With Means For Increasing Light Absorption (e.g., Redirection Of Unabsorbed Light) Patents (Class 257/436)
  • Patent number: 8742528
    Abstract: A photodiode array PDA1 is provided with a substrate S wherein a plurality of photodetecting channels CH have an n-type semiconductor layer 32. The photodiode array PDA1 is provided with a p? type semiconductor layer 33 formed on the n-type semiconductor layer 32, resistors 24 provided for the respective photodetecting channels CH and each having one end portion connected to a signal conducting wire 23, and an n-type separating portion 40 formed between the plurality of photodetecting channels CH. The p? type semiconductor layer 33 forms pn junctions at an interface to the n-type semiconductor layer 32 and has a plurality of multiplication regions AM for avalanche multiplication of carriers generated with incidence of detection target light, corresponding to the respective photodetecting channels. An irregular asperity 10 is formed in a surface of the n-type semiconductor layer 32 and the surface is optically exposed.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: June 3, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhisa Yamamura, Akira Sakamoto, Terumasa Nagano, Yoshitaka Ishikawa, Satoshi Kawai
  • Patent number: 8716824
    Abstract: An optical article and method of making the same are provided. The optical article has optical multi-aperture operation. The optical article has one or more electrically conductive and selectively passivated patterns.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: May 6, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jitendra S. Goela, Michael A. Pickering, Neil D. Brown, Angelo Chirafisi, Mark Lefebvre, Jamie L. Triba
  • Patent number: 8716771
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Patent number: 8709958
    Abstract: An embodiment of the invention provides a solid-state image pickup element, including: a semiconductor layer having a photodiode, photoelectric conversion being carried out in the photodiode; a silicon oxide film formed on the semiconductor layer in a region having at least the photodiode by using plasma; and a film formed on the silicon oxide film and having negative fixed charges.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Sony Corporation
    Inventors: Itaru Oshiyama, Susumu Hiyama
  • Patent number: 8698267
    Abstract: An electrode includes a substantially planar metallic thin film layer with a patterned structure including a plurality of parallel lines or a plurality of crossed lines, the metallic thin film layer configured to transmit an incident light through the metallic thin film layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 15, 2014
    Assignee: South China Normal University
    Inventors: Yang Wang, Krzysztof Kempa, Zhifeng Ren
  • Patent number: 8692304
    Abstract: An image sensor includes: a substrate, at least a pixel, and at least a light shield is provided. Wherein the pixel includes a photodiode and at least a transistor, and the transistor is connected to a metal line via a contact. The light shield is positioned around at least one side of the pixel, wherein the light shield is made while forming the contact.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 8, 2014
    Assignee: Himax Imaging, Inc.
    Inventors: Fang-Ming Huang, Chung-Wei Chang, Ping-Hung Yin
  • Patent number: 8686452
    Abstract: An optoelectronic apparatus includes an optical device with an optical structure including a plurality of optical elements, and a radiation-emitting or radiation-receiving semiconductor chip with a contact structure which includes a plurality of contact elements that make electrical contact with the semiconductor chip and are spaced apart vertically from the optical structure, wherein the contact elements are arranged in interspaces between the optical elements upon a projection of the contact structure into the plane of the optical structure.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: April 1, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Brick, Julius Muschaweck, Joachim Frank
  • Patent number: 8673680
    Abstract: The present disclosure provides a method for a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, IV, Wai Son Ko
  • Patent number: 8669466
    Abstract: Electrical contact to the front side of a photovoltaic cell is provided by an array of conductive through-substrate vias, and optionally, an array of conductive blocks located on the front side of the photovoltaic cell. A dielectric liner provides electrical isolation of each conductive through-substrate via from the semiconductor material of the photovoltaic cell. A dielectric layer on the backside of the photovoltaic cell is patterned to cover a contiguous region including all of the conductive through-substrate vias, while exposing a portion of the backside of the photovoltaic cell. A conductive material layer is deposited on the back surface of the photovoltaic cell, and is patterned to form a first conductive wiring structure that electrically connects the conductive through-substrate vias and a second conductive wiring structure that provides electrical connection to the backside of the photovoltaic cell.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Yves Martin, Naim Moumen, Robert L. Sandstrom, Theodore G. van Kessel
  • Publication number: 20140048899
    Abstract: Methods for laser processing semiconductor materials for use in optoelectronic and other devices, including materials, devices, and systems associated therewith are provided. In one aspect, a method of minimizing laser-induced material damage while laser-texturing a semiconductor material can include delivering short pulse duration laser radiation to a target region of a semiconductor material to form a textured region having a reorganized surface layer, wherein the laser radiation has a wavelength from about 200 nm to about 600 nm and a pulse duration of from about 10 femtoseconds to about 400 picoseconds, and wherein defect density of the semiconductor material from beneath the reorganized surface layer up to a depth of about 1 micron is less than or equal to about 1012/cm3.
    Type: Application
    Filed: February 11, 2013
    Publication date: February 20, 2014
    Applicant: SIONYX, INC.
    Inventor: SIONYX, INC.
  • Publication number: 20140050492
    Abstract: A high-speed photodiode may include a photodiode structure having a substrate, a light-absorbing layer and a light-directing layer that is deposited on a top surface of the photodiode structure and patterned to form a textured surface used to change the angle of incident light to increase a light path of the incident light when entering the photodiode structure. In one embodiment, the light-directing layer may include a plurality of polygon such as triangular projections to refract the incident light to increase the light path thereof when entering the photodiode structure. In another embodiment, a plurality of nanoscaled sub-triangular projections can patterned on both sides of each triangular projection to more effectively increase the light paths. In a further embodiment, porous materials can be used to form the light-directing layer.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Inventors: Shirong Liao, Jinlin Ye, Bo Liao, Jie Dong
  • Publication number: 20140042580
    Abstract: A photoelectric conversion device includes a light-absorbing layer including a compound semiconductor capable of photoelectric conversion, the compound semiconductor containing a group Ib element including Cu, a group IIIb element and a group VIb element; and a semiconductor layer on one surface-side of the light-absorbing layer, the semiconductor layer having a plane orientation different from that of the light-absorbing layer, the semiconductor layer containing a group Ib element including Cu, at least one element selected from Cd, Zn and In, and a group VIb element. The photoelectric conversion device includes a region in which Cu content decreases from the light-absorbing layer to the semiconductor layer across a junction interface.
    Type: Application
    Filed: May 30, 2012
    Publication date: February 13, 2014
    Applicant: KYOCERA CORPORATION
    Inventors: Satoshi Oomae, Keita Kurosu
  • Patent number: 8647903
    Abstract: A method of fabricating an antireflective grating pattern and a method of fabricating an optical device integrated with an antireflective grating pattern are provided. The method of fabricating the antireflective grating pattern includes forming a photoresist (PR) pattern on a substrate using a hologram lithography process, forming a PR lens pattern having a predetermined radius of curvature by reflowing the PR pattern, and etching the entire surface of the substrate including the PR lens pattern to form a wedge-type or parabola-type antireflective subwavelength grating (SWG) pattern having a pointed tip on a top surface of the substrate. In this method, a fabrication process is simplified, the reflection of light caused by a difference in refractive index between the air and a semiconductor material can be minimized, and the antireflective grating pattern can be easily applied to optical devices.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 11, 2014
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Yong Tak Lee, Young Min Song
  • Patent number: 8643131
    Abstract: According to one embodiment, a solid-state imaging device includes a diffusion layer, first and second diffusion layers, and p-type amorphous silicon compound. The diffusion layer of a first conduction type is formed in a surface of a semiconductor substrate of the first conduction type. The diffusion layer functions as a charge accumulation part for accumulating electrons generated in the semiconductor substrate by light emitted from a back side of the semiconductor substrate to a surface side. The first and second diffusion layers of a second conduction type sandwich the charge accumulation part and are formed so as to reach the inside of the semiconductor substrate from the surface of the semiconductor substrate. The p-type amorphous silicon compound electrically isolates the charge accumulation part and is buried in the first and second trenches formed on the back side of the semiconductor substrate.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tetsuya Yamaguchi
  • Patent number: 8637337
    Abstract: A method for producing an integrated optical device includes the steps of preparing a substrate including first and second regions; growing, on the substrate, a first stacked semiconductor layer including a first optical waveguiding layer, first and second cladding layers, and a first etch-stop layer between the first and second cladding layers; etching the first stacked semiconductor layer through a first etching mask formed on the first region; selectively growing, on the second region through the first etching mask, a second stacked semiconductor layer, third and fourth cladding layers, and a second etch-stop layer between the third and fourth cladding layers; and forming a ridge structure by etching the second and fourth cladding layers. The step of etching the first stacked semiconductor layer includes a step of forming a first overhang between the first and second cladding layers by selectively etching the first etch-stop layer by wet etching.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: January 28, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tomokazu Katsuyama
  • Patent number: 8637338
    Abstract: A method for producing an integrated optical device includes the steps of growing, on a substrate including first and second regions, a first stacked semiconductor layer, a first cladding layer, and a side-etching layer; etching the first stacked semiconductor layer through a first etching mask formed on the first region; selectively growing, on the second region, a second stacked semiconductor layer and a second cladding layer; growing a third cladding layer and a contact layer on the first and second stacked semiconductor layers; and forming a ridge structure. The step of etching the first stacked semiconductor layer includes a step of forming an overhang between the first cladding layer and the first etching mask. The step of forming a ridge structure includes first, second, and third wet-etching steps in which the third cladding layer, the side-etching layer and the first and second cladding layers are selectively etched, respectively.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: January 28, 2014
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Tomokazu Katsuyama, Kenji Hiratsuka
  • Patent number: 8637951
    Abstract: A semiconductor light receiving element comprises: a substrate, a semiconductor layer of a first conductivity type formed on the substrate, a non-doped semiconductor light absorbing layer formed on the semiconductor layer of the first conductivity type, a semiconductor layer of a second conductivity type formed on the non-doped semiconductor light absorbing layer, and an electro-conductive layer formed on the semiconductor layer of the second conductivity type. A plurality of openings, periodically arrayed, are formed in a laminated body composed of the electro-conductive layer, the semiconductor layer of the second conductivity type, and the non-doped semiconductor light absorbing layer. The widths of the openings are less than or equal to the wavelength of incident light, and the openings pass through the electro-conductive layer and the semiconductor layer of the second conductivity type to reach the non-doped semiconductor light absorbing layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: January 28, 2014
    Assignee: NEC Corporation
    Inventors: Daisuke Okamoto, Junichi Fujikata, Kenichi Nishi
  • Patent number: 8633524
    Abstract: A solid-state imaging device includes a substrate, a photoelectric conversion section, a first impurity layer having a carrier polarity of a second conductivity type, a charge-to-voltage converting section, an amplifying section, and a second impurity layer having a carrier polarity of the second conductivity type. The second impurity layer is disposed in a region between the photoelectric conversion section and the amplifying section. The second impurity concentration of the second P-type impurity layer is made higher than the first impurity concentration of the first impurity layer.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 21, 2014
    Assignee: Sony Corporation
    Inventors: Kazuki Nomoto, Kaneyoshi Takeshita, Hiroyuki Ohri
  • Patent number: 8629862
    Abstract: A display capable of performing ambient light detection with a high accuracy is provided. The display device is a display device having a backlight and a photo sensor for detecting ambient light and outputting a photocurrent according to an intensity of the ambient light, and further including a light-shielding member disposed below the photo-sensor for shielding light from the backlight; and a pseudo photo sensor disposed above the light-shielding member around the photo sensor. The pseudo photo sensor is made of the same material as the photo sensor, and formed in the same process as the photo sensor.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 14, 2014
    Assignee: Innolux Corporation
    Inventors: Fumirou Matsuki, Kazuyuki Hashimoto
  • Patent number: 8624103
    Abstract: A backside illuminated multi junction solar cell module includes a substrate, multiple multi junction solar cells, and a cell interconnection that provides a series connection between at least two of the multi junction solar cells. The substrate may include a material that is substantially transparent to solar radiation. Each multi junction solar cell includes a first active cell, grown over the substrate, for absorbing a first portion of the solar radiation for conversion into electrical energy and a second active cell, grown over the first active cell, for absorbing a second portion of the solar radiation for conversion into electrical energy. At least one of the first and second active cells includes a nitride.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jizhong Li
  • Patent number: 8618622
    Abstract: Backlit detector for the detection of electromagnetic radiation around a predetermined wavelength, including a semiconductor absorption layer, formed above a transparent medium, capable of transmitting at least some of said radiation, and a mirror above the semiconductor layer, and placed between the mirror and the semiconductor layer, a periodic grating of metallic patterns, the mirror and the grating being included in a layer of material transparent to said radiation and formed on the semiconductor layer.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 31, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Roch Espiau De Lamaestre, Salim Boutami, Olivier Gravrand, Jérôme Le Perchec
  • Patent number: 8618624
    Abstract: The present invention relates to UV curable encapsulant compositions based on acrylic and/or methacrylic block copolymers, to structures containing these compositions especially photovoltaic cells and to the use of these compositions in photovoltaic cells. The liquid encapsulant composition according to the invention comprises: an acrylic or methacrylic block copolymer, at least one acrylic or methacrylic monomer and/or oligomer, and at least one photo initiator.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 31, 2013
    Assignees: Arkema France, Pythagoras Solar Inc.
    Inventors: Pierre Gerard, Izhar Halahmi, Pasha Solel
  • Patent number: 8614440
    Abstract: A photoactive layer in organic photodiodes includes organic photoactive dyes, including squaraines with donor-substituted aromatic substituents as the electron donor component, used as an alternative to polymer hold conductors for bulk heterojunctions typically found in the organic active layer of organic photodiodes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: December 24, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Maria Sramek, Oliver Hayden
  • Patent number: 8614451
    Abstract: A plurality of separate lead frames can be insert-molded in a reflector composed of a white resin having a high reflectivity to form a package for an LED device. A cavity is formed in the reflector. The cavity can have an inner circumferential surface that opens wider in an upward direction. Cups can be located in the cavity. Each cup has an outer wall that can be in the form of a cylinder with the bottom formed of each of two separate lead frames. A red LED chip and a green LED chip can be adhesively fixed to the lead frames located on the bottoms of the respective cups. The LED chips can have lower electrodes, which are electrically brought into conduction with the lead frames one by one. The LED chips can also have upper electrodes, which are electrically brought into conduction with the lead frames one by one via bonding wires. A light transmissive resin can be filled in the cavity.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: December 24, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Akihiko Hanya
  • Patent number: 8614494
    Abstract: Disclosed herein is a solid-state imaging device including: an opto-electrical conversion section provided inside a semiconductor substrate to receive incident light coming from one surface of the semiconductor substrate; a wiring layer provided on the other surface of the semiconductor substrate; and a light absorption layer provided between the other surface of the semiconductor substrate and the wiring layer to absorb transmitted light passing through the opto-electrical conversion section as part of the incident light.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 24, 2013
    Assignee: Sony Corporation
    Inventor: Syogo Kurogi
  • Patent number: 8610149
    Abstract: An organic light emitting diode display is disclosed. The display includes: a substrate; a first electrode positioned on the substrate; an organic emission layer positioned on the first electrode; a second electrode positioned on the organic emission layer; and a semi-transmissive layer positioned between the substrate and the first electrode and having a plurality of refractive layers having different refractive indices.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hee-Seong Jeong, Sung-Soo Koh, Tae-Gon Kim, Seung-Yeon Cho, Chul-Woo Jeong, Jae-Yong Kim, Chi-Wook An, Moo-Soon Ko, Ok-Byoung Kim
  • Patent number: 8604580
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 10, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, James Edward Carey
  • Publication number: 20130299933
    Abstract: In general, the invention relates to a unit that includes a semiconductor and a plasmonic material disposed on the semiconductor, where a potential barrier is formed between the plasmonic material and the semiconductor. The unit further includes an insulator disposed on the semiconductor and adjacent to the plasmonic material and a transparent conductor disposed on the plasmonic material, where, upon illumination, the plasmonic material is excited resulting the excitation of an electron with sufficient energy to overcome the potential barrier.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 14, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Mark William Knight, Heidar Sobhani Khakestar, Peter Nordlander, Nancy J. Halas
  • Patent number: 8569857
    Abstract: A bolometer has a semiconductor membrane having a single-crystalline portion, and spacers so as to keep the semiconductor membrane at a predetermined distance from an underlying substrate. The complementarily doped regions of the single-crystalline portion form a diode and the predetermined distance corresponds to a fourth of an infrared wavelength.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 29, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Piotr Kropelnicki, Marco Russ, Holger Vogt
  • Publication number: 20130277564
    Abstract: A cell for a silicon based photoelectric multiplier may comprise a substrate of a second conductivity type, a first layer of a first conductivity type, and/or a second layer of the second conductivity type formed on the first layer. The first layer and the second layer may form a first p-n junction, and the substrate may be configured such that in operation of the photoelectric multiplier from a quantity of light propagating towards a back side or side walls of the photoelectric multiplier, a negligible portion returns to a front side of the photoelectric multiplier.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 24, 2013
    Inventors: Masahiro Teshima, Razmik Mirzoyan, Boris Anatolievich Dolgoshein, Pavel Zhorzhevich Buzhan, Alexey Anatolievich Stifutkin
  • Patent number: 8542311
    Abstract: Image sensors may contain arrays of image sensor pixels, each of which includes a microlens and a photosensitive element. A multisection light guide that is made up of multiple light guide layers may be interposed between the microlens and the photosensitive element. The light guide layers may have alternating indicies of refraction to form a spectral filter. The lateral dimensions of the light guide layers may also be configured so that the light guide layers perform spectral filtering. Light guide shapes and sizes may be altered as a function of the lateral position of each image sensor pixel within the image sensor array. The uppermost light guide may be aligned with the microlens and the lowermost light guide may be aligned with the photosensitive element. The lateral positions of each light guide may be laterally shifted with respect to the next to form a staggered stack of light guides.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: September 24, 2013
    Assignee: Aptina Imaging Corporation
    Inventor: Victor Lenchenkov
  • Patent number: 8537255
    Abstract: Image sensors including a semiconductor substrate, a plurality of photo detecting elements, a dielectric layer, a plurality of color filters, and a plurality of micro lenses. The photo detecting elements may be in the semiconductor substrate and may convert an incident light into an electric signal. The dielectric layer may be on the semiconductor substrate and may include a plurality of photo blocking regions on regions between the photo detecting elements. The color filters may be on the dielectric layer and may be disposed corresponding to the plurality of photo detecting elements, respectively. The micro lenses may be on the plurality of color filters and may be disposed corresponding to the plurality of photo detecting elements, respectively.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Ho Lee, Jung-Chak Ahn, Dong-Yoon Jang, Wook Lee, Tae-Sub Jung
  • Patent number: 8536567
    Abstract: An organic light emitting display includes: a substrate, a buffer layer arranged on the substrate, a semiconductor layer arranged on the buffer layer, a gate insulating layer arranged on the semiconductor layer, a gate electrode arranged on the gate insulating layer, an inter-layer dielectric layer arranged on the gate electrode, a source/drain electrode arranged on the inter-layer dielectric layer, an insulating layer arranged on the source/drain electrode, an non-transmissive layer arranged on the insulating layer; and an organic light emitting diode arranged on the insulating layer.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 17, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jongyun Kim, Byoungdeog Choi
  • Patent number: 8530812
    Abstract: Disclosed is a solid-state image pickup apparatus including a photoelectric converter formed on a substrate, a wiring portion formed above the photoelectric converter and constituted of multilayer wirings, and an insulating portion in which the multilayer wirings of the wiring portion are embedded, the insulating portion having a refractive index larger than a silicon oxide.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: September 10, 2013
    Assignee: Sony Corporation
    Inventor: Koji Kikuchi
  • Patent number: 8525283
    Abstract: A wafer lens array comprising a plurality of lens sections arranged one-dimensionally or two-dimensionally, a substrate section connecting the lens sections, and gap sections, wherein the lens surfaces in the lens section each have one or more curved surfaces; the gap section is a part projecting from outside than the inner edge of the lens section; and the inner surfaces of the gap sections are spread from a side near the lens section to the other side.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: September 3, 2013
    Assignee: Fujifilm Corporation
    Inventors: Satoshi Yoneyama, Ryo Matsuno
  • Patent number: 8525217
    Abstract: A device for resin coating is used for producing an LED package including an LED element covered with resin containing phosphor. In a state in which a trial coating material 43 is located by a clamp unit 63, a trial coating of resin applied to the trial coating material 43 is irradiated with excitation light and light emitted from the phosphor contained in the resin is measured by an emission characteristic measuring unit 39. A deviation of the measurement result of the emission characteristic measuring unit from a prescribed emission characteristic is determined, and then a proper amount of resin to be applied to the LED element is derived for actual production based on the deviation.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Kentaro Nishiwaki, Tomonori Itoh, Masaru Nonomura
  • Publication number: 20130220413
    Abstract: The present invention relates generally to plasmonic structures, methods for making them, and devices including them. In one aspect, a plasmonic structure includes a plurality of metal particles disposed on a substrate; and one or more metal structures electrically coupled to and disposed on a surface of each of the plurality of metal particles. The metal structures have a structure that is different than the structure of the metal particles. The metal structures can be grown, for example, by electrodeposition on the metal particles. Growth of such metal structures can tune the response of the plasmonic structure.
    Type: Application
    Filed: November 11, 2011
    Publication date: August 29, 2013
    Applicant: Arizona Board of Regents, a body Corporate of the State of Arizona acting for and on behalf of Arzon
    Inventors: Michael Kozicki, Minghan Ren
  • Patent number: 8513761
    Abstract: A backside illumination semiconductor image sensor, wherein each photodetection cell includes a semiconductor body of a first conductivity type of a first doping level delimited by an insulation wall, electron-hole pairs being capable in said body after a backside illumination; on the front surface side of said body, a ring-shaped well of the second conductivity type, this well delimiting a substantially central region having its upper portion of the first conductivity type of a second doping level greater than the first doping level; and means for controlling the transfer of charge carriers from said body to said upper portion.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 20, 2013
    Assignees: STMicroelectronics (Grenoble) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: François Roy, Pierrick Descure
  • Publication number: 20130200480
    Abstract: According to one embodiment, a solid-state imaging device includes a first structure part, a second structure part, and a third structure part. The first structure part includes a first insulating body and a first photoelectric conversion part. The first photoelectric conversion part is periodically disposed in the first insulating body and selectively absorbs light in the first wavelength band. The second structure part includes a second insulating body and a second photoelectric conversion part. The second photoelectric conversion part is periodically disposed in the second insulating body and selectively absorbs light in the second wavelength band. The third structure part includes a third photoelectric conversion part. The third photoelectric conversion part absorbs light in a third wavelength band. When viewed in the light incidence direction, the first photoelectric conversion part, the second photoelectric conversion part, and the third photoelectric conversion part are disposed in this order.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 8, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kabushiki Kaisha Toshiba
  • Patent number: 8502151
    Abstract: Various embodiments of an optical proximity sensor having a lead frame and no overlying metal shield are disclosed. In one embodiment, a light emitter and a light detector are mounted on a lead frame comprising a plurality of discrete electrically conductive elements having upper and lower surfaces, at least some of the elements not being electrically connected to one another. An integrated circuit is die-attached to an underside of the lead frame. An optically-transmissive infrared pass compound is molded over the light detector and the light emitter and portions of the lead frame. Next, an optically non-transmissive infrared cut compound is molded over the optically-transmissive infrared pass compound to provide an optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.
    Type: Grant
    Filed: January 31, 2010
    Date of Patent: August 6, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Yufeng Yao, Junhua He, Wee Sin Tan
  • Patent number: 8502334
    Abstract: Disclosed is an image sensor including a photo-sensing device, a color filter positioned on the photo-sensing device, a microlens positioned on the color filter, and an insulation layer positioned between the photo-sensing device and the color filter, and including a trench exposing the photo-sensing device and a filler filled in the trench. The filler has light transmittance of about 85% or more at a visible ray region, and a higher refractive index than the insulation layer. A method of manufacturing the image sensor is also provided.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Kil-Sung Lee, Jae-Hyun Kim, Chang-Min Lee, Eui-June Jeong, Min-Soo Kim, Hwan-Sung Cheon, Tu-Won Chang
  • Patent number: 8501526
    Abstract: A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species (“CZTCh” or “CZTSS”) with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: August 6, 2013
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Glenn Teeter, Hui Du, Matthew Young
  • Publication number: 20130192666
    Abstract: A photovoltaic device cell comprising a first light transmissive electrical contact, an active region, a second light transmissive electrical contact, and a layered structure enclosing the active region, the layered structure being formed of two parts, a first part underlying the first light transmissive electrical contact and a second part overlying the second electrical contact and wherein the constants of the layers in these layered structures are interdependent such that light is localized within the active region.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicants: UNIVERSITAT POLITECNICA DE CATALUNYA, FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
    Inventors: Jordi MARTORELL PENA, Rafael Andrés BETANCUR LOPERA, Pablo ROMERO GÓMEZ, Luat VUONG
  • Publication number: 20130187250
    Abstract: Photosensitive semiconductor devices and associated methods are provided. In one aspect, for example, a photosensitive semiconductor device can include an electromagnetic radiation absorption layer having a thickness of less than or equal to about 200 ?m, wherein the electromagnetic radiation absorption layer includes a semiconductor material and an enhanced absorption region. The electromagnetic radiation absorption layer is operable to absorb greater than or equal to about 40% of incident electromagnetic radiation having at least one wavelength greater than or equal to about 1064 nm.
    Type: Application
    Filed: December 3, 2012
    Publication date: July 25, 2013
    Applicant: SIONYX, INC.
    Inventor: SiOnyx, Inc.
  • Patent number: 8487394
    Abstract: According to one embodiment, a solid-state imaging device includes a photoelectric conversion element, a light blocking section, and a protective layer. The protective layer protects the photoelectric conversion element and the light blocking section. A step section is formed on a surface of the protective layer. The step section is formed having a difference in height in a direction perpendicular to an irradiation surface of the photoelectric conversion element. The step section is provided in the light receiving area.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Fushimi, Takashi Takahashi, Junichi Ide, Yasushi Itabashi, Koji Yoshikawa
  • Patent number: 8471300
    Abstract: An image sensor device includes a substrate including a light sensing region therein and a reflective structure on a first surface of the substrate over the light sensing region. An interconnection structure having a lower reflectivity than the reflective structure is provided on the first surface of the substrate adjacent to the reflective structure. A microlens is provided on a second surface of the substrate opposite the first surface. The microlens is configured to direct incident light to the light sensing region, and the reflective structure is configured to reflect portions of the incident light that pass through the light sensing region back toward the light sensing region. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-Jun Park
  • Patent number: 8471311
    Abstract: An anti-reflective image sensor and method of fabrication are provided, the sensor including a substrate; first color sensing pixels disposed in the substrate; second color sensing pixels disposed in the substrate; third color sensing pixels disposed in the substrate; a first layer disposed directly on the first, second and third color sensing pixels; a second layer disposed directly on the first layer overlying the first, second and third color sensing pixels; and a third layer disposed directly on portions of the second layer overlying at least one of the first or second color sensing pixels, wherein the first layer has a first refractive index, the second layer has a second refractive index greater than the first refractive index, and the third layer has a third refractive index greater than the second refractive index.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Lee, Sang-Il Jung
  • Patent number: 8466003
    Abstract: Embodiments of the current invention describe methods of forming different types of crystalline silicon based solar cells that can be combinatorially varied and evaluated. Examples of these different types of solar cells include front and back contact silicon based solar cells, all-back contact solar cells and selective emitter solar cells. These methodologies all incorporate the formation of site-isolated regions using a combinatorial processing tool and the use of these site-isolated regions to form the solar cell area. Therefore, multiple solar cells may be rapidly formed on a single crystalline silicon substrate for use in combinatorial methodologies. Any of the individual processes of the methods described may be varied combinatorially to test varied process conditions or materials.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: June 18, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Jian Li, James Craig Hunter, Nikhil Kalyankar, Nitin Kumar, Minh Anh Anh Nguyen
  • Patent number: 8450821
    Abstract: A method and apparatus used for forming a lens and spacer combination, and imager module employing the spacer and lens combination. The apparatus includes a mold having a base, spacer section, and mold feature. The method includes using the mold with a blank to create a spacer that includes an integral lens. The spacer and lens combination and imager modules can be formed on a wafer level.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Rick Lake, Jacques Duparre
  • Patent number: 8440905
    Abstract: A dye-sensitized semiconductor includes a semiconductor, and a copper(I) coordination compound comprising 2,9-dialkyl-diphenyl-1,10-phenanthrolinedisulfonate, on the semiconductor. The dye-sensitized semiconductor may be used as part of a photoanode in a solar cell, which also contains a counter-electrode, and a conductive medium containing a redox-active mediator, in contact with and separating the photoanode and the counter-electrode.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 14, 2013
    Inventors: Robert J. LeSuer, Kristy L. Mardis, Ali Manesh