Combined With Passive Components (e.g., Resistors) Patents (Class 257/379)
  • Publication number: 20130193525
    Abstract: A semiconductor device arrangement includes a first semiconductor device having a load path and a plurality of second semiconductor devices, each having a load path between a first and a second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each of the second semiconductor devices has its control terminal connected to the load terminal of one of the other second semiconductor devices, and one of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device. Each of the second semiconductor devices has at least one device characteristic. At least one device characteristic of at least one of the second semiconductor devices is different from the corresponding device characteristic of others of the second semiconductor devices.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Rolf Weis, Gerald Deboy, Michael Treu, Armin Willmeroth, Hans Weber
  • Publication number: 20130175636
    Abstract: A semiconductor device includes a substrate, a transistor formed over the substrate, insulating layers formed over the substrate, a multilayer wiring formed in the insulating layers, a first inductor formed in the insulating layers, and a second inductor formed over the first inductor and overlapping the first inductor. The insulating layers contain a silicon, wherein at least the two insulating layers are formed between the first inductor and the second inductor, and the first inductor and the second inductor are a spiral wiring pattern.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: Renesas Electronics Corporation
    Inventor: Renesas Electronics Corporation
  • Patent number: 8482083
    Abstract: Prior known static random access memory (SRAM) cells required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supply power to the substrate are formed in parallel to word lines in such a manner that one region is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 9, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Publication number: 20130161761
    Abstract: A one time programmable nonvolatile memory formed from metal-insulator-semiconductor cells. The cells are at the crosspoints of conductive gate lines and intersecting doped semiconductor lines formed in a semiconductor substrate.
    Type: Application
    Filed: November 28, 2012
    Publication date: June 27, 2013
    Applicant: KILOPASS TECHNOLOGY, INC.
    Inventor: Kilopass Technology, Inc.
  • Publication number: 20130161722
    Abstract: A semiconductor device may include a gate structure on a substrate, the gate structure including a first metal; an insulating interlayer covering the gate structure on the substrate; a resistance pattern in the insulating interlayer, the resistance pattern having a top surface lower than a top surface of the insulating interlayer and including a second metal different from the first metal at least at an upper portion thereof; and/or a first contact plug through a first portion of the insulating interlayer, the first contact plug making direct contact with the upper portion of the resistance pattern.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8471355
    Abstract: An AND-type anti-fuse memory cell, and a memory array consisting of AND-type anti-fuse memory cells. Chains of AND type anti-fuse cells are connected in series with each other, and with a bitline contact, in order to minimize the area occupied by the memory array. Each AND type anti-fuse cell includes an access transistor serially connectable to the bitline or the access transistors of other AND type anti-fuse cells, and an anti-fuse device. The channel region of the access transistor is connected to the channel region of the anti-fuse device, and both channel regions are covered by the same wordline. The wordline is driven to a programming voltage level for programming the anti-fuse device, or to a read voltage level for reading the anti-fuse device.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: June 25, 2013
    Assignee: Sidense Corp.
    Inventor: Wlodek Kurjanowicz
  • Publication number: 20130153998
    Abstract: Provided are data storage devices and methods of manufacturing the same. The device may include a plurality of cell selection parts formed in a substrate, a plate conductive pattern covering the cell selection parts and electrically connected to first terminals of the cell selection parts, a plurality of through-pillars penetrating the plate conductive pattern and insulated from the plate conductive pattern, and a plurality of data storage parts directly connected to the plurality of through-pillars, respectively. The data storage parts may be electrically connected to second terminals of the cell selection parts, respectively.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 20, 2013
    Inventors: Jungwoo SONG, Jaekyu LEE
  • Publication number: 20130154025
    Abstract: Disclosed herein is a semiconductor device that includes a first line supplied with a first voltage, a second line supplied with a second voltage, a first node, at least one first capacitor connected between the first line and the first node, at least one second capacitor connected between the node and the second line, and a protective element connected between the first node and the second line in parallel to the second capacitor.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 20, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Elpida Memory, Inc.
  • Publication number: 20130146989
    Abstract: An integrated device includes a field effect transistor formed within and upon an active region of a substrate and a resistor formed on an isolation region of the substrate. The field effect transistor includes a gate stacked structure having respective portions of a dielectric layer, a first conductive layer and a second conductive layer arranged in order from bottom to top. The resistor includes a resistor body being an enclosure portion of the first conductive layer and resistor terminals being portions of the second conductive layer on distal ends of the resistor body. A method for manufacturing a semiconductor device includes forming a gate stacked structure and a resistor stacked structure at the same time by patterning a dielectric layer, a first conductive layer and a second conductive layer. The method also includes forming a resistor having a resistor body by patterning the resistor stacked structure.
    Type: Application
    Filed: March 12, 2012
    Publication date: June 13, 2013
    Applicant: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: ZHONGSHAN HONG
  • Patent number: 8461629
    Abstract: A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Long Cheng, Sheng-Chen Chung, Kong-Beng Thei, Harry Chuang, Mong-Song Liang
  • Patent number: 8455853
    Abstract: A method includes forming an electrical insulator material over an integrated circuit having a metal-containing conductive interconnect and activating a dopant in a semiconductor material of a substrate to provide a doped region. The doped region provides a junction of opposite conductivity types. After activating the dopant, the substrate is bonded to the insulator material and at least some of the substrate is removed where bonded to the insulator material. After the removing, a memory cell is formed having a word line, an access diode, a state-changeable memory element containing chalcogenide phase change material, and a bit line all electrically connected in series, the access diode containing the junction as a p-n junction. A memory device includes an adhesion material over the insulator material and bonding the word line to the insulator material.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: June 4, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej S. Sandhu
  • Patent number: 8455954
    Abstract: The present invention provides a wireless chip having high mechanical strength. Moreover, the present invention also provides a wireless chip which can prevent an electric wave from being blocked. In a wireless chip of the present invention, a layer having a thin film transistor formed over an insulating substrate is fixed to an antenna by an anisotropic conductive adhesive, and the thin film transistor is connected to the antenna. The antenna has a dielectric layer, a first conductive layer, and a second conductive layer; the first conductive layer and the second conductive layer has the dielectric layer therebetween; the first conductive layer serves as a radiating electrode; and the second electrode serves as a ground contact body.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yukie Suzuki, Yasuyuki Arai, Shunpei Yamazaki
  • Publication number: 20130126979
    Abstract: A method of forming an integrated circuit includes forming at least one transistor over a substrate. Forming the at least one transistor includes forming a gate dielectric structure over a substrate. A work-function metallic layer is formed over the gate dielectric structure. A conductive layer is formed over the work-function metallic layer. A source/drain (S/D) region is formed adjacent to each sidewall of the gate dielectric structure. At least one electrical fuse is formed over the substrate. Forming the at least one electrical fuse includes forming a first semiconductor layer over the substrate. A first silicide layer is formed on the first semiconductor layer.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chan-Hong CHERN, Fu-Lung HSUEH, Kuoyuan (Peter) HSU
  • Patent number: 8445323
    Abstract: A semiconductor device includes an IPD structure, a first semiconductor die mounted to the IPD structure with a flipchip interconnect, and a plurality of first conductive posts that are disposed adjacent to the first semiconductor die. The semiconductor device further includes a first molding compound that is disposed over the first conductive posts and first semiconductor die, a core structure bonded to the first conductive posts over the first semiconductor die, and a plurality of conductive TSVs disposed in the core structure. The semiconductor device further includes a plurality of second conductive posts that are disposed over the core structure, a second semiconductor die mounted over the core structure, and a second molding compound disposed over the second conductive posts and the second semiconductor die. The second semiconductor die is electrically connected to the core structure.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 21, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Haijing Cao
  • Patent number: 8441076
    Abstract: An exemplary aspect of the present invention is an SRAM including: a first gate electrode that constitutes a first load transistor; a second gate electrode that extends in a longitudinal direction of the first gate electrode so as to be spaced apart from the first gate electrode, and constitutes a first drive transistor; a third gate electrode that extends in parallel to the first gate electrode, and constitutes a second load transistor; a first p-type diffusion region that is formed so as to intersect with the third gate electrode, and constitutes the second load transistor; and a first shared contact formed over the first and second gate electrodes and the first p-type diffusion region. The first p-type diffusion region extends to the vicinity of a first gap region between the first and second gate electrodes, and is not formed in the first gap region.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 14, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazutaka Otsuki, Jun-ichi Takizawa
  • Publication number: 20130113049
    Abstract: The present invention discloses a fuse circuit for final test trimming of an integrated circuit (IC) chip. The fuse circuit includes at least one electrical fuse, at least one control switch corresponding to the electrical fuse, and a resistant device. The electrical fuse is connected with the control switch in series between a predetermined pin and a grounding pin. The control switch receives a control signal to determine whether a predetermined current flows through the corresponding electrical fuse and breaks the electrical fuse. The resistant device is coupled between a bulk terminal and a source terminal to increase a resistance of a parasitic channel, such that an electrostatic discharge (ESD) protection is enhanced, and errors of final test trimming of an IC chip are avoided.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 9, 2013
    Inventors: LI-WEN FANG, Chih-Hao Yang, An-Tung Chen
  • Patent number: 8436426
    Abstract: The present disclosure is directed to a thin film resistor having a first resistor layer having a first temperature coefficient of resistance and a second resistor layer on the first resistor layer, the second resistor layer having a second temperature coefficient of resistance different from the first temperature coefficient of resistance. The first temperature coefficient of resistance may be positive while the second temperature coefficient of resistance is negative. The first resistor layer may have a thickness in the range of 50 and 150 angstroms and the second resistor layer may have a thickness in the range of 20 and 50 angstroms.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 7, 2013
    Assignee: STMicroelectronics PTE Ltd.
    Inventors: Olivier Le Neel, Calvin Leung
  • Publication number: 20130105912
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the substrate of the resistor region; forming a tank in the STI of the resistor region; and forming a resistor in the tank and on the surface of the STI adjacent to two sides of the tank.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Inventors: Chun-Wei Hsu, Po-Cheng Huang, Ren-Peng Huang, Jie-Ning Yang, Chia-Lin Hsu, Teng-Chun Tsai, Chih-Hsun Lin, Chang-Hung Kung, Yen-Ming Chen, Yu-Ting Li
  • Patent number: 8432001
    Abstract: Provided is an electric field information reading head for reading information from a surface electric charge of an information storage medium, the electric field information reading head comprising a semiconductor substrate having a resistance region formed in a central part at one end of a surface facing a recording medium, the resistance region being lightly doped with impurities, and source and drain regions formed on both sides of the resistance region, the source region and the drain region being more highly doped with impurities than the resistance region. The source region and the drain region extend along the surface of the semiconductor substrate facing the recording medium, and electrodes are connected electrically with the source region and the drain region respectively. In addition, provided is a method of fabricating the electric field information reading head and a method of mass-producing the electric field information reading head on a wafer.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: April 30, 2013
    Assignee: Seagate Technology LLC
    Inventors: Ju-hwan Jung, Hyoung-soo Ko, Hong-sik Park, Yong-su Kim, Seung-bum Hong
  • Patent number: 8431933
    Abstract: A memory layout structure is disclosed, in which, a lengthwise direction of each active area and each row of active areas form an included angle not equal to zero and not equal to 90 degrees, bit lines and word lines cross over each other above the active areas, the bit lines are each disposed above a row of active areas, bit line contact plugs or node contact plugs may be each disposed entirely on an source/drain region, or partially on the source/drain region and partially extend downward along a sidewall (edge wall) of the substrate of the active area to carry out a sidewall contact. Self-aligned node contact plugs are each disposed between two adjacent bit lines and between two adjacent word lines.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 30, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Hsien-Wen Liu
  • Patent number: 8426924
    Abstract: An area efficient distributed device for integrated voltage regulators comprising at least one filler cell coupled between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size replica of said device is coupled to said I/O rails for distributing replicas of said device on the periphery of said chip. The device is coupled as small size replica on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: April 23, 2013
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Joshipura Jwalant, Nitin Bansal, Amit Katyal, Massimiliano Picca
  • Publication number: 20130093024
    Abstract: An integrated circuit having a replacement HiK metal gate transistor and a front end SiCr resistor. The SiCr resistor replaces the conventional polysilicon resistor in front end processing and is integrated into the contact module. The first level of metal interconnect is located above the SiCr resistor. First contacts connect to source/drain regions. Second contacts electrically connect the first level of interconnect to either the SiCr resistor or the metal replacement gate.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 18, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Texas Instruments Incorporated
  • Patent number: 8421158
    Abstract: The present invention provides a method for forming a chip structure with a resistor. A semiconductor substrate is provided and has a surface. A plurality of electronic devices and a resistor is formed on the surface of the semiconductor substrate. A plurality of dielectric layers and a plurality of circuit layers are formed over the semiconductor substrate. The dielectric layers are stacked over the semiconductor substrate and have a plurality of via holes. Each of the circuit layers is disposed on corresponding one of the dielectric layers respectively, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. A passivation layer is formed over the dielectric layers and the circuit layers. A circuit line is formed over the passivation layer, wherein the circuit line passes through the passivation layer and is electrically connected to the resistor.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: April 16, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Publication number: 20130087861
    Abstract: A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chieh-Te CHEN, Shih-Fang Tzou, Jiunn-Hsiung Liao, Yi-Po Lin
  • Publication number: 20130088283
    Abstract: Type-switching transistors, electronic devices including the same, and methods of operating thereof are provided. A type-switching transistor may include a plurality of gates corresponding to a channel layer. The plurality of gates may include a first gate for switching a type of the transistor and a second gate for controlling ON/OFF characteristics of the channel layer. The first and second gates may be disposed on one side of the channel layer so that the channel layer is not disposed between the first and second gates.
    Type: Application
    Filed: April 18, 2012
    Publication date: April 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Eun-hong LEE
  • Patent number: 8410576
    Abstract: An inductor is formed on a wafer by attaching a first core structure to the wafer with a pick and place operation, forming a coil with one or more thick metal layers over the first core structure, and then attaching a second core structure to the first core structure with the pick and place operation after the coil has been formed. In addition, the pick and place operation can also be used to attach one or more integrated circuits to the wafer to form an integrated inductive device.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 2, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Andrei Papou
  • Publication number: 20130069165
    Abstract: In one embodiment, a circuit, which comprises a resistor and a pMOS or cMOS transistor, has the characteristic of an inductor and produces an inductive impedance that operates over a substantially full range of a direct-current bias.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Nikola Nedovic
  • Publication number: 20130062706
    Abstract: An electronic module includes a first semiconductor chip and a passive component, wherein the first semiconductor chip is arranged on a surface of the passive component.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: Infineon Technologies AG
    Inventors: Martin Standing, Johannes Schoiswohl
  • Patent number: 8395236
    Abstract: The semiconductor device according to the present invention includes a plurality of capacitance elements. Each capacitance element has a structure obtained by holding a capacitance film made of an insulating material between first and second electrodes made of a metallic material. The first and second electrodes are so arranged as to partially overlap each other while relatively positionally deviating from each other in a direction orthogonal to the opposed direction thereof. The plurality of capacitance elements are stacked in the opposed direction.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 12, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Patent number: 8390075
    Abstract: Semiconductor memory devices and methods of fabricating the semiconductor memory devices are provided, the semiconductor memory devices may include a one-time-programmable (OTP) cell and an electrically erasable programmable read-only memory (EEPROM). The OTP cell includes a memory transistor and a program transistor. The program transistor may include a fuse electrode and may be spaced apart from the memory transistor. The EEPROM cell includes a memory transistor including a first gate and a selection transistor including a second gate. The OTP cell includes a first high-density impurity region which overlaps with the fuse electrode.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Weon-ho Park
  • Patent number: 8384189
    Abstract: The present invention extends the above referenced continuation-in-part application by in addition creating high quality electrical components, such as inductors, capacitors or resistors, on a layer of passivation or on the surface of a thick layer of polymer. In addition, the process of the invention provides a method for mounting discrete electrical components at a significant distance removed from the underlying silicon surface.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: February 26, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shing Lin
  • Patent number: 8378425
    Abstract: It is intended to achieve a sufficiently-small SRAM cell area and a stable operation margin in a CMOS 6T-SRAM comprising a vertical transistor SGT. In a static type memory cell made up using six MOS transistors, each of the MOS transistor constituting the memory cell is formed on a planar silicon layer formed on a buried oxide film, to have a structure where a drain, a gate and a source are arranged in a vertical direction, wherein the gate is formed to surround a pillar-shaped semiconductor layer. The planar silicon layer comprises a first active region having a first conductive type, and a second active region having a second conductive type. The first and second active regions are connected to each other through a silicide layer formed in a surface of the planar silicon layer to achieve an SRAM cell having a sufficiently-small area.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 19, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai
  • Publication number: 20130032893
    Abstract: Gate height scaling in sophisticated semiconductor devices may be implemented without requiring a redesign of non-transistor devices. To this end, the semiconductor electrode material may be adapted in its thickness above active regions and isolation regions that receive the non-transistor devices. Thereafter, the actual patterning of the adapted gate layer stack may be performed so as to obtain gate electrode structures of a desired height for improving, in particular, AC performance without requiring a redesign of the non-transistor devices.
    Type: Application
    Filed: July 17, 2012
    Publication date: February 7, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Rohit Pal, George Mulfinger
  • Patent number: 8368150
    Abstract: In the present invention, discrete decoupling capacitors are mounted on the surface of an IC chip. Since a discrete capacitor can provide the capacitance of the magnitude ?F, the attached capacitors can serve as the local power reservoir to decouple the external power ground noise caused by wirebonds, packages, and other system components.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: February 5, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Publication number: 20130026581
    Abstract: In a semiconductor device comprising sophisticated high-k metal gate structures formed in accordance with a replacement gate approach, semiconductor-based resistors may be formed above isolation structures substantially without being influenced by the replacement gate approach. Consequently, enhanced area efficiency may be achieved compared to conventional strategies, in which the resistive structures may have to be provided on the basis of a gate electrode metal, while, nevertheless, a low parasitic capacitance may be accomplished due to providing the resistive structures above the isolation structure.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 31, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: GLOBALFOUNDRIES Inc.
  • Patent number: 8362587
    Abstract: An interconnect for transmitting an electric signal between electronic devices includes a first coupling element electromagnetically coupled to, and immediately juxtaposed to, a second coupling element. The first coupling element is mounted on and is electrically connected to a first electronic device having a first integrated circuit. The second coupling element may be mounted on and electrically connected to the first electronic device, and electrically connected to an interconnect on a second electronic device, or the second coupling element may be mounted on and electrically connected to the second electronic device.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: January 29, 2013
    Assignee: Scanimetrics Inc.
    Inventors: Christopher V. Sellatmamby, Steven H. Slupsky, Brian Moore
  • Patent number: 8354727
    Abstract: A semiconductor device of high reliability and element-integrating performance, has a substrate (silicon substrate), a first trench made in the silicon substrate, a passive element layer buried in the first trench, and a first insulating film (silicon nitride film) arranged between the first trench and the passive element layer. The passive element layer projects upwardly relative to the substrate, and so too preferably the adjacent insulating film. An active element is formed such that its gate electrode, which is preferably fully silicided, has an upper end at a level higher than the upper surface of the passive element film.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 15, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Satoru Muramatsu
  • Publication number: 20130009254
    Abstract: An electrical device with a fin structure, a first section of the fin structure having a first width and a first height, a second section of the fin structure having a second width and a second height, wherein the first width is smaller than the second width and the first height is lower than the second height.
    Type: Application
    Filed: September 15, 2012
    Publication date: January 10, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Christian Russ, Gunther Lehmann, Franz Ungar
  • Publication number: 20130009253
    Abstract: A power MOSFET is formed in a semiconductor device with a parallel combination of a shunt resistor and a diode-connected MOSFET between a gate input node of the semiconductor device and a gate of the power MOSFET. A gate of the diode-connected MOSFET is connected to the gate of the power MOSFET. Source and drain nodes of the diode-connected MOSFET are connected to a source node of the power MOSFET through diodes. The drain node of the diode-connected MOSFET is connected to the gate input node of the semiconductor device. The source node of the diode-connected MOSFET is connected to the gate of the power MOSFET. The power MOSFET and the diode-connected MOSFET are integrated into the substrate of the semiconductor device so that the diode-connected MOSFET source and drain nodes are electrically isolated from the power MOSFET source node through a pn junction.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 10, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jun WANG, Shuming XU, Jacek KOREC
  • Patent number: 8350337
    Abstract: A semiconductor device including a substrate, a first device, a second device and an interlayer dielectric layer is provided. The substrate has a first area and a second area. The first device is disposed in the first area of the substrate and includes a first dielectric layer on the substrate and a metal gate on the first dielectric layer. The second device is in the second area of the substrate and includes a second dielectric layer on the substrate and, a polysilicon layer on the second dielectric layer. It is noted that the height of the polysilicon layer is less than that of the metal gate of the first device. The interlayer dielectric layer covers the second device.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: January 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Szu Tseng, Cheng-Wen Fan, Chih-Yu Tseng, Victor Chiang Liang
  • Publication number: 20130001662
    Abstract: A semiconductor device includes: a semiconductor element; a divider connected with an input portion of the semiconductor element; and a combiner connected with an output portion of the semiconductor element. The divider is disposed on a substrate and has a first divider portion including a first transmission line and a second transmission line, a second divider portion including a third transmission line and a fourth transmission line, and a first resistance and a second resistance respectively connected to both the first transmission line and the third transmission line. The first resistance is disposed in the space between the first and third transmission lines, the second resistance is disposed in the space between the first and third transmission lines, and the first resistance is disposed between the second resistance and the semiconductor element.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Masaaki NISHIJIMA
  • Publication number: 20130001704
    Abstract: A device includes a metal-oxide-semiconductor (MOS) device, which includes a gate electrode and a source/drain region adjacent the gate electrode. A first and a second contact plug are formed directly over and electrically connected to two portions of a same MOS component, wherein the same MOS component is one of the gate electrode and the source/drain region. The same MOS component is configured to be used as a resistor that is connected between the first and the second contact plugs.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company., Ltd.
    Inventors: Wen-Han Wang, Chen-Chih Wu, Sheng-Fang Cheng, Kuo-Ji Chen
  • Publication number: 20120319209
    Abstract: A metal gate electrode and a poly-silicon resistance element are mixedly mounted in the same semiconductor substrate. The metal gate electrode is formed on a first gate insulating film and includes a first gate metal film and a first gate silicon film. The poly-silicon resistance element includes a silicon film pattern formed on a laminated pattern which includes a first laminate insulating film, a first laminate metal film, and a second laminate insulating film. The first laminate insulating film and the first gate insulating film are formed from a common insulating film; the first laminate metal film and the first gate metal film are formed from a common metal film, and the silicon firm pattern and the first gate silicon film are formed from a common silicon film. In a planar view, a footprint of the silicon film pattern is included within the second laminate insulating film.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Masaaki SHINOHARA
  • Patent number: 8334575
    Abstract: A semiconductor device comprises a switching element. The switching element comprises a first channel terminal, a second channel terminal and a switching terminal. One of the first and second channel terminals provides a reference terminal and the switching element is arranged such that an impedance of the switching element between the first channel terminal and second channel terminal is dependant upon a voltage across the switching terminal and the reference terminal. The semiconductor device further comprises a first resistance element operably coupled between the first channel terminal and the switching terminal and a second resistance element operably coupled between the switching terminal and the second channel terminal of the semiconductor device.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: December 18, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean Philippe Laine, Patrice Besse, Alexis Huot-Marchand
  • Publication number: 20120313184
    Abstract: A switching circuit (80) includes: a plurality of insulated gate transistors (30-33) connected in parallel between a high voltage line (L1) and a low voltage line (L2); gate resistors (50-53) each provided for one of the plurality of insulated gate transistors (30-33) and each including a first terminal connected to a gate electrode of each of the insulated gate transistors (30-33); and a single gate voltage application unit (60) configured to apply pulsing gate voltage to the gate electrode of each of the insulated gate transistors (30-33) via the gate resistors (50-53). A second terminal of each of the gate resistors (50-53) provided for each of the plurality of insulated gate transistors (30-33) is connected to the gate voltage application unit (60) via a gate voltage apply line (L3), and a single capacitor is connected between the gate voltage apply line (L3) and the high voltage line (L1).
    Type: Application
    Filed: May 30, 2012
    Publication date: December 13, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Naohito KANIE, Toshiaki NAGASE
  • Patent number: 8324692
    Abstract: A method of fabricating an integrated inductor device includes providing a silicon substrate and forming a thickness of an insulating layer overlying the silicon substrate. The insulating layer includes a dummy structure within a portion of the thickness. The method includes forming an inductor having a first portion and a second portion. The first portion includes a spiral coil of conductor lines. The method also includes exposing the dummy structure by forming an opening in the insulating layer and removing the dummy structure to form a cavity underlying the inductor to reduce a dielectric constant and to increase a Q value of the inductor. The method includes using aluminum or copper for the dummy structures. The method includes dry etching the insulator and wet etching the dummy structure. The method also includes forming the inductors using aluminum or copper.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 4, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhen Chen, Yung Feng Lin, Lin Huang
  • Patent number: 8324673
    Abstract: Semiconductor memory devices and methods of forming the same are provided, the semiconductor memory devices include a first and a second buried gate respectively disposed on both inner sidewalls of a groove formed in an active portion and a device isolation pattern. The first and second buried gates are controlled independently from each other.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Woo Chung, Kang-Uk Kim, Yongchul Oh, Hui-Jung Kim, Hyun-Gi Kim
  • Publication number: 20120299115
    Abstract: A method includes forming a first isolation feature of a first width and a second isolation feature of a second width in a substrate, the first width being substantially greater than the second width; forming an implantation mask on the substrate, wherein the implantation mask covers the first isolation feature and exposes the second isolation feature; performing an ion implantation process to the substrate using the implantation mask; and thereafter performing an etching process to the substrate.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hak-Lay Chuang, Ming Zhu, Lee-Wee Teo, Bao-Ru Young
  • Publication number: 20120292635
    Abstract: This composite semiconductor device has a normally-on first field effect transistor and a normally-off second field effect transistor connected in series between first and second terminals, gates of the first and second field effect transistors being connected to second and third terminals, respectively, and N diodes being connected in series in a forward direction between a drain and a source of the second field effect transistor. Therefore, a drain-source voltage (Vds) of the second field effect transistor can be restricted to a voltage not higher than a withstand voltage of the second field effect transistor.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 22, 2012
    Inventors: Naoyasu Iketani, Tomohiro Nozawa, Yoshiaki Nozaki, John K. Twynam, Hiroshi Kawamura, Keiichi Sakuno
  • Patent number: 8304839
    Abstract: Methods for fabricating a semiconductor device are disclosed. In an example, a method includes forming an isolation region on a substrate, wherein the isolation region extends a depth into the substrate from a substrate surface; forming a recess in the isolation region, wherein the recess is defined by a concave surface of the isolation region; and forming a first gate structure over the substrate surface and a second gate structure over the concave surface of the isolation region.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 6, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kong-Beng Thei, Harry Chuang