Including Resistor Element Patents (Class 257/358)
-
Patent number: 11996405Abstract: A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.Type: GrantFiled: August 27, 2021Date of Patent: May 28, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Jung Yu, Pin-Cheng Hsu
-
Patent number: 11581729Abstract: A system and method for combining positive and negative voltage electrostatic discharge (ESD) protection into a clamp that uses cascoded circuitry, including detecting, by an electrostatic discharge protection system, a voltage pulse on an input pin of an integrated circuit (IC) controller, the IC controller coupled between a power supply node and a ground supply node; determining, by the ESD protection circuit, an ESD event on the input pin based on the voltage detected on the input pin; and/or controlling, by the ESD protection circuit during the ESD event, one or more clamps to transport the voltage pulse from the input pin of the IC controller to the power supply node.Type: GrantFiled: April 29, 2021Date of Patent: February 14, 2023Assignee: Cypress Semiconductor CorporationInventors: David Michael Rogers, Henry H. Yuan, Mimi Qian, Myeongseok Lee, Sungkwon Lee, Yan Yi, Ravindra M. Kapre, Murtuza Lilamwala
-
Patent number: 11508718Abstract: A semiconductor device includes first well regions in a substrate and spaced apart from each other, a connection doped region between the first well regions, and a first interconnection line electrically connected to the connection doped region through a first contact. The first well regions and the connection doped region include impurities of a first conductivity type, and a concentration of the impurities in the connection doped region is higher than that in the first well regions. The first well regions extend into the substrate to a depth larger than that of the connection doped region. A first portion of the connection doped region is disposed in the first well regions and a second portion of the connection doped region contacts the substrate.Type: GrantFiled: July 6, 2020Date of Patent: November 22, 2022Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Sukjin Kim, Mijin Lee, Namho Kim, Chanhee Jeon
-
Patent number: 11482520Abstract: The present disclosure relates to a semiconductor device, including a first source/drain region, a second source/drain region, a base region, a first electrostatic discharge region and a second electrostatic discharge region. The first source/drain region and the second source/drain region are configured to receive a first power voltage and a second power voltage, and are formed on the base region. The first electrostatic discharge region includes a first doped region and a first well. The first doped region is configured to receive the second power voltage, and formed in the first well. The second electrostatic discharge region includes a second doped region and a second well. The second doped region is configured to receive the first power voltage, and formed in the second well. The first source/drain region and the second source/drain region are disposed between the first electrostatic discharge region and the second electrostatic discharge region.Type: GrantFiled: April 6, 2020Date of Patent: October 25, 2022Assignee: MACRONIX INTERNATIONAL CO., LTD.Inventors: Shih-Yu Wang, Wen-Tsung Huang, Chih-Wei Hsu
-
Patent number: 11373997Abstract: An HVIC is a gate driver IC that drives a three-phase inverter and includes high-potential-side regions for three phases on a single semiconductor substrate. The high-potential-side region includes an n-type region and has a potential that is fixed at a power source voltage potential through a VB contact region in the n-type region. The high-potential-side region has a high-side driving circuit that drives an upper arm element of the inverter. An interphase region between adjacent high-potential-side regions has no GND contact region and no GND contact electrode arranged therein, and has only a p-type region at a ground potential constituting a low-potential-side region. The high-potential-side region of one phase has a p?-type opening between the high-side driving circuit of thereof and the high-side driving circuit or the GND contact region of an adjacent high-potential-side region that is of another phase and sandwiches the interphase region therebetween.Type: GrantFiled: April 28, 2017Date of Patent: June 28, 2022Assignee: FUJI ELECTRIC CO., LTD.Inventor: Masaharu Yamaji
-
Patent number: 11133232Abstract: A semiconductor device is provided. The semiconductor device includes a functional circuit; a plurality of electrostatic discharge (ESD) protection circuits formed independently of the functional circuit, wherein each of the plurality of ESD protection circuits includes a plurality of junctions having different sizes and capacities, each of the plurality of ESD protection circuits is configured to perform an ESD test in different processes of fabrication of the semiconductor device; and a plurality of test pads connected to the plurality of ESD protection circuits and the functional circuit, respectively, wherein each of the plurality of test pads is configured to receive a test signal for the ESD test.Type: GrantFiled: May 21, 2019Date of Patent: September 28, 2021Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Ae-Nee Jang, Seung-Duk Baek
-
Patent number: 10930638Abstract: The disclosure provides a semiconductor device that can reduce the area of the circuit elements formed thereon. The semiconductor device includes a first conductivity type region formed on a substrate and formed with a resistance element surrounded by an insulating film; a second conductivity type region laminated in contact with an upper surface of the resistance element; a capacitor formed on the resistance element via an interlayer insulating layer; a via electrically connecting a terminal of the resistance element and a terminal of the capacitor in series; and a power supply line and a ground line electrically connected to the other terminal of the resistance element and the other terminal of the capacitor respectively.Type: GrantFiled: January 22, 2019Date of Patent: February 23, 2021Assignee: LAPIS Semiconductor Co., Ltd.Inventor: Chikashi Fuchigami
-
Patent number: 10854596Abstract: An RF power limiter and ESD protection circuit has a set of two CMOS FETs each configured to perform a diode function with a defined forward voltage and arranged in an anti-parallel configuration and coupled between the input terminal and the ground terminal. When an RF signal is applied symmetrically to the input terminal and ground terminal it becomes symmetrically attenuated when the signal level exceeds the defined forward voltage of the diode configured CMOS FETs. In the ESD protection mode one of the CMOS FETs acts as a grounded gate NMOS transistor with SCR action to provide for mitigation of voltage and current over-stress of transistors utilized in RF transceiver circuits. Generally, the circuit architectures allow input power levels to be limited to an extent that reliable operation can be maintained.Type: GrantFiled: November 29, 2019Date of Patent: December 1, 2020Assignee: BeRex, Inc.Inventors: Oleksandr Gorbachov, Lisette L. Zhang, Stephen Milkovits
-
Patent number: 10833082Abstract: A method of determining the reliability of a high-voltage PMOS (HVPMOS) device includes determining a bulk resistance of the HVPMOS device, and evaluating the reliability of the HVPMOS device based on the bulk resistance.Type: GrantFiled: October 11, 2019Date of Patent: November 10, 2020Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Chung Chen, Chi-Feng Huang, Tse-Hua Lu
-
Patent number: 10784193Abstract: An integrated circuit (IC) includes a substrate having a semiconductor surface layer with functional circuitry for realizing at least one circuit function, with an inter level dielectric (ILD) layer on a metal layer that is above the semiconductor surface layer. A thin film resistor (TFR) including a TFR layer is on the ILD layer. At least one vertical metal wall is on at least two sides of the TFR. The metal walls include at least 2 metal levels coupled by filled vias. The functional circuitry is outside the metal walls.Type: GrantFiled: July 27, 2018Date of Patent: September 22, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Qi-Zhong Hong, Honglin Guo, Benjamin James Timmer, Gregory Boyd Shinn
-
Patent number: 10593661Abstract: An electronic circuit includes an electronic device, an input/output terminal, and a protection device. The electronic device includes a signal terminal to receive an input signal. The input/output terminal is configured to receive the input signal from a source external to the electronic circuit. The protection device is coupled to the electronic device and to the input/output terminal. The protection device is configured to protect the electronic device from voltage of the input signal exceeding a threshold. The protection device includes a first semiconductor region, a first contact, and a second contact. The first contact connects the first semiconductor region to the input/output terminal. The second contact connects the first semiconductor region to the signal terminal of the electronic device.Type: GrantFiled: November 29, 2017Date of Patent: March 17, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Robert Callaghan Taft, Tobias Hoehn, Karim Thomas Taghizadeh Kaschani
-
Patent number: 10587266Abstract: The present disclosure provides a level-shift circuit and a display device. The level-shift circuit includes a logic setting unit, a control unit, a first field effect transistor, a second field effect transistor, and an over-current protection module. An input terminal of the logic setting unit is input with an initial signal. An output terminal of the logic setting unit is connected with an input terminal of the control unit. The over-current protection module is configured to reduce a resistance of the level-shift circuit when the level-shift circuit is in an initial stage, and increase the resistance of the level-shift circuit when the level-shift circuit is in a working stage.Type: GrantFiled: November 2, 2017Date of Patent: March 10, 2020Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.Inventors: Xianming Zhang, Yu-Hua Chang
-
Patent number: 10504896Abstract: A method of determining the reliability of a high-voltage PMOS (HVPMOS) device includes determining a bulk resistance of the HVPMOS device, and evaluating the reliability of the HVPMOS device based on the bulk resistance.Type: GrantFiled: June 1, 2018Date of Patent: December 10, 2019Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chi-Feng Huang, Chia-Chung Chen, Tse-Hua Lu
-
Patent number: 10411006Abstract: A semiconductor device includes an active device of a transistor disposed in a semiconductor substrate. An isolation layer is disposed at the semiconductor substrate, and a polysilicon substrate layer is disposed over the isolation layer and the semiconductor substrate. The polysilicon substrate layer includes a semiconductor device region of an interface protection circuit of the transistor.Type: GrantFiled: May 9, 2016Date of Patent: September 10, 2019Assignee: INFINEON TECHNOLOGIES AGInventors: Gernot Langguth, Adrien Ille
-
Patent number: 10340289Abstract: An amplifier includes a cascode structure comprising a first transistor having first characteristics coupled to a second transistor having second characteristics different than the first characteristics, the first transistor formed with the second transistor on a single diffusion.Type: GrantFiled: April 28, 2017Date of Patent: July 2, 2019Assignee: QUALCOMM IncorporatedInventors: Ranadeep Dutta, Antonino Scuderi, Wing Sy
-
Patent number: 10236286Abstract: A semiconductor integrated circuit apparatus and a manufacturing method for the same are provided in such a manner that a leak current caused by a ballast resistor is reduced, and at the same time, the inconsistency in the leak current is reduced. The peak impurity concentration of the ballast resistors is made smaller than the peak impurity concentration in the extension regions, and the depth of the ballast resistors is made greater than the depth of the extension regions.Type: GrantFiled: May 15, 2017Date of Patent: March 19, 2019Assignee: MIE FUJITSU SEMICONDUCTOR LIMITEDInventors: Katsuyoshi Matsuura, Junichi Ariyoshi
-
Patent number: 10217809Abstract: The present application provides planar and stacked resistor structures that are embedded within an interconnect dielectric material in which the resistivity of an electrical conducting resistive material or electrical conducting resistive materials of the resistor structure can be tuned to a desired resistivity during the manufacturing of the resistor structure. Notably, a doped metallic insulator layer is formed atop a substrate. A controlled surface treatment process is then performed to an upper portion of the doped metallic insulator layer to convert the upper portion of the doped metallic insulator layer into an electrical conducting resistive material layer. The remaining doped metallic insulator layer and the electrical conducting resistive material layer are then patterned to provide the resistor structure.Type: GrantFiled: November 15, 2017Date of Patent: February 26, 2019Assignee: International Business Machines CorporationInventors: Daniel C. Edelstein, Chih-Chao Yang
-
Patent number: 10121573Abstract: An epoxy-based resin system composition includes a latent functionality for polymer adhesion improvement. The composition may be used to produce an overcoat layer and/or protection layer in an anti-sulfur resistor (ASR). In some embodiments, the composition include epoxy-based resin(s), hardener(s) and, optionally, blowing agent(s) and/or filler(s). An epoxide functionality of one or more of the epoxy-based resin(s) and a reactive functionality of one or more of the hardener(s) react with each other at a first temperature. The latent functionality, which does not react at the first temperature, is contained in at least one of the epoxy-based resin(s), hardener(s) and filler(s) and reacts in response to another stimulus (e.g., UV light/initiator and/or a second temperature greater than the first temperature) to enhance chemical bonding. Optionally, voids created via etching and/or the blowing agent(s) may be used to enhance mechanical bonding, alone, or in combination with filler(s) exposed in the voids.Type: GrantFiled: January 6, 2016Date of Patent: November 6, 2018Assignee: International Business Machines CorporationInventors: Dylan J. Boday, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
-
Patent number: 9935097Abstract: A semiconductor integrated circuit apparatus and a manufacturing method for the same are provided in such a manner that a leak current caused by a ballast resistor is reduced, and at the same time, the inconsistency in the leak current is reduced. The peak impurity concentration of the ballast resistors is made smaller than the peak impurity concentration in the extension regions, and the depth of the ballast resistors is made greater than the depth of the extension regions.Type: GrantFiled: January 12, 2015Date of Patent: April 3, 2018Assignee: MIE FUJITSU SEMICONDUCTOR LIMITEDInventors: Katsuyoshi Matsuura, Junichi Ariyoshi
-
Patent number: 9748221Abstract: An electrostatic discharge (ESD) protection device includes two N-metal oxide semiconductor (NMOS) elements and a doped region. The two NMOS elements are arranged on a P-substrate, and each NMOS element includes a gate, a source, and a drain. The source and the drain are arranged on two opposite sides of the gate. The doped region is implanted into an outer space of the two NMOS surrounding the two NMOS, and a PN junction is formed by the doped region and the P-substrate.Type: GrantFiled: August 11, 2014Date of Patent: August 29, 2017Assignee: Fitipower Integrated Technology, Inc.Inventor: Chih-Nan Cheng
-
Patent number: 9536869Abstract: An electrostatic discharge protection apparatus comprises a stack arrangement having a first electrostatic discharge protection element and a second electrostatic discharge protection element. The stack arrangement is arranged to provide a bias potential between the first and second electrostatic discharge protection elements. In one embodiment, the bias potential can be achieved by a clamp arrangement coupled across the stack arrangement.Type: GrantFiled: July 3, 2006Date of Patent: January 3, 2017Assignee: NXP USA, Inc.Inventors: Patrice Besse, Eric Rolland
-
Patent number: 9385241Abstract: An electrostatic discharge (ESD) protection circuit coupled with an input/output (I/O) pad is provided. The ESD protection circuit includes a first field oxide device coupled between a first terminal that is capable of providing a first supply voltage and the I/O pad. The first field oxide device includes a drain end having a first type of dopant and a source end having the first type of dopant. The first field oxide device includes a first doped region having a second type of dopant disposed adjacent to the drain end of the first field oxide device and a second doped region having the second type of dopant disposed adjacent to the source end of the first field oxide device.Type: GrantFiled: April 23, 2010Date of Patent: July 5, 2016Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shu-Chuan Lee, Kuo-Ji Chen, Wade Ma
-
Patent number: 9362420Abstract: The present invention discloses a transistor structure for electrostatic discharge protection. The structure includes a substrate, a doped well, a first doped region, a second doped region and a third doped region. The doped well is disposed in the substrate and has a first conductive type. The first doped region is disposed in the substrate, encompassed by the doped well and has the first conductive type. The second doped region is disposed in the substrate, encompassed by the doped well and has a second conductive type. The third doped region is disposed in the substrate, encompassed by the doped well and has the second conductive type. A gap is disposed between the first doped region and the second doped region.Type: GrantFiled: January 21, 2013Date of Patent: June 7, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Lu-An Chen, Tien-Hao Tang
-
Patent number: 9362270Abstract: An integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which has a body region that is implanted concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and has a resistor silicide block layer over the body region which is formed of separate material from the sidewall spacers on the CMOS gates. A process of forming an integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which implants the body region of the resistor concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and forms a resistor silicide block layer over the body region of separate material from the sidewall spacers on the CMOS gates.Type: GrantFiled: March 12, 2015Date of Patent: June 7, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Rajni J. Aggarwal, Jau-Yuann Yang
-
Patent number: 9343457Abstract: In order to provide a semiconductor device having a high ESD tolerance, a source wiring (32a) is formed on a gate (31) and a source (32) in a region of an NMOS transistor (30). The source wiring (32a) electrically connects the gate (31), the source (32), and a ground terminal. A drain wiring (33a) is formed on a drain (33) in the region of the NMOS transistor (30) . The drain wiring (33a) electrically connects the drain (33) and a pad (20) serving as an external connection electrode. Moreover, in the region of the NMOS transistor (30), the drain wiring (33a) has the same wiring width as the source wiring (32a).Type: GrantFiled: February 14, 2014Date of Patent: May 17, 2016Assignee: STI Semiconductor CorporationInventor: Tomomitsu Risaki
-
Patent number: 9343590Abstract: An ESD device is provided for protecting a circuit from electrostatic discharge, and includes a planar diode having an anode and a cathode. The anode is electrically coupled to a signal path of the circuit, and the cathode is electrically coupled to a ground of the circuit. The ESD device is configured to be off during normal operation of the circuit and to turn on in response to an electrostatic discharge on the signal path. Two depletion regions in the device are separated by an isolation well. In response to the electrostatic discharge, the depletion regions modulate (e.g., widen and merge), providing a path for the discharge to the ground of the circuit.Type: GrantFiled: August 4, 2014Date of Patent: May 17, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: Chien-Hsin Lee, Mahadeva Iyer Natarajan, Manjunatha Prabhu, Anil Kumar, Ruchil Kumar Jain
-
Patent number: 9263429Abstract: A semiconductor device and a manufacturing method of the same are provided. The semiconductor device includes a substrate, a first doping region, a first well, a resistor element, and a first, a second, and a third heavily doping regions. The first well and the third heavily doping region are disposed in the first doping region, which is disposed on the substrate. The first heavily doping region and the second heavily doping region, which are separated from each other, are disposed in the first well. The second and the third heavily doping regions are electrically connected via the resistor element. Each of the substrate, the first well, and the second heavily doping region has a first type doping. Each of the first doping region, the first heavily doping region, and the third heavily doping region has a second type doping, complementary to the first type doping.Type: GrantFiled: August 19, 2013Date of Patent: February 16, 2016Assignee: MACRONIX INTERNATIONAL CO., LTD.Inventors: Chih-Ling Hung, Hsin-Liang Chen, Wing-Chor Chan
-
Patent number: 9231121Abstract: A high voltage circuit layout structure has a P-type substrate; a first N-type tub, a second N-type tub, a third N-type tub, a first P-type tub with a first width and a second P-type tub with a second width formed on the P-type substrate; wherein the first P-type tub is formed between the first N-type tub and the second N-type tub; and the second P-type tub is formed between the second N-type tub and the third N-type tub.Type: GrantFiled: January 17, 2013Date of Patent: January 5, 2016Assignee: Monolithic Power Systems, Inc.Inventor: Joseph Urienza
-
Patent number: 9202808Abstract: An integrated circuit electrical protection device is disclosed that includes a semiconductor substrate and a plurality of transistor fingers partitioned into a plurality of segments. The segments are distinguished from one another by well-ties spaced apart from each other within a source/drain region that is shared by adjacent segments.Type: GrantFiled: April 1, 2014Date of Patent: December 1, 2015Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Michael A. Stockinger, Wenzhong Zhang, Xu Zhang
-
Patent number: 9159921Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.Type: GrantFiled: August 29, 2014Date of Patent: October 13, 2015Assignee: Micron Technology, Inc.Inventors: Matthew N. Rocklein, D. V. Nirmal Ramaswamy
-
Patent number: 9142543Abstract: An ESD protection circuit having a smaller area is provided. The ESD protection circuit includes: a P-type diffusion resistor 12 whose one end is connected to an input terminal 11 formed in the N-type well; a diode 14 disposed between the diffusion resistor 12 and the N-type well connected to the power supply terminal; an NMOS transistor 15 whose drain is connected to the other end of the diffusion resistor 12; and a parasitic diode formed between the power supply terminal and the ground terminal.Type: GrantFiled: February 4, 2014Date of Patent: September 22, 2015Assignee: SEIKO INSTRUMENTS INC.Inventors: Takashi Katakura, Hirofumi Harada, Yoshitsugu Hirose
-
Patent number: 9123991Abstract: An ear-microphone for connection to a portable apparatus and use as a Frequency Modulation (FM) radio broadcast receiving antenna is provided. The ear-microphone includes an ear plug, a cable, a microphone, and a filtering unit. The ear plug is for connection to an earjack. The cable has a predefined length, has an earphone line whose one end is electrically connected to the ear plug and whose other end is electrically connected to at least one earphone. The microphone intervenes in an intermediate portion of the cable and is connected to the ear plug via a microphone line inside the cable. The filtering unit intervenes in the cable and is installed to have an Electro Static Discharge (ESD) protection function.Type: GrantFiled: February 25, 2011Date of Patent: September 1, 2015Assignee: Samsung Electronics Co., Ltd.Inventor: Tae-Jin Kang
-
Patent number: 9035384Abstract: A semiconductor device includes a first fin-shaped silicon layer on a substrate and a second fin-shaped silicon layer on the substrate, each corresponding to the dimensions of a sidewall pattern around a dummy pattern. A silicide in upper portions of n-type and p-type diffusion layers in the upper portions of the first and second fin-shaped silicon layers. A metal gate line is connected to first and second metal gate electrodes and extends in a direction perpendicular to the first fin-shaped silicon layer and the second fin-shaped silicon layer. A first contact is in direct contact with the n-type diffusion layer in the upper portion of the first pillar-shaped silicon layer, and a second contact is in direct contact with the p-type diffusion layer in the upper portion of the second pillar-shaped silicon layer.Type: GrantFiled: May 29, 2014Date of Patent: May 19, 2015Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.Inventors: Fujio Masuoka, Hiroki Nakamura
-
Patent number: 9018705Abstract: An ESD transistor is provided. The ESD transistor includes a collector region on a substrate, a base contact region on the substrate, an emitter region spaced apart from the base contact region, a sink region disposed vertically below the collector region, and a buried layer disposed horizontally under the sink region.Type: GrantFiled: January 28, 2014Date of Patent: April 28, 2015Assignee: MagnaChip Semiconductor, Ltd.Inventor: Kyong Jin Hwang
-
Patent number: 9006838Abstract: An integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which has a body region that is implanted concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and has a resistor silicide block layer over the body region which is formed of separate material from the sidewall spacers on the CMOS gates. A process of forming an integrated circuit containing CMOS gates and a counterdoped polysilicon gate material resistor which implants the body region of the resistor concurrently with the NSD layers of the NMOS transistors of the CMOS gates and concurrently with the PSD layers of the PMOS transistors of the CMOS gates, and forms a resistor silicide block layer over the body region of separate material from the sidewall spacers on the CMOS gates.Type: GrantFiled: October 10, 2013Date of Patent: April 14, 2015Assignee: Texas Instruments IncorporatedInventors: Rajni J. Aggarwal, Jau-Yuann Yang
-
Patent number: 8981484Abstract: An integrated circuit (IC) including a well region of the IC having a first doping level and a plurality of semiconductor regions implanted in the well region. Each of the plurality of semiconductor regions has a second doping level. The second doping level is greater than the first doping level. A plurality of polysilicon regions are arranged on the plurality of semiconductor regions. The polysilicon regions are respectively connected to the semiconductor regions. The plurality of semiconductor regions is a drain of a metal-oxide semiconductor field-effect transistor (MOSFET).Type: GrantFiled: May 9, 2012Date of Patent: March 17, 2015Assignee: Marvell World Trade Ltd.Inventors: Sehat Sutardja, Ravishanker Krishnamoorthy, Siew Yong Chui
-
Patent number: 8963253Abstract: A bi-directional electrostatic discharge (ESD) protection device may include a substrate, an N+ doped buried layer, an N-type well region and two P-type well regions. The N+ doped buried layer may be disposed proximate to the substrate. The N-type well region may encompass the two P-type well regions such that a portion of the N-type well region is interposed between the two P-type well regions. The P-type well regions may be disposed proximate to the N+ doped buried layer and comprise one or more N+ doped plates, one or more P+ doped plates, one or more field oxide (FOX) portions, and one or more field plates. A multi-emitter structure is also provided.Type: GrantFiled: October 23, 2012Date of Patent: February 24, 2015Assignee: Macronix International Co., Ltd.Inventors: Hsin-Liang Chen, Shuo-Lun Tu
-
Patent number: 8963277Abstract: A semiconductor structure with a high voltage area and a low voltage area includes a substrate of a first conductivity type accommodating the high voltage area and the low voltage area. A resistor is on the substrate, connecting the high voltage area and the low voltage area, and the resistor resides substantially in the high voltage area. The structure further includes a first doped region of the first conductivity type in the substrate between the high voltage area and the low voltage area, and a second doped region of a second conductivity type between the substrate and the first doped region. Moreover, an insulating layer is formed between the resistor and the first doped region.Type: GrantFiled: May 30, 2013Date of Patent: February 24, 2015Assignee: MACRONIX International Co., Ltd.Inventors: Chen-Yuan Lin, Ching-Lin Chan, Cheng-Chi Lin, Shih-Chin Lien
-
Patent number: 8916934Abstract: A structure is designed with an external terminal (100) and a reference terminal (102). A first transistor (106) is formed on a substrate. The first transistor has a current path coupled between the external terminal and the reference terminal. A second transistor (118) has a current path coupled between the external terminal and the substrate. A third transistor (120) has a current path coupled between the substrate and the reference terminal.Type: GrantFiled: January 28, 2013Date of Patent: December 23, 2014Assignee: Texas Instruments IncorporatedInventors: Robert Steinhoff, Jonathan Brodsky, Thomas A. Vrotsos
-
Publication number: 20140361372Abstract: An input signal having a high level or a low level is input to a pad. A first protection element includes a first transistor configured as an N-channel MOSFET designed so as to withstand ESD. A second protection element includes a second transistor configured as a P-channel MOSFET designed so as to withstand ESD. A capacitance element is connected to a second line, and forms an RC filter together with a filter resistor. The capacitance element includes at least one from among a third transistor having the same device structure as that of the first transistor and a fourth transistor having the same device structure as that of the second transistor.Type: ApplicationFiled: June 2, 2014Publication date: December 11, 2014Applicant: ROHM CO., LTD.Inventor: Kenji ARAI
-
Publication number: 20140339608Abstract: An electrostatic discharge (ESD) protection circuit is disclosed. The circuit includes a first region having a first conductivity type (410) is formed at a face of a substrate. A gate having a second conductivity type (406) is formed in the substrate beside the first region. A channel having the first conductivity type is formed below the first region adjacent the gate. A second region having the first conductivity type (404) is formed at the face of the substrate beside the gate. A third region having the first conductivity type (430) is formed below the channel and has a greater impurity concentration than the channel.Type: ApplicationFiled: August 1, 2014Publication date: November 20, 2014Inventor: Robert Newton Rountree
-
Patent number: 8890248Abstract: An electrostatic discharge (ESD) device for protecting an input/output terminal of a circuit, the device comprising a first transistor with an integrated silicon-controlled rectifier (SCR) coupled between the input/output (I/O) terminal of the circuit and a node and a second transistor with an integrated silicon-controlled rectifier coupled between the node and a negative terminal of a supply voltage, wherein the silicon-controlled rectifier of the first transistor triggers in response to a negative ESD voltage and the silicon-controlled rectifier of the second transistor triggers in response to a positive ESD voltage.Type: GrantFiled: August 26, 2004Date of Patent: November 18, 2014Assignee: Texas Instruments IncorporationInventors: Timothy Patrick Pauletti, Sameer Pendharkar, Wayne Tien-Feng Chen, Jonathan Brodsky, Robert Steinhoff
-
Patent number: 8860139Abstract: In an aspect of the present invention, an ESD (Electrostatic Discharge) protection element includes a bipolar transistor comprising a collector diffusion layer connected with a first terminal and an emitter diffusion layer; and current control resistances provided for a plurality of current paths from a second terminal to the collector diffusion layer through the emitter diffusion layer, respectively. The bipolar transistor further includes a base diffusion region connected with the second terminal through a first resistance which is different from the current control resistances.Type: GrantFiled: March 11, 2010Date of Patent: October 14, 2014Assignee: Renesas Electronics CorporationInventor: Kouichi Sawahata
-
Patent number: 8847290Abstract: A semiconductor device includes: a rectifying element; an electrode pad electrically connected to the rectifying element; and a resistance and a depletion transistor arranged between the rectifying element and the electrode pad, and electrically connected to each other. The semiconductor device has a configuration in which the rectifying element, the resistance, the depletion transistor, and the electrode pad are serially connected. The semiconductor device is configured to generate a gate potential of the depletion transistor based on a difference in potential across the resistance and to produce a depletion layer in a channel of the depletion transistor based on the gate potential. As a result, a semiconductor device having reasonably large current at low voltage and small current at high voltage can be obtained.Type: GrantFiled: December 28, 2012Date of Patent: September 30, 2014Assignee: Mitsubishi Electric CorporationInventors: Shigeru Kusunoki, Shinichi Ishizawa
-
Patent number: 8847320Abstract: A device comprises a semiconductor substrate having first and second implant regions of a first dopant type. A gate insulating layer and a gate electrode are provided above a resistor region between the first and second implant regions. A first dielectric layer is on the first implant region. A contact structure is provided, including a first contact portion conductively contacting the gate electrode, at least part of the first contact portion directly on the gate electrode. A second contact portion directly contacts the first contact portion and is formed directly on the first dielectric layer. A third contact portion is formed on the second implant region.Type: GrantFiled: January 31, 2012Date of Patent: September 30, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventor: Chung-Hui Chen
-
Patent number: 8816436Abstract: A fin resistor and method of fabrication are disclosed. The fin resistor comprises a plurality of fins arranged in a linear pattern with an alternating pattern of epitaxial regions. An anneal diffuses dopants from the epitaxial regions into the fins. Contacts are connected to endpoint epitaxial regions to allow the resistor to be connected to more complex integrated circuits.Type: GrantFiled: May 16, 2012Date of Patent: August 26, 2014Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Thomas N. Adam, Ali Khakifirooz, Alexander Reznicek
-
Patent number: 8796772Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.Type: GrantFiled: September 24, 2012Date of Patent: August 5, 2014Assignee: Intel CorporationInventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park
-
Patent number: 8797775Abstract: The embodiments of the present circuit and method disclose a bridge rectifier and a driving circuit. The bridge rectifier having a first input, a second input, a first output, and a second output may comprise two high side diodes and two low side switches. The driving circuit may be coupled to the first input of the bridge rectifier and the second input of the bridge rectifier, and the driving circuit may be configured to provide a first driving signal and a second driving signal. The first driving signal may be coupled to a first low side switch and the second driving signal may be coupled to a second low side switch. The first driving signal may be limited to less than a first predetermined driving voltage and the second driving signal may be limited to less than a second predetermined driving voltage.Type: GrantFiled: February 21, 2012Date of Patent: August 5, 2014Assignee: Chengdu Monolithic Power Systems Co., Ltd.Inventors: Yike Li, Changjiang Chen, Rui Wang
-
Patent number: 8753941Abstract: An integrated circuit with a LV transistor and a high performance asymmetric transistor. A power amplifier integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming an integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming a power amplifier integrated circuit with an nmos core transistor and an nmos high performance asymmetric transistor, a resistor, and an inductor.Type: GrantFiled: February 13, 2013Date of Patent: June 17, 2014Assignee: Texas Instruments IncorporatedInventors: Kamel Benaissa, Vijay K. Reddy, Samuel Martin, T Krishnaswamy
-
Patent number: 8716802Abstract: A semiconductor device structure including a substrate, a resistor, and a first gate structure is provided. The substrate includes a resistor region and a metal-oxide-semiconductor (MOS) transistor region. The resistor is disposed on the substrate within the resistor region. The resistor includes a first dielectric layer, a metal layer, a second dielectric layer, and a semiconductor layer sequentially stacked on the substrate. The first gate structure is disposed on the substrate within the MOS transistor region. The first gate structure includes the first dielectric layer, the metal layer, and the semiconductor layer sequentially stacked on the substrate.Type: GrantFiled: August 9, 2010Date of Patent: May 6, 2014Assignee: United Microelectronics Corp.Inventors: Kai-Ling Chiu, Chih-Yu Tseng, Victor Chiang Liang, You-Ren Liu, Chih-Chen Hsueh