Composite Or Layered Gate Insulator (e.g., Mixture Such As Silicon Oxynitride) Patents (Class 257/411)
  • Publication number: 20110248360
    Abstract: The present invention relates to a high-speed transistor device and a method for fabricating the same. A high-speed transistor device is proposed, comprising: a silicon substrate; and a gate stack formed on the silicon substrate. The gate stack comprises a gate dielectric stack and a gate electrode layer, and the gate dielectric stack comprises at least a SrTiO3 layer and a LaAlO3 layer positioned thereon. The electron concentration is improved by the two-dimensional electron gas generated ascribing to a triangular potential well formed between the SrTiO3 layer and the LaAlO3 layer. Meanwhile, since the channel is formed between the SrTiO3 layer and the LaAlO3 layer, the electrons and the scattering center are seperated from each other, such that the electron mobility is enhanced, which accordingly improves the speed of the transistor device.
    Type: Application
    Filed: September 26, 2010
    Publication date: October 13, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Publication number: 20110248361
    Abstract: A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 13, 2011
    Inventors: Takayuki ITO, Kyoichi SUGURO, Kouji MATSUO
  • Publication number: 20110248345
    Abstract: A method for easily manufacturing a semiconductor device in which variation in thickness or disconnection of a source electrode or a drain electrode is prevented is proposed. A semiconductor device includes a semiconductor layer formed over an insulating substrate; a first insulating layer formed over the semiconductor layer; a gate electrode formed over the first insulating layer; a second insulating layer formed over the gate electrode; an opening which reaches the semiconductor layer and is formed at least in the first insulating layer and the second insulating layer; and a step portion formed at a side surface of the second insulating layer in the opening.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 13, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shinya SASAGAWA
  • Patent number: 8035174
    Abstract: A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed in the upper part of the semiconductor substrate so as to be spaced; a channel region formed in a part of the semiconductor substrate between the source region and the drain region; a first dielectric film formed on the channel region of the semiconductor substrate; a second dielectric film formed on the first dielectric film and having a higher permittivity than the first dielectric film; a third dielectric film formed on at least an end surface of the second dielectric film near the drain region out of end surfaces of the second dielectric film near the source and drain regions; and a gate electrode formed on the second dielectric film and the third dielectric film.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventor: Yoshinori Takami
  • Publication number: 20110241131
    Abstract: A reduction of a resistance of a bit line of a memory cell array and a reduction of a forming area of the memory cell array are planed. Respective bit lines running at right angles to a word line are composed of a diffusion bit line formed in a semiconductor substrate and a linear metal bit line on an upper side of the diffusion bit line. The diffusion bit line is formed in a linear pattern on a lower side of the metal bit line in the same manner, and the metal bit line is connected with the diffusion bit line between the word lines. An interlayer insulating film is formed on the memory cell array, and the metal bit line is formed with being buried in it.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicant: Renesas Electronics Corporation
    Inventor: Satoshi SHIMIZU
  • Patent number: 8030718
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having a source region and a drain region, defining a first dimension from the source to drain; and a gate stack disposed on the semiconductor substrate and partially interposed between the source region and the drain region. The gate stack includes a high k dielectric layer disposed on the semiconductor substrate; a first metal feature disposed on the high k dielectric layer, the first metal gate feature having a first work function and defining a second dimension parallel with the first dimension; and a second metal feature having a second work function different from the first work function and defining a third dimension parallel with the first dimension, the third dimension being less than the second dimension.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 4, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huan-Tsung Huang, Shyh-Horng Yang, Yuri Masuoka, Ken-Ichi Goto
  • Patent number: 8030198
    Abstract: A semiconductor device includes a silicon substrate, an SiO film, and a High-K film. The SiO film is first formed on the silicon substrate and then subjected to a nitridation process to obtain an SiON film from the SiO film. The nitridation process is performed such that nitrogen concentration in the SiO film decreases from an interface with the silicon substrate below and an interface with the High-K film above, and nitrogen having predetermined concentration or more is introduced in a thickness within a range of 0.2 nm to 1 nm from the interface with the silicon substrate. The SiON film is etched up to a depth to which nitrogen of the predetermined concentration or more is introduced. The High-K film is then formed on the SiON film.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takashi Shimizu
  • Patent number: 8030717
    Abstract: A disclosed semiconductor device includes a gate insulation film formed on a silicon substrate and a metal gate electrode formed in the gate insulation film, wherein the gate insulation film includes a first insulation film, a second insulation film that is formed on the first insulation film and has a greater dielectric constant than the first insulation film, and a third insulation film formed on the second insulation film.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 4, 2011
    Assignees: Tokyo Electron Limited, National Institute of Advanced Industrial Science and Technology
    Inventors: Koji Akiyama, Wenwu Wang
  • Patent number: 8030709
    Abstract: A semiconductor gate stack comprising a silicon oxide based gate dielectric and a doped semiconductor material is formed on a semiconductor substrate. A high-k material metal gate electrode comprising a high-k gate dielectric and a metal gate portion is also formed on the semiconductor substrate. Oxygen-impermeable dielectric spacers are formed on the sidewalls of the semiconductor gate stack and the high-k material metal gate stack. The oxygen-impermeable dielectric spacer on the semiconductor gate stack is removed, while the oxygen impermeable dielectric spacer on the high-k material metal gate electrode is preserved. A low-k dielectric spacer is formed on the semiconductor gate stack, which provides a low parasitic capacitance for the device employing the semiconductor gate stack.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: October 4, 2011
    Assignees: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: Charlotte D. Adams, Bruce B. Doris, Philip Fisher, William K. Henson, Jeffrey W. Sleight
  • Publication number: 20110233689
    Abstract: There is provided a semiconductor device that includes a III-V Group compound semiconductor having a zinc-blende-type crystal structure, an insulating material being in contact with the (111) plane of the III-V Group compound semiconductor, a plane of the III-V Group compound semiconductor equivalent to the (111) plane, or a plane that has an off angle with respect to the (111) plane or the plane equivalent to the (111) plane, and an MIS-type electrode being in contact with the insulating material and including a metal conductive material.
    Type: Application
    Filed: November 27, 2009
    Publication date: September 29, 2011
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, THE UNIVERSITY OF TOKYO, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Masahiko Hata, Noboru Fukuhara, Hisashi Yamada, Shinichi Takagi, Masakazu Sugiyama, Mitsuru Takenaka, Tetsuji Yasuda, Noriyuki Miyata, Taro Itatani, Hiroyuki Ishii, Akihiro Ohtake, Jun Nara
  • Patent number: 8026133
    Abstract: A semiconductor device includes a semiconductor substrate, a gate insulating film formed on the semiconductor substrate, a gate electrode formed on the gate insulating film, a source/drain diffusion layer formed in the semiconductor substrate at both sides of the gate electrode, and a channel region formed in the semiconductor substrate between a source and a drain of the source/drain diffusion layer and arranged below the gate insulating film, wherein an upper surface of the source/drain diffusion layer is positioned below a bottom surface of the gate electrode, and an upper surface of the channel region is positioned below the upper surface of the source/drain diffusion layer.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Isao Kamioka
  • Publication number: 20110227139
    Abstract: An object is to provide a technique to manufacture an insulating film having excellent film characteristics. In particular, an object is to provide a technique to manufacture a dense insulating film with a high withstand voltage. Moreover, an object is to provide a technique to manufacture an insulating film with few electron traps. An insulating film including oxygen is subjected to plasma treatment using a high frequency under the conditions where the electron density is 1×1011 cm?3 or more and the electron temperature is 1.5 eV or less in an atmosphere including oxygen.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 22, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tetsuya KAKEHATA, Tetsuhiro TANAKA, Yoshinobu ASAMI
  • Publication number: 20110227171
    Abstract: A high-k dielectric and metal gate stack with minimal overlap with an adjacent oxide isolation region and related methods are disclosed. One embodiment of the gate stack includes a high dielectric constant (high-k) dielectric layer, a tuning layer and a metal layer positioned over an active region defined by an oxide isolation region in a substrate, wherein an outer edge of the high-k dielectric layer, the tuning layer and the metal layer overlaps the oxide isolation region by less than approximately 200 nanometers. The gate stack and related methods eliminate the regrowth effect in short channel devices by restricting the amount of overlap area between the gate stack and adjacent oxide isolation regions.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, William K. Henson, Renee T. Mo, Jeffrey Sleight
  • Publication number: 20110221012
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Patent number: 8017484
    Abstract: Methods of forming transistor devices and structures thereof are disclosed. A first dielectric material is formed over a workpiece, and a second dielectric material is formed over the first dielectric material. The workpiece is annealed, causing a portion of the second dielectric material to combine with the first dielectric material and form a third dielectric material. The second dielectric material is removed, and a gate material is formed over the third dielectric material. The gate material and the third dielectric material are patterned to form at least one transistor.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: September 13, 2011
    Assignee: Infineon Technologies AG
    Inventor: Hongfa Luan
  • Patent number: 8013371
    Abstract: A method for forming silicon nitride films on semiconductor devices is provided. In one embodiment of the method, a silicon-comprising substrate is first exposed to a mixture of dichlorosilane (DCS) and a nitrogen-comprising gas to deposit a thin silicon nitride seeding layer on the surface, and then exposed to a mixture of silicon tetrachloride (TCS) and a nitrogen comprising gas to deposit a TCS silicon nitride layer on the DCS seeding layer. In another embodiment, the method involves first nitridizing the surface of the silicon-comprising substrate prior to forming the DCS nitride seeding layer and the TCS nitride layer. The method achieves a TCS nitride layer having a sufficient thickness to eliminate bubbling and punch-through problems and provide high electrical performance regardless of the substrate type. Also provided are methods of forming a capacitor, and the resulting capacitor structures.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A Zheng, Er-Xuan Ping
  • Patent number: 8013402
    Abstract: Transistors that include multilayered dielectric films on a channel region are provided. The multilayered dielectric comprises a lower dielectric film that may have a thickness that is at least 50% the thickness of the multilayered dielectric film and that comprises a metal oxide, a metal silicate, an aluminate, or a mixture thereof, and an upper dielectric film on the lower dielectric film, the upper dielectric film comprising a Group III metal oxide, Group III metal nitride, Group XIII metal oxide or Group XIII metal nitride. A gate electrode is provided on the multilayered dielectric film.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ha-Jin Lim, Jong-Ho Lee, Hyung-Suk Jung
  • Publication number: 20110210405
    Abstract: The present invention provides a metal nitride film that realizes an intended effective work function (for example, a high effective work function) and has EOT exhibiting no change or a reduced change, a semiconductor device using the metal nitride film, and a manufacturing method of the semiconductor device. The metal nitride film according to an embodiment of the present invention contains Ti, Al and N, wherein the metal nitride film has such molar fractions of Ti, Al and N as (N/(Ti+Al+N)) of 0.53 or more, (Ti/(Ti+Al+N)) of 0.32 or less, and (Al/(Ti+Al+N)) of 0.15 or less.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 1, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano
  • Publication number: 20110204454
    Abstract: An integrated circuit (IC) includes a substrate having a top semiconductor surface including at least one MOS device including a source and a drain region spaced apart to define a channel region. A SiON gate dielectric layer that has a plurality of different N concentration portions is formed on the top semiconductor surface. A gate electrode is on the SiON layer. The plurality of different N concentration portions include (i) a bottom portion extending to the semiconductor interface having an average N concentration of <2 atomic %, (ii) a bulk portion having an average N concentration >10 atomic %, and (iii) a top portion on the bulk portion extending to a gate electrode interface having an average N concentration that is ?2 atomic % less than a peak N concentration of the bulk portion.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Joseph Chambers, Hiroaki Niimi, Brian Keith Kirkpatrick
  • Publication number: 20110198709
    Abstract: A semiconductor device includes a gate stack structure. The gate stack structure includes an interfacial layer formed on a semiconductor substrate, a high-k dielectric formed on the interfacial layer, a silicide gate including a diffusive material and an impurity metal, and formed over the high-k dielectric, and a barrier metal with a barrier effect to the diffusive material, and formed between the high-k dielectric and the metal gate. The impurity metal has a barrier effect to the diffusive material so that the diffusive material in the silicide gate can be prevented from being introduced into the high-k dielectric.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 18, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Hiroshi Sunamura
  • Publication number: 20110198708
    Abstract: Transistors are provided including first and second source/drain regions, a channel region and a gate stack having a first gate dielectric over a substrate, the first gate dielectric having a dielectric constant higher than a dielectric constant of silicon dioxide, and a metal material in contact with the first gate dielectric, the metal material being doped with an inert element. Integrated circuits including the transistors and methods of forming the transistors are also provided.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Inventors: Cancheepuram V Srividya, Suraj Mathew, Dan Gealy
  • Patent number: 7999308
    Abstract: To improve a charge retention characteristic of a nonvolatile memory transistor. A first insulating film, a charge trapping film, and a second insulating film are formed between a semiconductor substrate and a conductive film. The charge trapping film is formed of a silicon nitride film including an upper region having a low concentration of hydrogen and a lower region having a high concentration of hydrogen. Such a silicon nitride film is formed in such a manner that a silicon nitride film including 15 atomic % or more hydrogen is formed by a chemical vapor deposition method and an upper portion of the silicon nitride film is nitrided. The nitridation treatment is performed by nitriding the silicon nitride film by nitrogen radicals produced in plasma of a nitrogen gas.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 16, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kosei Noda
  • Publication number: 20110193181
    Abstract: A semiconductor includes a channel region in a semiconductor substrate, a gate dielectric film on the channel region, and a gate on the gate dielectric film. The gate includes a doped metal nitride film, formed from a nitride of a first metal and doped with a second metal which is different from the first metal, and a conductive polysilicon layer formed on the doped metal nitride film. The gate may further include a metal containing capping layer interposed between the doped metal nitride film and the conductive polysilicon layer.
    Type: Application
    Filed: April 19, 2011
    Publication date: August 11, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyung-suk JUNG, Jong-ho LEE, Sung-kee HAN, Ha-jin LIM
  • Publication number: 20110193180
    Abstract: The present disclosure provides an apparatus that includes a semiconductor device. The semiconductor device includes a substrate. The semiconductor device also includes a first gate dielectric layer that is disposed over the substrate. The first gate dielectric layer includes a first material. The first gate dielectric layer has a first thickness that is less than a threshold thickness at which a portion of the first material of the first gate dielectric layer begins to crystallize. The semiconductor device also includes a second gate dielectric layer that is disposed over the first gate dielectric layer. The second gate dielectric layer includes a second material that is different from the first material. The second gate dielectric layer has a second thickness that is less than a threshold thickness at which a portion of the second material of the second gate dielectric layer begins to crystallize.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian-Hao Chen, Da-Yuan Lee, Kuang-Yuan Hsu
  • Patent number: 7994591
    Abstract: Disclosed are a semiconductor device and a method for manufacturing the same. The semiconductor device includes a gate structure which includes a silicon oxynitride (SiON) layer formed on a semiconductor substrate, a hafnium silicon oxynitride (HfSiON) layer formed on the silicon oxynitride (SiON) layer, a polysilicon layer formed on the hafnium silicon oxynitride (HfSiON) layer, and a silicide layer formed on the polysilicon layer, spacers at sidewalls of the gate structure, and source and drain regions at opposite sides of the gate structure.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 9, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Eun Jong Shin
  • Patent number: 7994590
    Abstract: High-dielectric-constant (k) materials and electrical devices implementing the high-k materials are provided herein. According to some embodiments, an electrical device includes a substrate and a crystalline-oxide-containing composition. The crystalline-oxide-containing composition can be disposed on a surface of the substrate. Within the crystalline-oxide-containing composition, oxide anions can form at least one of a substantially linear orientation or a substantially planar orientation. A plurality of these substantially linear orientations of oxide anions or substantially planar orientations of oxide anions can be oriented substantially perpendicular or substantially normal to the surface of the substrate such that the oxide-containing composition has a dielectric constant greater than about 3.9 in a direction substantially normal to the surface of the substrate. Other embodiments are also claimed and described.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: August 9, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Thomas K. Gaylord, James D. Meindl
  • Patent number: 7994495
    Abstract: An organic thin film transistor has a gate dielectric layer which is formed from a block copolymer. The block copolymer comprises a polar block and a nonpolar block. The resulting dielectric layer has good adhesion to the gate electrode and good compatibility with the semiconducting layer.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 9, 2011
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Beng S. Ong
  • Patent number: 7989903
    Abstract: A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 2, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Ito, Kyoichi Suguro, Kouji Matsuo
  • Patent number: 7989902
    Abstract: A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy?2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Changhwan Choi, Martin M. Frank, Vijay Narayanan
  • Patent number: 7989333
    Abstract: Methods of forming integrated circuit devices include forming a gate electrode on a substrate and forming a nitride layer on a sidewall and upper surface of the gate electrode. The nitride layer is then anisotropically oxidized under conditions that cause a first portion of the nitride layer extending on the upper surface of the gate electrode to be more heavily oxidized relative to a second portion of the nitride layer extending on the sidewall of the gate electrode. A ratio of a thickness of an oxidized first portion of the nitride layer relative to a thickness of an oxidized second portion of the nitride layer may be in a range from about 3:1 to about 7:1.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: August 2, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwa Park, Jong-Min Baek, Gil-Heyun Choi, Hee-Sook Park
  • Patent number: 7989877
    Abstract: A semiconductor device includes a substrate and a doped hafnium oxide layer disposed on the substrate, the doped hafnium oxide layer including a hafnium oxide layer doped with doping atoms and having tetragonal unit lattices, an ion size of the doping atom being greater than an ion size of a hafnium atom.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 2, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaesoon Lim, Kyuho Cho, Jaehyoung Choi, Younsoo Kim
  • Patent number: 7986016
    Abstract: According to an aspect of the present invention, there is provided a semiconductor device including: a substrate that includes a semiconductor region including Ge as a primary component; a compound layer that is formed above the semiconductor region, that includes Ge and that has a non-metallic characteristic; an insulator film that is formed above the compound layer; an electrode that is formed above the insulator film; and source/drain regions that is formed in the substrate so as to sandwich the electrode therebetween.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiki Kamata, Akira Takashima
  • Publication number: 20110175176
    Abstract: A method for forming a semiconductor structure is disclosed. The method includes forming a high-k dielectric layer over a semiconductor substrate and forming a gate layer over the high-k dielectric layer. The method also includes heating the gate layer to 350° C., wherein, if the gate layer includes non-conductive material, the non-conductive material becomes conductive. The method further includes annealing the substrate, the high-k dielectric layer, and the gate layer in excess of 350° C. and, during the annealing, applying a negative electrical bias to the gate layer relative to the semiconductor substrate. A semiconductor structure is also disclosed. The semiconductor structure includes a high-k dielectric layer over a semiconductor substrate, and a gate layer over the high-k dielectric layer. The gate layer has a negative electrical bias during anneal. A p-channel FET including this semiconductor structure is also disclosed.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Martin M. Frank
  • Publication number: 20110169105
    Abstract: A method of manufacturing a semiconductor device includes forming a polysilicon pattern, source/drain, and side-wall spacer, epitaxially growing silicide films on the source/drain, epitaxially growing silicon films selectively on the silicide film, removing the polysilicon pattern, forming a gate insulating film and gate electrode.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Kazuya OKUBO
  • Publication number: 20110163386
    Abstract: Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 7, 2011
    Inventors: Yong-kuk Jeong, Andrew-tae Kim, Dong-suk Shin
  • Patent number: 7973355
    Abstract: A nonvolatile memory device may include: a tunnel insulating layer on a semiconductor substrate; a charge storage layer on the tunnel insulating layer; a blocking insulating layer on the charge storage layer; and a control gate electrode on the blocking insulating layer. The tunnel insulating layer may include a first tunnel insulating layer and a second tunnel insulating layer. The first tunnel insulating layer and the second tunnel insulating layer may be sequentially stacked on the semiconductor substrate. The second tunnel insulating layer may have a larger band gap than the first tunnel insulating layer. A method for fabricating a nonvolatile memory device may include: forming a tunnel insulating layer on a semiconductor substrate; forming a charge storage layer on the tunnel insulating layer; forming a blocking insulating layer on the charge storage layer; and forming a control gate electrode on the blocking insulating layer.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jae Baik, Hong-Suk Kim, Si-Young Choi, Ki-Hyun Hwang, Sang-Jin Hyun
  • Publication number: 20110156174
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Patent number: 7968412
    Abstract: According to an embodiment of a method for manufacturing a MISFET device, in a semiconductor wafer, a semiconductor layer is formed, having a first type of conductivity and a first level of doping. A first body region and a second body region, having a second type of conductivity, opposite to the first type of conductivity, and an enriched region, extending between the first and second body regions are formed in the semiconductor layer. The enriched region has the first type of conductivity and a second level of doping, higher than the first level of doping. Moreover, a gate electrode is formed over the enriched region and over part of the first and second body regions, and a dielectric gate structure is formed between the gate electrode and the semiconductor layer, the dielectric gate structure having a larger thickness on the enriched region and a smaller thickness on the first and second body regions.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: June 28, 2011
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Orazio Battiato, Domenico Repici, Fabrizio Marco Di Paola, Giuseppe Arena, Angelo Magri′
  • Publication number: 20110147710
    Abstract: Non-silicon metal-insulator-semiconductor (MIS) devices and methods of forming the same. The non-silicon MIS device includes a gate dielectric stack which comprises at least two layers of non-native oxide or nitride material. The first material layer of the gate dielectric forms an interface with the non-silicon semiconductor surface and has a lower dielectric constant than a second material layer of the gate dielectric. In an embodiment, a dual layer including a first metal silicate layer and a second oxide layer provides both a good quality oxide-semiconductor interface and a high effective gate dielectric constant.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Gilbert Dewey, Marko Radosavljevic, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20110147857
    Abstract: A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Junji HIRASE, Akio Sebe, Naoki Kotani, Gen Okazaki, Kazuhiko Aida, Shinji Takeoka
  • Publication number: 20110140206
    Abstract: A semiconductor device including a substrate, a gate structure, a spacer and source/drain regions is provided. The gate structure is on the substrate, wherein the gate structure includes, from bottom to top, a high-k layer, a work function metal layer, a wetting layer and a metal layer. The spacer is on a sidewall of the gate structure. The source/drain regions are in the substrate beside the gate structure.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: United Microelectronics Corp.
    Inventors: CHUN-HSIEN LIN, Chao-Ching Hsieh
  • Publication number: 20110140205
    Abstract: Many of the physical properties of a silicon semiconductor have already been understood, whereas many of the physical properties of an oxide semiconductor have been still unclear. In particular, an adverse effect of an impurity on an oxide semiconductor has been still unclear. In view of the above, a structure is disclosed in which an impurity that influences electrical characteristics of a semiconductor device including an oxide semiconductor layer is prevented or is eliminated. A semiconductor device which includes a gate electrode, an oxide semiconductor layer, and a gate insulating layer provided between the gate electrode and the oxide semiconductor layer and in which the nitrogen concentration in the oxide semiconductor layer is 1×1020 atoms/cm3 or less is provided.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 16, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichiro SAKATA, Tetsunori MARUYAMA, Yuki IMOTO
  • Patent number: 7960779
    Abstract: A nonvolatile semiconductor memory of an aspect of the invention includes memory cells in the memory cell forming area, and select gate transistors in the select gate forming area. Each memory cell has two first diffusion layers formed in a semiconductor substrate, a first gate insulating film formed on the semiconductor substrate, a charge storage layer formed on the first gate insulating film, a first intermediate insulating film formed on the charge storage layer and a first gate electrode formed on the first intermediate insulating film. Each select gate transistor has two second diffusion layers formed in the semiconductor substrate, a second gate insulating film formed on the semiconductor substrate, a second intermediate insulating film formed in direct contact with the second gate insulating film and having the same structure as the first intermediate insulating film, and a second gate electrode formed on the second intermediate insulating film.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Toba, Takayuki Okamura, Moto Yabuki
  • Patent number: 7960803
    Abstract: The use of atomic layer deposition (ALD) to form a dielectric layer of hafnium nitride (Hf3N4) and hafnium oxide (HfO2) and a method of fabricating such a combination gate and dielectric layer produces a reliable structure for use in a variety of electronic devices. Forming the dielectric structure includes depositing hafnium oxide using precursor chemicals, followed by depositing hafnium nitride using precursor chemicals, and repeating to form the laminate structure. Alternatively, the hafnium nitride may be deposited first followed by the hafnium nitride. Such a dielectric layer may be used as the gate insulator of a MOSFET, a capacitor dielectric in a DRAM, or a tunnel gate insulator in flash memories, because the high dielectric constant (high-k) of the film provides the functionality of a thinner silicon dioxide film, and because of the reduced leakage current when compared to an electrically equivalent thickness of silicon dioxide.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: June 14, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7960799
    Abstract: A charge trap type non-volatile memory device has memory cells formed on a silicon substrate at a predetermined interval via an element isolation trench along a first direction in which word lines extend. Each of the memory cells has a tunnel insulating film formed on the silicon substrate, a charge film formed on the tunnel insulating film, and a common block film formed on the charge film. The common block film is formed in common with the memory cells along first direction. An element isolation insulating film buried in the element isolation trench has an upper portion of a side wall of the element isolation insulating film which contacts with a side wall of the charge film in each of the memory cells and a top portion of the element isolation insulating film which contacts with the common block film. A control electrode film is formed on the common block film.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tadashi Iguchi
  • Patent number: 7956426
    Abstract: Methods and devices for a dielectric are provided. One method embodiment includes forming a passivation layer on a substrate, wherein the passivation layer contains a composition of silicon, oxygen, and nitrogen. The method also includes forming a lanthanide dielectric film on the passivation layer, and forming an encapsulation layer on the lanthanide dielectric film.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7952148
    Abstract: A semiconductor device according to the embodiments comprises a gate insulator formed on a substrate, the gate insulator including a high-dielectric film in whole or part, a reaction film including a first metal on the gate insulator; a metal film including a second metal on the reaction film; and a film including Si formed on the metal film.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: May 31, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuaki Nakajima
  • Publication number: 20110121378
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate dielectric of zirconium oxide (ZrO2), hafnium oxide (HfO2) and tin oxide (SnO2) acting as a single dielectric layer with a formula of Zrx Hfy Sn1-x-y O2, and a method of fabricating such a dielectric layer is described that produces a reliable structure with a high dielectric constant (high k). The dielectric structure is formed by depositing zirconium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing hafnium oxide onto the substrate using precursor chemicals, followed by depositing tin oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. Such a dielectric may be used as a gate insulator, a capacitor dielectric, or as a tunnel insulator in non-volatile memories, because the high dielectric constant (high k) provides the functionality of a much thinner silicon dioxide film.
    Type: Application
    Filed: January 18, 2011
    Publication date: May 26, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110115026
    Abstract: A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a germanium (Ge) material layer formed on the semiconductor substrate, a diffusion barrier layer formed on the Ge material layer, a high-k dielectric having a high dielectric constant greater than approximately 3.9 formed over the diffusion barrier layer, and a conductive electrode layer formed above the high-k dielectric layer.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemanth Jagannathan, Takashi Ando, Vijay Narayanan
  • Publication number: 20110108929
    Abstract: Atomic layer deposition is enhanced using plasma. Plasma begins prior to flowing a second precursor into a chamber. The second precursor reacts with a first precursor to deposit a layer on a substrate. The layer may include at least one element from each of the first and second precursors. The layer may be TaN, and the precursors may be TaF5 and NE3. The plasma may begin during purge gas flow between a pulse of the first precursor and a pulse of the second precursor. Thermal energy assists the reaction of the precursors to deposit the layer on the substrate. The thermal energy may be greater than generally accepted for ALD (e.g., more than 300 degrees Celsius).
    Type: Application
    Filed: January 14, 2011
    Publication date: May 12, 2011
    Applicant: ROUND ROCK RESEARCH, LLC
    Inventors: Shuang Meng, Garo J. Derderian, Gurtej Singh Sandhu