conductivity when the charge injection layer is oxidized.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: August 12, 2014
    Assignee: Sony Corporation
    Inventor: Mao Katsuhara
  • Patent number: 8796774
    Abstract: A nonvolatile memory cell is disclosed, having first and second semiconductor islands at the same horizontal level and spaced a predetermined distance apart, the first semiconductor island providing a control gate and the second semiconductor island providing source and drain terminals; a gate dielectric layer on at least part of the first semiconductor island; a tunneling dielectric layer on at least part of the second semiconductor island; a floating gate on at least part of the gate dielectric layer and the tunneling dielectric layer; and a metal layer in electrical contact with the control gate and the source and drain terminals. In one advantageous embodiment, the nonvolatile memory cell may be manufactured using an “all-printed” process technology.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Thin Film Electronics ASA
    Inventors: Arvind Kamath, Patrick Smith, James Montague Cleeves
  • Patent number: 8779430
    Abstract: A semiconductor device (18) includes: a gate electrode (102) formed on a substrate (101); a semiconductor layer (104) formed above the gate electrode (102) and including a source region, a drain region, and a channel region; a source electrode (106) connected to the source region above the semiconductor layer (104); and a drain electrode (107) connected to the drain region above the semiconductor layer (104). The semiconductor layer (104) has, at a portion overlapping the drain electrode (107), a protrusion that protrudes outward along an extending direction of a drain line drawn out from the drain electrode (107). At an outside of the channel region sandwiched between the drain electrode (107) and the source electrode (106), the semiconductor layer (104) has an adjustment portion where an outer boundary of the semiconductor layer (104) is positioned more inward than an outer boundary of the gate electrode (102).
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 15, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shoji Okazaki, Takeshi Yaneda, Wataru Nakamura, Hiromitsu Katsui
  • Patent number: 8753956
    Abstract: A method is provided for fabricating a semiconductor structure. The method includes providing a semiconductor substrate having a first region and an adjacent second region, and etching the semiconductor substrate to form a plurality of first trenches in the first region and a second trench in the second region. Fins are formed in between the adjacent first trenches. The width of the second trench is greater than the width of the first trench. The method also includes filling the first trenches with a first isolation material to form first insolation structures, and form sidewall spacers inside the second trench. Further, the method includes forming a third trench in the second trench by etching the exposed semiconductor substrate on the bottom of the second trench using the sidewall spacers as an etching mask, and filling the second trench and the third trench using a second isolation material to form a second isolation structure.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 17, 2014
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Mieno Fumitake, Meisheng Zhou
  • Patent number: 8748984
    Abstract: A semiconductor device and a method for fabricating the same are disclosed. A fin of the semiconductor device including a fin-shaped channel region is configured in the form of a non-uniform structure, and a leakage current caused by the electric field effect generated in the semiconductor device is prevented from being generated, resulting in an increased operation stability of the semiconductor device.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: June 10, 2014
    Assignee: SK Hynix Inc.
    Inventor: Sung Kil Chun
  • Patent number: 8748989
    Abstract: The disclosure relates to a fin field effect transistor (FinFET). An exemplary structure for a FinFET comprises a substrate comprising a major surface; a plurality of first trenches having a first width and extending downward from the substrate major surface to a first height, wherein a first space between adjacent first trenches defines a first fin; and a plurality of second trenches having a second width less than first width and extending downward from the substrate major surface to a second height greater than the first height, wherein a second space between adjacent second trenches defines a second fin.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu Chao Lin, Chih-Tang Peng, Shun-Hui Yang, Ryan Chia-Jen Chen, Chao-Cheng Chen
  • Patent number: 8742505
    Abstract: One or more embodiments relate to an apparatus comprising: a first transistor including a channel in a fin; and a second transistor including a channel in a fin, the channel of the first transistor being doped with a first dopant of a first polarity and counter-doped with a second dopant of a second polarity opposite to the first polarity, a concentration of the first dopant being approximately equal to a concentration of the second dopant, wherein the first transistor and the second transistor are of a same conductivity type.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: June 3, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joerg Berthold, Christian Pacha, Klaus von Arnim
  • Patent number: 8723268
    Abstract: A finFET block architecture uses end-to-end finFET blocks in which the fin lengths are at least twice the contact pitch, whereby there is enough space for interlayer connectors to be placed on the proximal end and the distal end of a given semiconductor fin, and on the gate element on the given semiconductor fin. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. Interlayer connectors can be aligned over corresponding semiconductor fins which connect to gate elements.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Deepak D. Sherlekar
  • Patent number: 8723262
    Abstract: FinFETS and methods for making FinFETs with a recessed stress liner. A method includes providing an SOI substrate with fins, forming a gate over the fins, forming an off-set spacer on the gate, epitaxially growing a film to merge the fins, depositing a dummy spacer around the gate, and recessing the merged epi film. Silicide is then formed on the recessed merged epi film followed by deposition of a stress liner film over the FinFET. By using a recessed merged epi process, a MOSFET with a vertical silicide (i.e. perpendicular to the substrate) can be formed. The perpendicular silicide improves spreading resistance.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Huiming Bu, Effendi Leobandung, Theodorus E. Standaert, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8692255
    Abstract: A semiconductor element includes: an organic semiconductor layer; an electrode disposed on the organic semiconductor layer so as to be in contact with the organic semiconductor layer; and a wiring layer formed separately from the electrode and electrically connected to the electrode.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 8, 2014
    Assignee: Sony Corporation
    Inventors: Hideki Ono, Ryuto Akiyama
  • Patent number: 8637381
    Abstract: Aspects of the invention provide for preventing undercuts during wafer etch processing and enhancing back-gate to channel electrical coupling. In one embodiment, aspects of the invention include a semiconductor structure, including: a high-k buried oxide (BOX) layer atop a bulk silicon wafer, the high-k BOX layer including: at least one silicon nitride layer; and a high-k dielectric layer; and a silicon-on-insulator (SOI) layer positioned atop the high-k BOX layer.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Dae-Gyu Park, Shom S. Ponoth, Zhibin Ren, Ghavam G. Shahidi, Leathen Shi
  • Patent number: 8624320
    Abstract: An integrated fin-based field effect transistor (FinFET) and method of fabricating such devices on a bulk wafer with EPI-defined fin heights over shallow trench isolation (STI) regions. The FinFET channels overlie the STI regions within the semiconductor bulk, while the fins extend beyond the STI regions into the source and drain regions which are implanted within the semiconductor bulk. With bulk source and drain regions, reduced external FinFET resistance is provided, and with the fins extending into the bulk source and drain regions, improved thermal properties is provided over conventional silicon on insulator (SOI) devices.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: January 7, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Richard T. Schultz
  • Patent number: 8610124
    Abstract: A display device capable of implementing the light shielding effect and process simplification, and a method of manufacturing the display device. The display device includes a transistor formed in a first region on a substrate, a pixel electrode formed in a second region on the substrate, a buffer layer formed beneath the transistor in the first region, and a light shielding layer formed between the buffer layer and the substrate in the first region. In the display device, the light shielding layer may include a semiconductor material.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: December 17, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-In Ro, Ji-Yong Park, Kyung-Min Park, Seong-Yeun Kang, Jin-Suk Park
  • Patent number: 8610241
    Abstract: Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
  • Patent number: 8592902
    Abstract: Gate cross diffusion in a semiconductor structure is substantially reduced or eliminated by forming multiple n-type gate regions with different dopant concentrations and multiple p-type gate regions with different dopant concentrations so that the n-type gate region with the lowest dopant concentration touches the p-type gate region with the lowest dopant concentration.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Texas Instrument Incorporated
    Inventor: Manoj Mehrotra
  • Patent number: 8592916
    Abstract: A lower raised source/drain region is formed on a planar source/drain region of a planar field effect transistor or a surface of a portion of semiconductor fin adjoining a channel region of a fin field effect transistor. At least one contact-level dielectric material layer is formed and planarized, and a contact via hole extending to the lower raised source/drain region is formed in the at least one contact-level dielectric material layer. An upper raised source/drain region is formed on a top surface of the lower raised source/drain region. A metal semiconductor alloy portion and a contact via structure are formed within the contact via hole. Formation of the upper raised source/drain region is limited to a bottom portion of the contact via hole, thereby preventing formation of, and increase of parasitic capacitance by, any additional raised structure in source/drain regions that are not contacted.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Khakifirooz, Thomas N. Adam, Kangguo Cheng, Alexander Reznicek
  • Patent number: 8587062
    Abstract: A field effect transistor (FET) with an adjacent body contact, a SOI IC with circuits including the FETs and a method of fabricating the ICs. Device islands are formed in the silicon surface layer of a SOI wafer. Gates are defined on the wafer. Body contacts are formed in a perimeter conductive region adjacent to the gates. The body contacts may be either a silicide strap along the gate sidewall at one side of the FET or a separate contact separated from the gate by a dielectric stripe at one side of the FET. Separate contacts may be connected to a bias supply.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Haining S. Yang
  • Patent number: 8581243
    Abstract: A bottom gate type thin-film transistor constituted of at least a substrate, a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode and a drain electrode. At an interface between the gate electrode and the gate insulating layer, the interface has a difference between hill tops and dale bottoms of unevenness in the vertical direction, of 30 nm or less.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Takahashi, Ryo Hayashi, Masafumi Sano
  • Patent number: 8575741
    Abstract: There is provided a method of removing trap levels and defects, which are caused by stress, from a single crystal silicon thin film formed by an SOI technique. First, a single crystal silicon film is formed by using a typical bonding SOI technique such as Smart-Cut or ELTRAN. Next, the single crystal silicon thin film is patterned to form an island-like silicon layer, and then, a thermal oxidation treatment is carried out in an oxidizing atmosphere containing a halogen element, so that an island-like silicon layer in which the trap levels and the defects are removed is obtained.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8569830
    Abstract: In a vertical MOS transistor in which a semiconductor pillar is formed by etching a semiconductor substrate in a portion surrounded by an isolation film, the semiconductor pillar is covered with a gate insulating film and a gate electrode to be made a channel part, and diffusion layers to be a source and a drain are included on a top and a bottom of the channel part, electrode which controls potential of a gate electrode material is formed in gate electrode material formed on a side surface of isolation film, in order to eliminate a parasitic MOS operation by the gate electrode material remaining on the side surface of the isolation film.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: October 29, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kiyonori Oyu, Yoshihiro Takaishi, Yu Kosuge
  • Patent number: 8525262
    Abstract: The present invention disclosed a recessed gate transistor with buried fins. The recessed gate transistor with buried fins is disposed in an active region on a semiconductor substrate. Two isolation regions disposed in the semiconductor substrate, and sandwich the active region. A gate structure is disposed in the semiconductor substrate, wherein the gate structure includes: an upper part and a lower part. The upper part is disposed in the active region and a lower part having a front fin disposed in one of the two isolation regions, at least one middle fin disposed in the active region, and a last fin disposed in the other one of the two isolation regions, wherein the front fin are both elliptic cylindrical.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Tieh-Chiang Wu, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8519397
    Abstract: A photoelectric conversion element including a first gate electrode, a first gate insulating layer, a crystalline semiconductor layer, an amorphous semiconductor layer, an impurity semiconductor layer, a source electrode and a drain electrode in contact with the impurity semiconductor layer, a second gate insulating layer covering a region between the source electrode and the drain electrode, and a second gate electrode over the second gate insulating layer. In the photoelectric conversion element, a light-receiving portion is provided in the region between the source electrode and the drain electrode, the first gate electrode includes a light-shielding material and overlaps with the entire surface of the crystalline semiconductor layer and the amorphous semiconductor layer, the second gate electrode includes a light-transmitting material and overlaps with the light-receiving portion, and the first gate electrode is electrically connected to the source electrode or the drain electrode is provided.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: August 27, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tsudoi Nagi, Koji Dairiki
  • Patent number: 8513720
    Abstract: A top gate and bottom gate thin film transistor (TFT) are provided with an associated fabrication method. The TFT is fabricated from a substrate, and an active metal oxide semiconductor (MOS) layer overlying the substrate. Source/drain (S/D) regions are formed in contact with the active MOS layer. A channel region is interposed between the S/D regions. The TFT includes a gate electrode, and a gate dielectric interposed between the channel region and the gate electrode. The active MOS layer may be ZnOx, InOx, GaOx, SnOx, or combinations of the above-mentioned materials. The active MOS layer also includes a primary dopant such as H, K, Sc, La, Mo, Bi, Ce, Pr, Nd, Sm, Dy, or combinations of the above-mentioned dopants. The active MOS layer may also include a secondary dopant.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 20, 2013
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Gregory S. Herman, Jer-shen Maa, Kanan Puntambekar, Apostolos T. Voutsas
  • Patent number: 8460984
    Abstract: FIN-FET ICs with adjustable FIN-FET channel widths are formed from a semiconductor layer (42). Fins (36) may be etched from the layer (42) and then some (46) locally shortened or the layer (42) may be locally thinned and then fins (46) of different fin heights etched therefrom. Either way provides fins (46) and FIN-FETs (40) with different channel widths W on the same substrate (24). Fin heights (H) are preferably shortened by implanting selected ions (A, B, C, etc.) through a mask (90, 90?, 94, 94?, 97, 97?) to locally enhance the etch rate of the layer (42) or some of the fins (36). The implant(s) (A, B, C, etc.) is desirably annealed and then differentially etched. This thins part(s) (42-i) of the layer (42) from which the fins (46) are then etched or shortens some of the fins (46) already etched from the layer (42). For silicon, germanium is a suitable implant ion.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 11, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Jeremy Wahl, Kingsuk Maitra