Combined With Bipolar Transistor Patents (Class 257/370)
  • Patent number: 11974425
    Abstract: Semiconductor memory cells, array and methods of operating are disclosed. In one instance, a memory cell includes a bi-stable floating body transistor and an access device; wherein the bi-stable floating body transistor and the access device are electrically connected in series.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: April 30, 2024
    Assignee: Zeno Semiconductor, Inc.
    Inventors: Yuniarto Widjaja, Jin-Woo Han, Benjamin S. Louie
  • Patent number: 11843029
    Abstract: Embodiments of the present disclosure provide a semiconductor structure and a semiconductor structure manufacturing method. The semiconductor structure includes: a base including an array region and a peripheral region, the peripheral region having a first isolation structure, the array region having a second isolation structure, a top opening area of the first isolation structure being greater than that of the second isolation structure; the first isolation structure having a first groove, and a first insulation structure configured to fill the first groove; and the first insulation structure including at least a top isolation layer, a top surface of the top isolation layer being flush with a top surface of the base, and the top isolation layer being made of at least a low dielectric constant material.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: December 12, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Youquan Yu, Gongyi Wu, Shiran Zhang
  • Patent number: 11830777
    Abstract: A device includes a MOS transistor and a bipolar transistor at a same first portion of a substrate. The first portion includes a first well doped with a first type forming the channel of the MOS transistor and two first regions doped with a second type opposite to the first type that are arranged in the first well which form the source and drain of the MOS transistor. The first portion further includes: a second well doped with the second type that is arranged laterally with respect to the first well to form the base of the bipolar transistor; a second region doped with the first type that is arranged in the second well to form the emitter of the bipolar transistor; and a third region doped with the first type that is arranged under the second well to form the collector of the bipolar transistor.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: November 28, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Romeric Gay, Abderrezak Marzaki
  • Patent number: 11832454
    Abstract: Some embodiments include an integrated assembly having a first semiconductor material between two regions of a second semiconductor material. The second semiconductor material is a different composition than the first semiconductor material. Hydrogen is diffused within the first and second semiconductor materials. The conductivity of the second semiconductor material increases in response to the hydrogen diffused therein to thereby create a structure having the second semiconductor material as source/drain regions, and having the first semiconductor material as a channel region between the source/drain regions. A transistor gate is adjacent the channel region and is configured to induce an electric field within the channel region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: November 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Yi Fang Lee, Haitao Liu, Durai Vishak Nirmal Ramaswamy, Ramanathan Gandhi, Karthik Sarpatwari, Scott E. Sills, Sameer Chhajed
  • Patent number: 11804481
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to electrostatic discharge (ESD) devices and methods of manufacture. The structure (ESD device) includes: a bipolar transistor comprising a collector region, an emitter region and a base region; and a lateral ballasting resistance comprising semiconductor material adjacent to the collector region.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 31, 2023
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Robert J. Gauthier, Jr., Meng Miao, Alain F. Loiseau, Souvick Mitra, You Li, Wei Liang
  • Patent number: 11721691
    Abstract: A method for producing a semiconductor device, the method includes, forming, on a substrate made from a semiconductor substance, at least one bipolar junction (BJ) transistor including a first terminal connected to a first well, the first well formed in the substrate and includes a first dopant having a first dopant concentration. At least one non-BJ transistor is formed on the substrate, the non-BJ transistor includes a second terminal connected to a second well, and the second well formed in the substrate and includes a second dopant having a same polarity as the first dopant. The first dopant concentration of the BJ transistor is higher than the second dopant concentration of the non-BJ transistor.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: August 8, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Runzi Chang, Bo Wang
  • Patent number: 11721750
    Abstract: A semiconductor device includes a semiconductor part, first and second electrodes, and a control electrode. The semiconductor part is provided between the first and second electrodes. The semiconductor part includes first to seventh layers. The second of a second conductivity type is provided between the first layer of a first conductivity type and the first electrode. The third and fourth layers of the first conductivity type are arranged along the second layer between the second layer and the first electrode. The fifth layer of the second conductivity type is provided between the second electrode and the first layer. The sixth and seventh layers are arranged along the fifth layer between the first and fifth layers. The sixth and seventh layers include the first-conductivity-type impurities with first and second surface densities, respectively. The first surface density is greater than the second surface density.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: August 8, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Takeshi Suwa, Tomoko Matsudai, Yoko Iwakaji, Hiroko Itokazu
  • Patent number: 11715726
    Abstract: A memory device includes: a first wafer including a first substrate, a plurality of first electrode layers and a plurality of first interlayer dielectric layers alternately stacked along first vertical channels projecting in a vertical direction on a top surface of the first substrate, and a dielectric stack comprising a plurality of dielectric layers and the plurality of first interlayer dielectric layers alternately stacked on the top surface of the first substrate; and a second wafer disposed on the first wafer, and including a second substrate, and a plurality of second electrode layers that are alternately stacked with a plurality of second interlayer dielectric layers along second vertical channels projecting in the vertical direction on a bottom surface of the second substrate and have pad parts overlapping with the dielectric stack in the vertical direction.
    Type: Grant
    Filed: December 18, 2021
    Date of Patent: August 1, 2023
    Assignee: SK hynix Inc.
    Inventors: Sung Lae Oh, Ki Soo Kim, Sang Woo Park, Dong Hyuk Chae
  • Patent number: 11664794
    Abstract: The present disclosure provides a substrate-enhanced comparator and electronic device, the comparator including: a cross-coupled latch, for connecting input signals to the gate of a cross-coupled MOS transistor to form a first input of the latch; output buffers, connected to the cross-coupled latch for amplifying output signals of the latch; AC couplers, connected to the output buffers for receiving and amplifying the output signals of the latch, coupling the output signals to substrates of the cross-coupled MOS transistors to form second inputs of the latch. The cross-coupled latch is also for output signal regenerative latching based on input signals sampled at the first inputs and input signals sampled at the second inputs. The present disclosure introduces additional substrate inputs to the cross-coupled structure of the conventional latch as the second inputs of the latch.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: May 30, 2023
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Ting Li, Zhengbo Huang, Yong Zhang, Yabo Ni, Jian'an Wang, Guangbing Chen, Dongbing Fu, Zicheng Xu
  • Patent number: 11658481
    Abstract: Integrated circuits with enhanced EOS/ESD robustness and methods of designing same. One such integrated circuit includes a plurality of input/output pads, a positive voltage rail, a ground voltage rail, a collection of internal circuits representing the operational core of the integrated circuit, a plurality of input/output buffering circuits connected as inputs and outputs to the internal circuits, wherein the internal circuits and the input/output buffering circuits comprise functional devices, and a plurality of EOS/ESD protection circuits interconnected with the input/output pads to limit ESD voltage and/or shunt ESD current away from the functional devices. At least one of the EOS/ESD protection circuits is a MOSFET. The MOSFET has a source region having an accompanying ohmic contact. The MOSFET further has a rectifying junction contact in place of a drain region and accompanying ohmic contact.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: May 23, 2023
    Assignee: Amplexia, LLC
    Inventor: Stephen R. Fairbanks
  • Patent number: 11588044
    Abstract: Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 21, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Alexander M. Derrickson, Mankyu Yang, Richard F. Taylor, III, Jagar Singh, Alexander L. Martin
  • Patent number: 11538802
    Abstract: In a RC-IGBT chip, an anode electrode film and an emitter electrode film are arranged with a distance therebetween. The anode electrode film and the emitter electrode film are electrically connected by a wiring conductor having an external impedance and an external impedance. The external impedance and the external impedance include the resistance of the wiring conductor and the inductance of the wiring conductor.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: December 27, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventor: Mituharu Tabata
  • Patent number: 11476249
    Abstract: A semiconductor device including a semiconductor substrate, first and second transistor sections and a diode section provided on the substrate, is provided. The diode section is arranged to be adjacent to and sandwiched between the first and second transistor sections in a predetermined arrangement direction. The diode section includes a drift region; a base region above the drift region; first cathode regions and second cathode regions below the drift region. The first and second transistor sections each include a collector region. The first cathode regions are provided continuously between the collector regions of the first and second transistor sections. One end and another end of the first cathode regions in the arrangement direction are in contact with the collector regions of the first and second transistor sections, respectively. The first and second cathode regions are in contact with each other and alternating in a direction orthogonal to the arrangement direction.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: October 18, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 11450568
    Abstract: The method of manufacturing an integrated circuit includes obtaining a silicon carbide substrate of a first conductivity type having an epitaxial layer of a second conductivity type thereon. A dopant is implanted in the epitaxial layer to form a first region of the first conductivity type that extends the full depth of the epitaxial layer. A first transistor is formed in the first region and a second transistor is formed in the epitaxial layer.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 20, 2022
    Assignee: Raytheon Systems Limited
    Inventors: David Trann Clark, Robin Forster Thompson
  • Patent number: 11393806
    Abstract: A hybrid silicon carbide (SiC) device includes a first device structure having a first substrate comprising SiC of a first conductivity type and a first SiC layer of the first conductivity type, where the first SiC layer is formed on a face of the first substrate. The first device structure also includes a second SiC layer of a second conductivity type that is formed on a face of the first SiC layer and a first contact region of the first conductivity type, where the first contact region traverses the second SiC layer and contacts the first SiC. The device also includes a second device structure that is bonded to the first device structure. The second device structure includes a switching device formed on a second substrate and a second contact region that traverses a first terminal region of the switching device and contacts the first contact region.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: July 19, 2022
    Assignee: Analog Devices, Inc.
    Inventors: James G. Fiorenza, Puneet Srivastava, Daniel Piedra
  • Patent number: 11374562
    Abstract: A switching device includes a first leg having a plurality of transistors connected in series. The switching device also includes a second leg having a transistor, where the second leg is connected in parallel to plurality of transistors of the first leg. The switching device further includes a third leg having a diode, and the third leg has lower reverse recovery losses relative to the first leg and/or the second leg.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: June 28, 2022
    Assignee: Solaredge Technologies Ltd.
    Inventors: Daniel Zmood, Tzachi Glovinsky
  • Patent number: 11335787
    Abstract: A semiconductor device includes first and second electrodes, a semiconductor part between the first and second electrodes, first to third control electrodes between the semiconductor part and the first electrode, first and second control terminals electrically connected respectively to the first and second control electrodes. The first to third control electrodes each are provided in a trench of the semiconductor part. The third control electrode is provided between the first and second control electrodes. The semiconductor part includes first and third layers of a first conductivity type, and second and fourth layers of a second conductivity type. The second layer is provided between the first layer and the first electrode. The third layer is selectively provided between the second layer and the first electrode. The fourth layer is provided between the first layer and the second electrode. The first electrode is electrically connected to the second and third layers.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: May 17, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Tatsunori Sakano, Ryohei Gejo
  • Patent number: 11336284
    Abstract: A motor controller system that includes an analog switch multiplexer system is disclosed. Specific implementations include a plurality of field effect transistors (FETs) that may be configured to be operatively coupled with one or more phases of a motor. Each of the plurality of FETs may include a gate, an analog switch multiplexer coupled with each of the gates of the plurality of FETs and with an analog output, and a digital control block coupled with the analog switch multiplexer that may be configured to send a multiplexer select control signal to the analog switch multiplexer in response to receiving a serial peripheral interface signal.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: May 17, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Konosuke Taki
  • Patent number: 11309434
    Abstract: A semiconductor device includes a layer stack with a plurality of first semiconductor layers of a first doping type and a plurality of second semiconductor layers of a second doping type complementary to the first doping type. A first semiconductor region of a first semiconductor device adjoins the first semiconductor layers. Each second semiconductor region of the first semiconductor device adjoins at least one of the second semiconductor layers, and is spaced apart from the first semiconductor region. A third semiconductor layer adjoins the layer stack and each first semiconductor region and each second semiconductor region. The third semiconductor layer includes a first region arranged between the first semiconductor region and the second semiconductor region in a first direction. A third semiconductor region of the first or the second doping type extends from a first surface of the third semiconductor layer into the first region.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: April 19, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Ahmed Mahmoud, Rolf Weis, Armin Willmeroth
  • Patent number: 11217665
    Abstract: A semiconductor device includes a bipolar junction transistor having a collector, a base, and an emitter. The collector includes a current collection region, a constriction region laterally adjacent to the current collection region, and a contact region laterally adjacent to the constriction region, located opposite from the current collection region. The current collection region, the constriction region laterally, and the contact region all have the same conductivity type. The base includes a current transmission region contacting the current collection region and a constricting well laterally adjacent to, and contacting, the current transmission region and contacting the constriction region. The current transmission region and the constricting well have an opposite conductivity type than the current collection region, the constriction region laterally, and the contact region.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 4, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexei Sadovnikov, Natalia Lavrovskaya
  • Patent number: 11081580
    Abstract: A high-voltage semiconductor device includes a semiconductor substrate having a first conductivity type, and a first high-voltage well region disposed in the semiconductor substrate and having a second conductivity type that is opposite to the first conductivity type. The high-voltage semiconductor device also includes a first buried layer disposed on the first high-voltage well region and having the first conductivity type, and a second buried layer and a third buried layer disposed on the first high-voltage well region and having the second conductivity type, wherein the first buried layer is between the second buried layer and the third buried layer. The high-voltage semiconductor device further includes a source region and a drain region disposed on the first buried layer and having the second conductivity type.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 3, 2021
    Assignee: Nuvoton Technology Corporation
    Inventors: Gene Sheu, Vivek Ningaraju, Po-An Chen, Shaik Mastanbasheer, Pooja Ravindra Deshmane, Monika Bharti, Syed Neyaz Imam
  • Patent number: 11081481
    Abstract: A semiconductor device includes a semiconductor substrate having a body layer arranged between a front side and a drift layer, and forming a pn-junction with the drift layer. A front metallization is on the front side in Ohmic connection with the body layer, and a back metallization opposite is in Ohmic connection with the drift layer. An IGBT cell region of the device includes a plurality of gate electrodes in Ohmic connection with a gate metallization. Each gate electrode is electrically insulated from the semiconductor substrate by a respective gate dielectric extending through the body layer. A free-wheeling diode region of the device includes a plurality of field electrodes in Ohmic connection with the front metallization. Each field electrode is separated from the semiconductor substrate by a respective field dielectric extending through the body layer. Additional semiconductor device embodiments are described.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 3, 2021
    Assignee: Infineon Technologies AG
    Inventor: Johannes Georg Laven
  • Patent number: 11075779
    Abstract: A buffer circuit includes a first feedback buffer to receive a first component of a current-mode signal and a second feedback buffer to receive a second component of the current-mode signal. The buffer circuit also including a first inverter having a first input coupled to an output of the second feedback buffer and to an input of a first current circuit through a first filter, a first output coupled to an input of the first feedback buffer. The buffer circuit also includes a second inverter having a second input coupled to an output of the first feedback buffer and to an input of a second current circuit through a second filter, and a second output coupled to an input of the second feedback buffer.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: July 27, 2021
    Assignee: Intel Corporation
    Inventors: Chuanzhao Yu, Hyun Yoon, Kurt Hausmann
  • Patent number: 10998402
    Abstract: Crystal lattice vacancies are generated in a pretreated section of a semiconductor layer directly adjoining a process surface. Dopants are implanted at least into the pretreated section. A melt section of the semiconductor layer is heated by irradiating the process surface with a laser beam activating the implanted dopants at least in the melt section.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: May 4, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Alexander Breymesser, Hans-Joachim Schulze, Holger Schulze, Werner Schustereder
  • Patent number: 10896904
    Abstract: An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a bipolar transistor structure interfacing with a PN junction of a high voltage device, which is configured to discharge the ESD current during an ESD event. The bipolar transistor structure has a collector region overlapping the PN junction, a base region embedded with sufficient pinch resistance to launch the snapback protection, and an emitter region for discharging the ESD current.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 19, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Sunglyong Kim, David LaFonteese, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 10854598
    Abstract: A semiconductor diode with integrated resistor has a semiconductor body with a front surface, a back surface and a diode structure with an anode electrode and a cathode electrode. A resistance layer arranged on the back surface of the semiconductor body provides the integrated resistor.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: December 1, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Philipp Seng
  • Patent number: 10831219
    Abstract: A voltage regulator includes an error amplifier circuit which controls a gate voltage of an output transistor, an overcurrent protection circuit which prevents an overcurrent of the output transistor, and a protection circuit which detects a negative voltage of an output terminal and controls a gate voltage of the output transistor to suppress an overcurrent. The protection circuit includes a MOS transistor which controls the gate voltage of the output transistor, a clamp circuit connected to a gate of the MOS transistor, a semiconductor element having an N-type region connected to the clamp circuit, and a parasitic bipolar transistor constructed from an N-type region connected to the output terminal as an emitter, a P-type substrate as a base, and the N-type region of the semiconductor element as a collector.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: November 10, 2020
    Assignee: ABLIC INC.
    Inventors: Tsutomu Tomioka, Tadakatsu Kuroda, Masakazu Sugiura
  • Patent number: 10833674
    Abstract: A switch device including a switch circuit and switch controller. The switch circuit comprises first and second switches to selectively enable a path between an input terminal and an output terminal. The switch controller refers to a selection signal and a switch signal to respectively generate a first switch control signal at a first switch control signal output terminal and a second switch control signal at a second switch control signal output terminal. When the voltage level of an input signal at the input terminal is larger than a power voltage, the switch controller generates the first switch control signal and the second switch control signal capable of turning off the switch circuit. When the voltage level of the input signal is not larger than the power voltage, the switch controller generates the first switch control signal and the second switch control signal according to the switch signal.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 10, 2020
    Assignee: Faraday Technology Corp.
    Inventors: Feng Xu, Shu Dong Wu, Zhen Liang Zhang
  • Patent number: 10790307
    Abstract: Disclosed is a switch branch structure having an input terminal, an output terminal, and a series stack of an N-number of transistors formed in an active device layer within a first plane, wherein a first one of the N-number of transistors is coupled to the input terminal, and an nth one of the N-number of transistors is coupled to the output terminal, where n is a positive integer greater than one. A metal layer element has a planar body with a proximal end that is electrically coupled to the input terminal and distal end that is electrically open, wherein the planar body is within a second plane spaced from and in parallel with the first plane such that the planar body capacitively couples a radio frequency signal at the input terminal to between 10% and 90% of the N-number of transistors when the switch branch structure is in an off-state.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 29, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Samuel Gibson
  • Patent number: 10748900
    Abstract: Embodiments of the invention include a semiconductor structure and a method of making such a structure. In one embodiment, the semiconductor structure comprises a first fin and a second fin formed over a substrate. The first fin may comprise a first semiconductor material and the second fin may comprise a second semiconductor material. In an embodiment, a first cage structure is formed adjacent to the first fin, and a second cage structure is formed adjacent to the second fin. Additionally, embodiments may include a first gate electrode formed over the first fin, where the first cage structure directly contacts the first gate electrode, and a second gate electrode formed over the second fin, where the second cage structure directly contacts the second gate electrode.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Chandra S. Mohapatra, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10748828
    Abstract: A fan-out sensor package includes: a redistribution portion having a through-hole and including a wiring layer and vias; a first semiconductor chip having an active surface having a sensing region of which at least a portion is exposed through the through-hole and first connection pads disposed in the vicinity of the sensing region; a second semiconductor chip disposed side by side with the first semiconductor chip in a horizontal direction and having second connection pads; dam members disposed in the vicinity of the first connection pads; an encapsulant encapsulating the redistribution portion, the first semiconductor chip, and the second semiconductor chip; and electrical connection structures electrically connecting the first connection pads and the second connection pads to the wiring layer or the vias of the redistribution portion.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: August 18, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ha Yong Jung, Jae Kul Lee, Ji Hye Shim, Han Sang Cho, Woon Ha Choi, Jae Min Choi, Dong Jin Kim, Sung Taek Woo
  • Patent number: 10707369
    Abstract: An avalanche photodiode according to the present invention includes, inside a substrate semiconductor layer having a first conductivity type and a uniform impurity concentration, a first semiconductor layer having the first conductivity type, a second semiconductor layer having a second conductivity type, a third semiconductor layer having the second conductivity type, a fourth semiconductor layer having the second conductivity type, a fifth semiconductor layer having the first conductivity type and formed at a position away from the third semiconductor layer in a lateral direction, a sixth semiconductor layer having the second conductivity type, a first contact, and a second contact. The first semiconductor layer is positioned just under the second semiconductor layer and the fifth semiconductor layer in contact therewith. An avalanche phenomenon is caused at a junction between the first semiconductor layer and the second semiconductor layer.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 7, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhiro Natsuaki, Takahiro Takimoto, Masayo Uchida
  • Patent number: 10644654
    Abstract: Structures for a cascode integrated circuit and methods of forming such structures. A field-effect transistor of the structure includes a gate electrode finger, a first source/drain region, and a second source/drain region. A bipolar junction transistor of the structure includes a first terminal, a base layer with an intrinsic base portion arranged on the first terminal, and a second terminal that includes one or more fingers arranged on the intrinsic base portion of the base layer. The intrinsic base portion of the base layer is arranged in a vertical direction between the first terminal and the second terminal. The first source/drain region is coupled with the first terminal, and the first source/drain region at least partially surrounds the bipolar junction transistor.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: May 5, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vibhor Jain, Anthony K. Stamper, Alvin J. Joseph, John J. Pekarik
  • Patent number: 10580877
    Abstract: A semiconductor device of the present invention includes a gate electrode buried in a gate trench of a first conductivity-type semiconductor layer, a first conductivity-type source region, a second conductivity-type channel region, and a first conductivity-type drain region formed in the semiconductor layer, a second trench selectively formed in a source portion defined in a manner containing the source region in the surface of the semiconductor layer, a trench buried portion buried in the second trench, a second conductivity-type channel contact region selectively disposed at a position higher than that of a bottom portion of the second trench in the source portion, and electrically connected with the channel region, and a surface metal layer disposed on the source portion, and electrically connected to the source region and the channel contact region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: March 3, 2020
    Assignee: ROHM CO., LTD.
    Inventor: Yuki Nakano
  • Patent number: 10573713
    Abstract: A HVJT structure of HVIC includes P-type substrate. Epitaxial layer is formed on the substrate. N-type doped structure is formed in the epitaxial layer, contacting with the substrate. P-type doped structure is in the N-type doped structure connecting with anode. The substrate, the N-type doped structure and the P-type doped structure form a PNP path along a perpendicular direction to the substrate, wherein NP provide bootstrap diode function and surround the high-side circuit at a horizontal direction. N-type cathode structure is in the epitaxial layer. N-type epitaxial doped region contacts with the substrate, between the PNP path and the N-type cathode structure, also surrounding the high-side circuit. Gate structure is over the N-type epitaxial doped region, between the P-type doped structure and N-type cathode structure. P-type base doped structure is in the epitaxial layer adjacent to the N-type doped structure, to provide a substrate voltage to the substrate.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 25, 2020
    Assignee: Nuvoton Technology Corporation
    Inventors: Wen-Ying Wen, MD Imran Siddiqui, Yu-Chi Chang
  • Patent number: 10566423
    Abstract: A semiconductor switch device for switching an RF signal and a method of making the same. The device includes a first semiconductor region having a first conductivity type. The device also includes a source region and a drain region located in the first semiconductor region. The source region and the drain region have a second conductivity type. The second conductivity type is different to the first conductivity type. The device further includes a gate separating the source region from the drain region. The device also includes at least one sinker region having the second conductivity type. Each sinker region is connectable to an external potential for drawing minority carriers away from the source and drain regions to reduce a leakage current at junctions between the source and drain regions and the first semiconductor region.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: February 18, 2020
    Assignee: NXP B.V..
    Inventors: Mahmoud Shehab Mohammad Al-Sa'di, Johannes Josephus Theodorus Marinus Donkers, Petrus Hubertus Cornelis Magnee, Ihor Brunets, Anurag Vohra, Jan Willem Slotboom
  • Patent number: 10546852
    Abstract: A semiconductor device comprises a complementary metal oxide semiconductor (CMOS) device and a heterojunction bipolar transistor (HBT) integrated on a single die. The CMOS device may comprise silicon. The HBT may comprise III-V materials. The semiconductor device may be employed in a radio frequency front end (RFFE) module to reduce size and parasitics of the RFFE module and to provide cost and cycle time savings.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 28, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Ranadeep Dutta, Matthew Michael Nowak
  • Patent number: 10431581
    Abstract: Certain aspects of the present disclosure provide a semiconductor device. One example semiconductor device generally includes a substrate, a well region disposed adjacent to the substrate, a first fin disposed above the well region, a second fin disposed above the substrate, and a gate region disposed adjacent to each of the first fin and the second fin. The semiconductor device may also include at least one third fin disposed above the substrate, a support layer disposed above the at least one third fin, and a compound semiconductor device disposed above the support layer.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 1, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Gengming Tao, Bin Yang
  • Patent number: 10424579
    Abstract: A semiconductor device for electric discharge protection is disclosed. In one aspect, the semiconductor device includes a substrate having a p-type doping. The semiconductor device includes a first well and a second well having an n-type doping and arranged spaced apart within a surface layer of the substrate, and a third well having a p-type doping and arranged in the surface layer of the substrate between the first well and the second well. The semiconductor device further includes an emitter region and a base contact region having a p-type doping and arranged within a surface layer of the first well, and a collector region having a p-type doping. The collector region is arranged at least partly within a surface layer of the third well and such that it overlaps both of the first well and the second well. An integrated circuit including a semiconductor device is also provided.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 24, 2019
    Assignee: IMEC vzw
    Inventors: Mirko Scholz, Shih-Hung Chen
  • Patent number: 10347737
    Abstract: Methods for manufacturing a bipolar junction transistor are provided. A method includes providing a semiconductor substrate having a trench isolation, where a pad resulting from a manufacturing of the trench isolation is arranged on the semiconductor substrate, providing an isolation layer on the semiconductor substrate and the pad such that the pad is covered by the isolation layer, removing the isolation layer up to the pad, and selectively removing the pad to obtain an emitter window.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Claus Dahl, Dmitri Alex Tschumakow
  • Patent number: 10325907
    Abstract: Methods and structures for improved isolation in a SiGe BiCMOS process or a CMOS process are provided. In one method, shallow trench isolation (STI) regions are formed in a first semiconductor region located over a semiconductor substrate. Dummy active regions of the first semiconductor region extend through the STI regions to an upper surface of the first semiconductor region. A grid of deep trench isolation (DTI) regions is also formed in the first semiconductor region, wherein the DTI regions extend entirely through the first semiconductor region. The grid of DTI regions includes a pattern that exhibits only T-shaped or Y-shaped intersections. The pattern defines a plurality of openings, wherein a dummy active region is located within each of the openings.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 18, 2019
    Assignee: Newport Fab, LLC dba Jazz Semiconductor, Inc.
    Inventors: Kurt A. Moen, Edward J. Preisler, Paul D. Hurwitz
  • Patent number: 10312159
    Abstract: A method comprises providing a substrate of a first conductive type and a layer stack arranged on the substrate. The layer stack comprises a first isolation layer, a sacrificial layer, and a second isolation layer. The layer stack comprises a window formed in the layer stack through the second isolation layer, the sacrificial layer and the first isolation layer up to a surface region of the substrate. The method comprises providing a collector layer. The method comprises providing a base layer on the collector layer within the window of the layer stack. The method comprises providing an emitter layer or an emitter layer stack comprising the emitter layer on the base layer within the window of the layer stack. The method further comprises selectively removing the emitter layer or the emitter layer stack at least up to the second isolation layer.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 4, 2019
    Assignee: Infineon Technologies AG
    Inventors: Frank Hoffmann, Dirk Manger, Andreas Pribil, Marc Probst, Stefan Tegen
  • Patent number: 10290631
    Abstract: Methods for providing improved isolation structures in a SiGe BiCMOS process are provided. In one method, an n-type epitaxial layer is grown over a p-type high-resistivity substrate. A mask covers a first region, and exposes a second region, of the epitaxial layer. A p-type impurity is implanted through the mask, counter-doping the second region to become slightly p-type. Shallow trench isolation and optional deep trench isolation regions are formed through the counter-doped second region, providing an isolation structure. The first region of the epitaxial layer forms a collector region of a heterojunction bipolar transistor. In another method, shallow trenches are etched partially into the epitaxial layer through a mask. A p-type impurity is implanted through the mask, thereby counter-doping thin exposed regions of the epitaxial layer to become slightly p-type. The shallow trenches are filled with dielectric material and a CMP process is performed to form shallow trench isolation regions.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 14, 2019
    Assignee: Newport Fab, LLC
    Inventors: Kurt A. Moen, Edward J. Preisler, Paul D. Hurwitz
  • Patent number: 10283584
    Abstract: A capacitor, such as an N-well capacitor, in a semiconductor device includes a floating semiconductor region, which allows a negative biasing of the channel region of the capacitor while suppressing leakage into the depth of the substrate. In this manner, N-well-based capacitors may be provided in the device level and may have a substantially flat capacitance/voltage characteristic over a moderately wide range of voltages. Consequently, alternating polarity capacitors formed in the metallization system may be replaced by semiconductor-based N-well capacitors.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: May 7, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alban Zaka, Ignasi Cortes Mayol, Tom Herrmann, Andrei Sidelnicov, El Mehdi Bazizi
  • Patent number: 10232043
    Abstract: Disclosed herein are methods and compositions for the modulation of the activity of electrically excitable cells. In particular, several embodiments relate to the use of photovoltaic compounds which, upon exposure to light energy, increase or decrease the electrical activity of cells.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: March 19, 2019
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Melanie A. Yen, Dennis A. Dougherty, Robert H. Grubbs, Harry B. Gray, Robert H. Chow, Mark S. Humayun, Mark E. Thompson, Lionel E. Cheruzel
  • Patent number: 10192864
    Abstract: A method of forming a semiconductor structure includes depositing a high-k dielectric layer within a first recess located between sidewall spacers of a first CMOS device and within a second recess located between sidewall spacers of a second CMOS device. A dummy titanium nitride layer is deposited on the high-k dielectric layer. Next, the high-k dielectric layer and the dummy titanium nitride layer are removed from the second recess in the second CMOS device. A silicon cap layer is deposited within the first recess and the second recess, the silicon cap layer is located above the high-k dielectric layer and dummy titanium nitride layer in the first CMOS device. Subsequently, dopants are implanted into the silicon cap layer located in the second recess of the second CMOS device.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: January 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jin Cai, Effendi Leobandung, Tak H. Ning
  • Patent number: 10163728
    Abstract: In manufacturing a semiconductor device, a stack of first and second semiconductor layers are formed. A fin structure is formed by patterning the first and second semiconductor layers. A cover layer is formed on a bottom part of the fin structure so as to cover side walls of the bottom portion of the fin structure and a bottom part of side walls of the upper portion of the fin structure. An insulating layer is formed so that the fin structure is embedded in the insulating layer. A part of the upper portion is removed so that an opening is formed in the insulating layer. A third semiconductor layer is formed in the opening on the remaining layer of the second semiconductor layer. The insulating layer is recessed so that a part of the third semiconductor layer is exposed from the insulating layer, and a gate structure is formed.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chia-Ta Yu
  • Patent number: 10163892
    Abstract: Silicon controlled rectifiers (SCR), methods of manufacture and design structures are disclosed herein. The method includes forming a common P-well on a buried insulator layer of a silicon on insulator (SOI) wafer. The method further includes forming a plurality of silicon controlled rectifiers (SCR) in the P-well such that N+ diffusion cathodes of each of the plurality of SCRs are coupled together by the common P-well.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: December 25, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michel J. Abou-Khalil, Kiran V. Chatty, Robert J. Gauthier, Jr., Junjun Li
  • Patent number: 10134637
    Abstract: A semiconductor component is formed by providing a substrate having partially formed first and second transistors, a base electrode stack formed over the transistors, first and second emitter windows formed in the electrode stack over first and second collector regions of the transistors, and an oxide layer extending over the collector regions. A process entails forming a mask layer in a selected emitter window, optionally forming a selectively implanted collector (SIC) in an un-masked emitter window, and removing an oxide layer and forming an epitaxial layer in the un-masked emitter window. The process further entails forming an oxide layer over the epitaxial layer and repeating the operations of forming a mask layer for another selected emitter window, optionally forming a SIC in another un-masked emitter window, and removing an oxide layer and forming an epitaxial layer in the un-masked emitter window. The epitaxial layers may have different epitaxial growth profiles.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 20, 2018
    Assignee: NXP USA, Inc.
    Inventor: Jay Paul John
  • Patent number: 10115788
    Abstract: A semiconductor device having a horizontal gate all around structure is provided. The semiconductor device includes a substrate and a fin. The fin is disposed on the substrate, and includes an anti-punch through (APT) layer formed of a material at a dose of about 1E18 atoms/cm2 to about 1E19 atoms/cm2, and a barrier layer formed above the APT layer. A method of forming a semiconductor device having a horizontal gate all around structure is also provided.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen