Including Resistor Element Patents (Class 257/358)
-
Patent number: 8710593Abstract: A manufacturing method for a resistor integrated with a transistor having metal gate includes providing a substrate having a transistor, a transitional structure, and a dielectric layer covering the transistor and the transitional structure formed thereon, forming a recess in between two opposite polysilicon end portions in the transitional structure, forming a U-shaped resistance modulating layer and an insulating layer filling the recess, removing a dummy gate of the transistor and the polysilicon end portions of the transitional structure to form a gate trench and two terminal trenches respectively in the transistor and the transitional structure, and forming a metal gate in the gate trench and conductive terminals in the terminal trenches simultaneously.Type: GrantFiled: April 12, 2012Date of Patent: April 29, 2014Assignee: United Microelectronics Corp.Inventors: Chi-Sheng Tseng, Yao-Chang Wang, Jie-Ning Yang
-
Patent number: 8710589Abstract: An allowable current amount of a ballast resistance is increased without increasing the width of the ballast resistance. At least one of resistances included in a ballast resistance has a first resistance and a second resistance. The first resistance extends in a first direction (X direction in FIG. 1) in which current flows in a protection element. The second resistance element is coupled in parallel to the first resistance element and extends in the first direction. The second resistance element and the first resistance element are located on the same straight line.Type: GrantFiled: November 3, 2012Date of Patent: April 29, 2014Assignee: Renesas Electronics CorporationInventor: Ko Noguchi
-
Patent number: 8704308Abstract: The invention provides a semiconductor device including an ESD protection circuit with a high ESD protection characteristic. An RC timer included discharge portion including an RC timer formed by a resistor element and a capacitor element and a PLDMOS transistor is formed so as to turn on only when a surge voltage due to static electricity is applied. Furthermore, a noise prevention portion including first and second NMOS off transistors of which the source electrode and the drain electrode are connected is formed. The source electrode of the PLDMOS transistor of the RC timer included discharge portion is connected to a power supply line. The drain electrode of the PLDMOS transistor and the drain electrode of the first NMOS off transistor are connected. The source electrode of the second NMOS off transistor is connected to a ground line.Type: GrantFiled: January 13, 2012Date of Patent: April 22, 2014Assignee: Semiconductor Components Industries, LLCInventor: Kazumasa Akai
-
Patent number: 8692329Abstract: An electric resistance element comprising: a base body, which is formed with a semiconductor material; a first contact element, which is electrically conductively connected to the base body; and a second contact element, which is electrically conductively connected to the base body. The base body has a first main surface into which a cutout is introduced. The first contact element is electrically conductively connected to the base body at least in places in the cutout. The base body has a second main surface, which is arranged in a manner lying opposite the first main surface. The second contact element is electrically conductively connected to the base body at least in places at the second main surface.Type: GrantFiled: February 1, 2011Date of Patent: April 8, 2014Assignee: OSRAM Opto Semiconductors GmbHInventor: Krister Bergenek
-
Patent number: 8664741Abstract: Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.Type: GrantFiled: June 14, 2011Date of Patent: March 4, 2014Assignee: Taiwan Semiconductor Manufacturing Company Ltd.Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
-
Patent number: 8618608Abstract: A lateral silicon controlled rectifier structure includes a P-type substrate; an N-well region in the P-type substrate; a first P+ doped region in the N-well region and being connected to an anode; a P-well region in the P-type substrate and bordering upon the N-well region; a first N+ doped region formed in the P-well region and separated from the first P+ doped region by a spacing distance, the first N+ doped region being connected to a cathode; and a gate structure overlying a portion of the P-type substrate between the first P+ doped region and the first N+ doped region.Type: GrantFiled: December 31, 2008Date of Patent: December 31, 2013Assignee: United Microelectronics Corp.Inventors: Ta-Cheng Lin, Te-Chang Wu
-
Patent number: 8598667Abstract: A semiconductor device includes a thin-film diode (1) and a protection circuit with a protection diode (20). The thin-film diode (1) includes: a semiconductor layer with first, second and channel regions; a gate electrode; a first electrode (S1) connected to the first region and the gate electrode; and a second electrode (D1) connected to the second region. The conductivity type of the thin-film diode (1) may be N-type and the anode electrode of the protection diode (20) may be connected to a line (3) that is connected to either the gate electrode or the first electrode of the thin-film diode (1). Or the conductivity type of the thin-film diode may be P-type and the cathode electrode of the protection diode may be connected to the line that is connected to either the gate electrode or the first electrode of the thin-film diode. The protection circuit includes no other diodes that are connected to the line (3) so as to have a current flowing direction opposite to the protection diode's (20).Type: GrantFiled: June 1, 2010Date of Patent: December 3, 2013Assignee: Sharp Kabushiki KaishaInventor: Hiroyuki Moriwaki
-
Patent number: 8592910Abstract: A semiconductor body includes a protective structure. The protective structure (10) includes a first and a second region (11, 12) which have a first conductivity type and a third region (13) that has a second conductivity type. The second conductivity type is opposite the first conductivity type. The first and the second region (11, 12) are arranged spaced apart in the third region (13), so that a current flow from the first region (11) to the second region (12) is made possible for the limiting of a voltage difference between the first and the second region (11, 12). The protective structure includes an insulator (14) that is arranged on the semiconductor body (9) and an electrode (16) that is constructed with floating potential and is arranged on the insulator (14).Type: GrantFiled: September 16, 2009Date of Patent: November 26, 2013Assignee: AMS AGInventor: Hubert Enichlmair
-
Patent number: 8587072Abstract: An SiC semiconductor device includes a semiconductor element formed in an SiC substrate, a source electrode and a gate pad formed by using an interconnect layer having barrier metal provided at the bottom surface thereof, and a temperature measuring resistive element formed by using part of the barrier metal in the interconnect line.Type: GrantFiled: March 12, 2012Date of Patent: November 19, 2013Assignee: Mitsubishi Electric CorporationInventors: Yasunori Oritsuki, Naoki Yutani, Yoichiro Tarui
-
Patent number: 8558314Abstract: A semiconductor device includes a signal input pad, a protection object circuit, a first connection node connected with the protection object circuit, a first resistance element connected between the signal input pad and the first connection node, a first protection circuit section arranged between a power supply line or a ground line and a second connection node between the signal input pad and the first resistance element, and a second protection circuit section. The second protection circuit section includes at least one of a first PMOS transistor having a source connected with the first connection node, a drain connected with the ground line and a gate and a back gate connected with the power supply line, and a first NMOS transistor having a source connected with said first connection node, a drain connected with the power supply line and a gate and a back gate connected with the ground line.Type: GrantFiled: September 11, 2012Date of Patent: October 15, 2013Assignee: Renesas Electronics CorporationInventor: Mototsugu Okushima
-
Patent number: 8554279Abstract: A boosting circuit unit supplies a boosting voltage to one terminal of a backlight. A boosting comparator compares a voltage applied to the other terminal of the backlight with a predetermined reference voltage value, and outputs a comparison result as a feedback signal reflecting the boosting voltage to the boosting circuit unit. An LED driver unit is connected to the other terminal of the backlight and supplies drive current to the backlight. An acquisition unit acquires a PWM signal, which is generated based on the content of a video signal and can be used to change the luminance of the backlight. An LPF unit outputs a time-averaged signal of the acquired PWM signal as a control signal to be supplied to the LED driver unit.Type: GrantFiled: November 12, 2008Date of Patent: October 8, 2013Assignees: Semiconductor Components Industries, LLC., Sanyo Semiconductor Co., Ltd.Inventor: Nobuyuki Otaka
-
Patent number: 8546884Abstract: A high value resistor of the present invention has an active layer deposited over a semi-insulating substrate. Channel etch regions are defined within the active layer. Gate metal is deposited over each channel etch region. Ohmic contact material is deposited at opposing ends of the active layer to define connection regions. A second metal is deposited over the connection regions to form input/output pads. This resistor pattern presents significant increase in resistance in a given area without any additional processing or process steps.Type: GrantFiled: October 29, 2002Date of Patent: October 1, 2013Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.Inventor: Michael L. Frank
-
Patent number: 8513738Abstract: An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor.Type: GrantFiled: July 21, 2011Date of Patent: August 20, 2013Assignee: International Business Machines CorporationInventors: John B. Campi, Jr., Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, Jr., Junjun Li, Rahul Mishra, Mujahid Muhammad
-
Publication number: 20130200460Abstract: An electrostatic discharge (ESD) protection circuit is provided. A first NMOS transistor is coupled to a power line. A second NMOS transistor is coupled between the first transistor and a ground. A detection unit provides a detection signal when an ESD event occurs at the power line. A trigger unit turns on the second NMOS transistor and the first NMOS transistor in sequence in response to the detection signal, such that a discharge path is formed from the power line to the ground via the first and second NMOS transistors.Type: ApplicationFiled: January 16, 2013Publication date: August 8, 2013Applicant: MEDIATEK INC.Inventor: MEDIATEK INC.
-
Patent number: 8502269Abstract: A first first-conductivity-type diffusion layer, a first second-conductivity-type diffusion layer, a second first-conductivity-type diffusion layer, and a second second-conductivity-type diffusion layer are arranged in this order. In a region where the second second-conductivity-type diffusion layer and the first-conductivity-type layer are in contact with each other, impurity concentrations thereof are higher in a part in contact with a side face of the second second-conductivity-type diffusion layer than in a part at a bottom surface of the second second-conductivity-type diffusion layer.Type: GrantFiled: August 4, 2011Date of Patent: August 6, 2013Assignee: Renesas Electronics CorporationInventors: Kouichi Sawahata, Masaharu Sato
-
Patent number: 8492801Abstract: A semiconductor structure with high breakdown voltage and high resistance and method for manufacturing the same. The semiconductor structure at least comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; two first wells having the first conductive type and formed within the deep well; a second well having the first conductive type and formed between the two first wells within the deep well, and an implant dosage of the second well lighter than an implant dosage of each of the two first wells; and two first doping regions having the first conductive type and respectively formed within the two first wells.Type: GrantFiled: May 11, 2007Date of Patent: July 23, 2013Assignee: System General Corp.Inventors: Chiu-Chih Chiang, Chih-Feng Huang
-
Patent number: 8415795Abstract: A semiconductor device and an assembling method thereof are provided. The semiconductor device includes a chip, a carrier, a plurality of first conductive elements and a plurality of second conductive elements. The chip has a plurality of first pads. The carrier has a plurality of second pads. The second pads correspond to the first pads. Each first conductive element is disposed between one of the first pads and one of the second pads. Each second conductive element is disposed between one of the first pads and one of the second pads. A volume ratio of intermetallic compound of the second conductive elements is greater than a volume ratio of intermetallic compound of the first conductive elements.Type: GrantFiled: April 18, 2011Date of Patent: April 9, 2013Assignee: Industrial Technology Research InstituteInventors: Yu-Min Lin, Chau-Jie Zhan, Su-Tsai Lu
-
Patent number: 8368145Abstract: A semiconductor device has a structure including the first semiconductor region 103 which is provided in the first terminal portion 100 and includes the first n-type impurity region 106, the first resistance region 107 provided at an inner periphery portion of the first n-type impurity region 106 in a plane view, and the first p-type impurity region 108 provided at an inner periphery portion of the first resistance region 107 in the plane view, and the second semiconductor region 104 which is provided in the second terminal portion 101 and includes the second p-type impurity region 109, the second resistance region 110 provided at an inner periphery portion of the second p-type impurity region 109 in the plane view, and the second n-type impurity region 111 provided at an inner periphery portion of the second resistance region 110 in the plane view.Type: GrantFiled: June 5, 2009Date of Patent: February 5, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Osamu Fukuoka, Masahiko Hayakawa, Hideaki Shishido
-
Publication number: 20130001697Abstract: A semiconductor device includes a signal input pad, a protection object circuit, a first connection node connected with the protection object circuit, a first resistance element connected between the signal input pad and the first connection node, a first protection circuit section arranged between a power supply line or a ground line and a second connection node between the signal input pad and the first resistance element, and a second protection circuit section. The second protection circuit section includes at least one of a first PMOS transistor having a source connected with the first connection node, a drain connected with the ground line and a gate and a back gate connected with the power supply line, and a first NMOS transistor having a source connected with said first connection node, a drain connected with the power supply line and a gate and a back gate connected with the ground line.Type: ApplicationFiled: September 11, 2012Publication date: January 3, 2013Applicant: RENESAS ELECTRONICS CORPORATIONInventor: Mototsugu Okushima
-
Patent number: 8344456Abstract: An ESD protection circuit including a first electrostatic discharge protection circuit provided between first power supply wiring and first ground wiring; a second ESD protection circuit provided between second power supply wiring and second ground wiring; a third ESD protection circuit provided between the first ground wiring and the second ground wiring; a PMOS transistor coupled to the first power supply wiring and provided between a first CMOS circuit coupled to the first ground wiring and the first power supply wiring, the first CMOS circuit receiving a signal from a first internal circuit and outputting a signal to a first node; an NMOS transistor provided between the first node and the first ground wiring; and an ESD detection circuit that renders the PMOS transistor conductive and the NMOS transistor non-conductive during normal operation, and renders the PMOS transistor non-conductive and the NMOS transistor conductive when an ESD is applied.Type: GrantFiled: October 27, 2009Date of Patent: January 1, 2013Assignee: Fujitsu Semiconductor LimitedInventors: Masahito Arakawa, Toshihiko Mori
-
Patent number: 8324686Abstract: A semiconductor device and method for manufacturing. One embodiment provides a semiconductor device including an active cell region and a gate pad region. A conductive gate layer is arranged in the active cell region and a conductive resistor layer is arranged in the gate pad region. The resistor layer includes a resistor region which includes a grid-like pattern of openings formed in the resistor layer. A gate pad metallization is arranged at least partially above the resistor layer and in electrical contact with the resistor layer. An electrical connection is formed between the gate layer and the gate pad metallization, wherein the electrical connection includes the resistor region.Type: GrantFiled: January 16, 2009Date of Patent: December 4, 2012Assignee: Infineon Technologies Austria AGInventors: Armin Willmeroth, Carolin Tolksdorf
-
Patent number: 8310011Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.Type: GrantFiled: August 12, 2011Date of Patent: November 13, 2012Assignee: GlobalFoundries Inc.Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
-
Patent number: 8283729Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.Type: GrantFiled: January 20, 2011Date of Patent: October 9, 2012Assignee: Fujitsu Semiconductor LimitedInventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Patent number: 8283728Abstract: A semiconductor device includes a power supply line supplied with a power supply voltage; a power supply node connected with the power supply line; a ground line; a ground pad connected with the ground line; a signal input pad; a main protection circuit section configured to discharge an ESD surge applied to a first pad as one of the power supply node, the signal input pad and the ground pad to a second pad as another thereof; a protection object circuit; a connection node connected with the protection object circuit; a first resistance element connected between the signal input pad and the connection node; and a sub protection circuit section.Type: GrantFiled: December 6, 2010Date of Patent: October 9, 2012Assignee: Renesas Electronics CorporationInventor: Mototsugu Okushima
-
Patent number: 8278714Abstract: A semiconductor device has an external connection terminal, an internal circuit region, an ESD protection N-MOS transistor provided between the external connection terminal and the internal circuit region to protect an internal element formed in the internal circuit region, and a shallow trench structure provided to isolate the ESD protection N-MOS transistor. A thin insulating film is formed on a drain region of the ESD protection N-MOS transistor. An electrode is disposed above the drain region and on the thin insulating film for receiving a signal from the external connection terminal. The thin insulating film has a film thickness and film properties that allow dielectric breakdown and establish conduction between the electrode and the drain region when a voltage exceeding an absolute maximum rating of the semiconductor device is applied to the electrode.Type: GrantFiled: September 23, 2010Date of Patent: October 2, 2012Assignee: Seiko Instruments Inc.Inventor: Hiroaki Takasu
-
Publication number: 20120181611Abstract: The invention provides a semiconductor device including an ESD protection circuit with a high ESD protection characteristic. An RC timer included discharge portion including an RC timer formed by a resistor element and a capacitor element and a PLDMOS transistor is formed so as to turn on only when a surge voltage due to static electricity is applied. Furthermore, a noise prevention portion including first and second NMOS off transistors of which the source electrode and the drain electrode are connected is formed. The source electrode of the PLDMOS transistor of the RC timer included discharge portion is connected to a power supply line. The drain electrode of the PLDMOS transistor and the drain electrode of the first NMOS off transistor are connected. The source electrode of the second NMOS off transistor is connected to a ground line.Type: ApplicationFiled: January 13, 2012Publication date: July 19, 2012Applicant: Semiconductor Components Industries, LLCInventor: Kazumasa AKAI
-
Patent number: 8203198Abstract: A thin film capacitor device of the present invention has a thin film capacitor having two electrodes and a dielectric layer provided therebetween and external terminals electrically connected to the electrodes. In addition, the thin film capacitor device also has resistor layers which are provided between the external terminals and the electrodes and adjacent thereto, and which are formed of a material have a higher resistivity than that of the adjacent electrodes.Type: GrantFiled: September 13, 2006Date of Patent: June 19, 2012Assignee: Fujitsu LimitedInventors: Takeshi Shioga, Kazuaki Kurihara
-
Patent number: 8183637Abstract: There is provided a semiconductor device including: a field effect transistor that is provided with a gate region, a drain region and a source region and that is formed on a substrate; a circuit region that is formed on the substrate so as to be electrically isolated from the field effect transistor; a first guard ring that is formed in a ring shape encircling the field effect transistor and that includes an internal resistance; and a second guard ring that is formed in a ring shape encircling the circuit region, that forms a capacitance between the second guard ring and the gate region by capacitive coupling with the gate region, and that includes an internal resistance.Type: GrantFiled: January 26, 2010Date of Patent: May 22, 2012Assignee: Oki Semiconductor Co., Ltd.Inventor: Chikashi Fuchigami
-
Patent number: 8148781Abstract: This present invention relates in general to protection of integrated circuit chips, and more particularly, to a micromachined suppression device for protecting integrated circuit chips from electrostatic discharges. The proposed ESD suppression device consists of conductive pillars are dispersed in a dielectric material. The gaps between each pillar behave like spark gaps when a high voltage ESD pulse occurs. When the voltage of the pulse reaches the “trigger voltage” these gaps spark over, creating a very low resistance path. In normal operation, the leakage current and the capacitance is very low, due to the physical gaps between the conductive pillars. The proposed ESD suppression device is fabricated using micromachining techniques to be on-chip with device ICs.Type: GrantFiled: July 28, 2009Date of Patent: April 3, 2012Assignee: MCube Inc.Inventor: Xiao (Charles) Yang
-
Patent number: 8143674Abstract: A semiconductor device having a resistor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a first circuit region and a second circuit region. A lower interlayer insulating layer is provided over the semiconductor substrate. A first hole passing through the lower interlayer insulating layer in the first circuit region and a second hole passing through the lower interlayer insulating layer in the second circuit region are provided. A first semiconductor pattern and a second semiconductor pattern are sequentially stacked in the first hole. A first resistor having the same crystalline structure as the second semiconductor pattern is provided in the second hole.Type: GrantFiled: December 20, 2010Date of Patent: March 27, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Dae-Won Ha, Sang-Yoon Kim
-
Patent number: 8129789Abstract: A semiconductor chip includes a semiconductor body having an upper surface. At least one power semiconductor component is integrated in the semiconductor chip together with other circuitry. Two or more vertically spaced metallization layers are arranged on the surface of the semiconductor body. The top metallization layer includes terminals establishing an electrical connection to load terminals of the power semiconductor component. A current measurement resistor is formed by a portion of the top metallization layer for sensing a load current of the power semiconductor component. A temperature measurement resistor is formed by a portion of at least one of the vertically spaced metallization layers, electrically isolated from current measurement resistor but thermally coupled thereto such that the current measurement resistor and the temperature measurement resistor have the same temperature.Type: GrantFiled: May 28, 2010Date of Patent: March 6, 2012Assignee: Infineon Technologies AGInventors: Alexander Mayer, Guenter Herzele, Andreas Tschmelitsch, Matthias Kogler
-
Patent number: 8115257Abstract: A semiconductor apparatus includes an internal circuit, a CMOS composed of a P-channel MOS transistor with a source connected to a high-potential power supply line and a gate connected to the internal circuit, and an N-channel MOS transistor with a source connected to a low-potential power supply line and a gate connected to the internal circuit, an output terminal connected to a drain of the P-channel MOS transistor and a drain of the N-channel MOS transistor and a protection transistor with a source and a gate connected to one power supply line of the high-potential power supply line and the low-potential power supply line and a drain connected to the output terminal, a conductivity type of the protection transistor being the same as a conductivity type of one MOS transistor of the P-channel MOS transistor and the N-channel MOS transistor, the source of the one MOS transistor being connected to the one power supply line.Type: GrantFiled: November 30, 2010Date of Patent: February 14, 2012Assignee: Kabushiki Kaisha ToshibaInventor: Hideaki Sai
-
Patent number: 8080852Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.Type: GrantFiled: December 10, 2010Date of Patent: December 20, 2011Assignee: Fujitsu Semiconductor LimitedInventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Publication number: 20110241731Abstract: Electrostatic discharge clamp devices are described. In one embodiment, the semiconductor device includes a first transistor, the first transistor including a first source/drain and a second source/drain, the first source/drain coupled to a first potential node, the second source/drain coupled to a second potential node. The device further includes a OR logic block, a first input of the OR logic block coupled to the first potential node through a capacitor, the first input of the OR logic block being coupled to the second potential node through a resistor, and a second input of the OR logic block coupled to a substrate pickup node of the first transistor.Type: ApplicationFiled: June 13, 2011Publication date: October 6, 2011Inventor: Cornelius Christian Russ
-
Patent number: 8018002Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.Type: GrantFiled: June 24, 2009Date of Patent: September 13, 2011Assignee: GlobalFoundries Inc.Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
-
Patent number: 8018038Abstract: An IC card capable of reinforcing the prevention of the electrostatic damage without causing a rise in the cost of a semiconductor integrated circuit chip. The semiconductor integrated circuit chip (2) is mounted on a card substrate (1), and plural connection terminals (3) are exposed. The connection terminals are connected to predetermined external terminals (4) of the semiconductor integrated circuit chip, first overvoltage protection elements (7, 8, 9) connected to the external terminals are integrated in the semiconductor integrated circuit chip, and second overvoltage protection elements such as surface-mount type varistors (11) connected to the connection terminals are mounted on the card substrate. The varistors are variable resistor elements having a current tolerating ability greater than that of the first overvoltage protection elements.Type: GrantFiled: July 14, 2010Date of Patent: September 13, 2011Assignee: Renesas Electronics CorporationInventors: Hirotaka Nishizawa, Yosuke Yukawa, Takashi Totsuka
-
Patent number: 8013394Abstract: Integrated circuits (IC) and a method of fabricating an IC, where the structure of the IC incorporates a back-end-of-the-line (BEOL) thin film resistor below a first metal layer to achieve lower topography are disclosed. The resistor directly contacts any one of: a contact metal in the front-end-of-the-line (FEOL) structure; first metal layer in the BEOL interconnect; or the combination thereof, to avoid the necessity of forming contacts with differing heights or contacts over varying topography.Type: GrantFiled: March 28, 2007Date of Patent: September 6, 2011Assignee: International Business Machines CorporationInventors: Anil K Chinthakindi, Vincent J McGahay
-
Patent number: 7994576Abstract: A method for fabricating metal gate transistor and resistor is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation in the substrate of the resistor region; forming a tank in the shallow trench isolation of the resistor region; forming at least one gate in the transistor region and a resistor in the tank of the resistor region; and transforming the gate into a metal gate transistor.Type: GrantFiled: June 22, 2009Date of Patent: August 9, 2011Assignee: United Microelectronics Corp.Inventors: Chih-Yu Tseng, Chien-Ting Lin, Kun-Szu Tseng, Cheng-Wen Fan, Victor-Chiang Liang
-
Patent number: 7986007Abstract: The structure of the MOS transistor provided in this invention has LDD (lightly doped drain) and halo doped regions removed from the source, the drain or both regions in the substrate for improved linearity range when operated as a voltage-controlled resistor. The removal of the LDD and halo doped regions is performed by simply modifying the standard mask of the MOS process using a logic operation layer with no extra mask required.Type: GrantFiled: March 27, 2008Date of Patent: July 26, 2011Assignee: Realtek Semiconductor Corp.Inventors: Kai-Yi Huang, Ta-Hsun Yeh, Yuh-Sheng Jean
-
Patent number: 7982277Abstract: A method for fabricating a back-illuminated semiconductor imaging device on an ultra-thin semiconductor-on-insulator wafer (UTSOI) is disclosed. The UTSOI wafer includes a mechanical substrate, an insulator layer, and a seed layer. At least one dopant is applied to the semiconductor substrate. A first portion of an epitaxial layer is grown on the seed layer. A predefined concentration of carbon impurities is introduced into the first portion of the epitaxial layer. A remaining portion of the epitaxial layer is grown. During the epitaxial growth process, the at least one dopant diffuses into the epitaxial layer such that, at completion of the growing of the epitaxial layer, there exists a net dopant concentration profile which has an initial maximum value at an interface between the seed layer and the insulator layer and which decreases monotonically with increasing distance from the interface within at least a portion of at least one of the semiconductor substrate and the epitaxial layer.Type: GrantFiled: May 13, 2009Date of Patent: July 19, 2011Assignee: SRI InternationalInventor: Lawrence Alan Goodman
-
Publication number: 20110133282Abstract: A semiconductor device includes a power supply line supplied with a power supply voltage; a power supply node connected with the power supply line; a ground line; a ground pad connected with the ground line; a signal input pad; a main protection circuit section configured to discharge an ESD surge applied to a first pad as one of the power supply node, the signal input pad and the ground pad to a second pad as another thereof; a protection object circuit; a connection node connected with the protection object circuit; a first resistance element connected between the signal input pad and the connection node; and a sub protection circuit section.Type: ApplicationFiled: December 6, 2010Publication date: June 9, 2011Applicant: Renesas Electronics CorporationInventor: Mototsugu Okushima
-
Patent number: 7939893Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.Type: GrantFiled: August 11, 2010Date of Patent: May 10, 2011Assignee: Fujitsu Semiconductor LimitedInventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Patent number: 7935953Abstract: A nonvolatile memory device including a lower electrode, a resistor structure disposed on the lower electrode, a middle electrode disposed on the resistor structure, a diode structure disposed on the middle electrode, and an upper electrode disposed on the diode structure. A nonvolatile memory device wherein the resistor structure includes one resistor and the diode structure includes one diode. An array of nonvolatile memory device as described above. Methods of manufacturing a nonvolatile memory device and an array of nonvolatile memory device.Type: GrantFiled: November 2, 2007Date of Patent: May 3, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Seung-Eon Ahn, In-Kyeong Yoo, Young-Soo Joung, Young-Kwan Cha, Myoung-Jae Lee, David Seo, Sun-Ae Seo
-
Patent number: 7932561Abstract: A semiconductor apparatus is equipped with an internal circuit (201) including a semiconductor element (202)(203) and a protection circuit (101) including a semiconductor (102)(103) for protecting the internal circuit (201) against damage from electrostatic discharge (ESD). The semiconductor elements (102)(103) (202)(203) constituting the internal circuit (201) and the protection circuit (101) include an impurity diffusion region (7)(8) connected by an external terminal and a guard band region (6)(5) formed near the impurity diffusion region (7)(8), respectively. A shortest distance (102L)(103L) between the impurity diffusion region (7)(8) and the guard band region (6)(5) in the semiconductor element (102)(103) of the protection circuit (101) is set to be shorter than a shortest distance (202L)(203L) between the impurity diffusion region (7)(8) and the guard band region (6)(5) in the semiconductor element (202)(203) of the internal circuit (201).Type: GrantFiled: March 8, 2007Date of Patent: April 26, 2011Assignee: Sanyo Electric Co., Ltd.Inventor: Toshio Kakiuchi
-
Patent number: 7923783Abstract: A semiconductor memory device according to an embodiment of the present invention includes a resistance element which is constructed with a first conductor which extends in a first direction and is connected to a first contact; a second conductor which extends in said first direction and is connected to a second contact; and a first insulation film which exists between said first conductor and said second conductor, said first insulation film also having an opening in which a third conductor which connects said first conductor and said second conductor is arranged.Type: GrantFiled: March 20, 2009Date of Patent: April 12, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Takumi Abe
-
Publication number: 20110073950Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.Type: ApplicationFiled: December 10, 2010Publication date: March 31, 2011Applicant: FUJITSU LIMITEDInventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Patent number: 7893497Abstract: Provided is a semiconductor device including an electrostatic discharge (ESD) protection element provided between an external connection terminal and an internal circuit region. In the semiconductor device, interconnect extending from the external connection terminal to the ESD protection element includes a plurality of metal interconnect layers so that a resistance of the interconnect extending from the external connection terminal to the ESD protection element is made smaller than a resistance of interconnect extending from the ESD protection element to an internal element. The interconnect extending from the ESD protection element to the internal element includes metal interconnect layers equal to or smaller in number than the plurality of interconnect layers used in the interconnect extending from the external connection terminal to the ESD protection element.Type: GrantFiled: August 15, 2008Date of Patent: February 22, 2011Assignee: Seiko Instruments Inc.Inventor: Hiroaki Takasu
-
Patent number: 7888740Abstract: The semiconductor device includes a first MIS transistor including a gate insulating film 92, a gate electrode 108 formed on the gate insulating film 92 and source/drain regions 154, a second MIS transistor including a gate insulating film 96 thicker than the gate insulating film 92, a gate electrode 108 formed on the gate insulating film 96, source/drain regions 154 and a ballast resistor 120 connected to one of the source/drain regions 154, a salicide block insulating film 146 formed on the ballast resistor 120 with an insulating film 92 thinner than the gate insulating film 96 interposed therebetween, and a silicide film 156 formed on the source/drain regions 154.Type: GrantFiled: November 21, 2007Date of Patent: February 15, 2011Assignee: Fujitsu Semiconductor LimitedInventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Patent number: 7888710Abstract: Complementary metal oxide semiconductor transistors are formed on a silicon substrate. The substrate has a {100} crystallographic orientation. The transistors are formed on the substrate so that current flows in the channels of the transistors are parallel to the <100> direction. Additionally, longitudinal tensile stress is applied to the channels.Type: GrantFiled: October 17, 2007Date of Patent: February 15, 2011Assignee: Intel CorporationInventors: Mark Armstrong, Gerhard Schrom, Sunit Tyagi, Paul A. Packan, Kelin J. Kuhn, Scott Thompson
-
Patent number: RE42776Abstract: An integrated circuit biases the substrate and well using voltages other than those used for power and ground. Tap cells inside the standard cell circuits are removed. New tap cells used to bias the substrate and well reside outside the standard cell circuits. The location of the new voltage power rails is designated prior to placement of the tap cells in the integrated circuit. The tap cells are then strategically placed near the power rails such that metal connections are minimized. Circuit density is thus not adversely impacted by the addition of the new power rails. Transistors are also placed inside the tap cells to address electrostatic discharge issues during fabrication.Type: GrantFiled: May 23, 2007Date of Patent: October 4, 2011Assignee: Marvell International Ltd.Inventors: Lawrence T. Clark, Vikas R. Amrelia, Raphael A. Soetan, Eric J. Hoffman, Tuan X. Do