With Different Sensor Portions Responsive To Different Wavelengths (e.g., Color Imager) Patents (Class 257/440)
  • Patent number: 7291858
    Abstract: A tunable QWIP FPA device that is configured for spectral tunability for performing the likes of imaging and spectroscopy is disclosed. A selected bias voltage is applied across the contacts associated with a particular detector layer/channel of the device, where each applied bias corresponds to a particular target spectrum/color for detection. Each detector layer/channel can be coarse tuned for a bimodal or dual-band operation (e.g., MWIR/LWIR). Also, each detector layer/channel is configured for continuous or fine tuning within a particular mode (e.g., MWIR/MWIR). Thus, dynamic bias-controlled tuning is enabled. Asymmetric quantum well configurations enable this tunability.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: November 6, 2007
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventors: Mani Sundaram, Axel R Reisinger
  • Patent number: 7279670
    Abstract: A CMOS image sensor obtains color through the use of two or three superposed layers. Each pixel in the image sensor includes a plurality of superposed photosensitive p-n junctions with individual charge integration regions. The combination of each of the superposed layers provides increased sensitivity and resolution of a single chip color imager.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vladimir Berezin
  • Publication number: 20070187793
    Abstract: Provided are color filters formed of alternately stacked inorganic materials having different refractive indices, a color filter array, a method of manufacturing the color filter array, and an image sensor. A color filter can include a substrate and first and second inorganic films configured to filter light of a specific wavelength corresponding to a predetermined color, wherein the first and second inorganic films can be alternately stacked on the substrate and have different refractive indices from each other. The refractive index difference between the first inorganic film and the second inorganic film is at least 0.8. The color filter can be formed by alternately stacking the first and second inorganic films. The first inorganic film and the second inorganic film can have a refractive index of 1.3 to 6.0 in a visible light region of 400 to 700 nm, and can be formed of a material selected from the group consisting of SiO2, SiON, SiN, and Si.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 16, 2007
    Inventors: Chang-rok Moon, Koe-hyun Paik, Duck-hyung Lee, Sung-ho Hwang
  • Patent number: 7239001
    Abstract: The invention relates to wavelength-selective and tunable optical filters for transmitting the light in a narrow optical spectral band, centered around an adjustable wavelength, and for blocking the transmission of wavelengths lying outside of this band. In a micromachined monolithic structure containing the optical filter proper, the component comprises a low-absorption light detection element used for slaving the tuning control of the filter to a wavelength received by the filter, this element transmitting the majority of the radiation at this wavelength. The filter is a Fabry-Pérot interferometric filter, the cavity (C) of which is tuned to a value that maximizes the power detected by the light detection element. The filter is preferably based on layers of indium phosphide and air gaps. The detection element preferably comprises a layer of gallium-indium arsenide 74 suitable for detection of the intended wavelength band.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 3, 2007
    Assignee: Atmel Grenoble S.A.
    Inventors: Christophe Pautet, Xavier Hugon
  • Patent number: 7233051
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: June 19, 2007
    Assignee: Intel Corporation
    Inventors: Michael T. Morse, Olufemi I. Dosunmu, Ansheng Liu, Mario J. Paniccia
  • Patent number: 7217926
    Abstract: The present disclosure relates to detection of light (or radiation) at different wavelengths. A voltage-tunable multi-color infrared (IR) detector element receives incident radiation through a substantially-transparent substrate. Side surfaces of the voltage-tunable multi-color IR detector element reflect the incident radiation, thereby redirecting the radiation. The reflected radiation is directed through a voltage-tunable multi-color infrared (IR) detector. Energy proportional to different ranges of wavelengths is detected by supplying different bias voltages across the voltage-tunable multi-color IR detector element.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: May 15, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventor: Kwong-Kit Choi
  • Patent number: 7217951
    Abstract: A semiconductor detector has a tunable spectral response. These detectors may be used with processing techniques that permit the creation of “synthetic” sensors that have spectral responses that are beyond the spectral responses attainable by the underlying detectors. For example, the processing techniques may permit continuous and independent tuning of both the center wavelength and the spectral resolution of the synthesized spectral response. Other processing techniques can also generate responses that are matched to specific target signatures.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 15, 2007
    Assignee: Stc@unm
    Inventors: Sanjay Krishna, J. Scott Tyo, Majeed M Hayat, Sunil Raghavan, Unal Sakoglu
  • Patent number: 7214998
    Abstract: A complementary metal oxide semiconductor (CMOS) image sensor layout structure is described. The CMOS image sensor layout structure includes a substrate, a plurality of light sensing devices, a plurality of transistors and a plurality of color-filtering film layers. The substrate has a pixel array region comprising a plurality of pixels. Each pixel has a light sensing region and an active device region. The pixels are isolated from one another by isolation structures and the light sensing regions have different sizes. The light sensing devices are defined separately within the respective light sensing regions. The transistors are disposed within the respective active device region. The color-filtering film layers are disposed separately above the pixels to form a color-filtering array.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: May 8, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Ping Wu, Chia-Huei Lin
  • Patent number: 7209172
    Abstract: A photodiode structure (300) includes a first plurality of co-located light band detectors that generate analog detector signals, a first multiplexing circuit (440) coupled to the first plurality of analog detector signals, which sequentially generates each of the first plurality of analog detector signals at a first multiplexed output (444), a second multiplexing circuit (445) coupled to a first plurality of reference signals, which sequentially generates at a second multiplexed output (449) each of the first plurality of reference signals in synchronism with the first multiplexed output (444); and a single digital pixel sensor circuit (315) having inputs coupled to the first and second multiplexed outputs, which sequentially generates a series of digital outputs based on the first and second multiplexed outputs (444. 449).
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 24, 2007
    Assignee: Motorola, Inc.
    Inventors: Kevin W. Jelley, King F. Lee
  • Patent number: 7199931
    Abstract: A microlens array with reduced or no empty space between individual microlenses and a method for forming the same. The microlens array is formed by patterning a first set of microlens precursors in a checkerboard pattern on a substrate. The first set of microlens precursors is reflowed and cured into first microlenses impervious to subsequent reflows. Then, a second set of microlens precursors is patterned in spaces among the first microlenses, reflowed and cured into second microlenses. The reflows and cures can be conducted under different conditions, and the microlenses may be differently sized. The conditions of the reflows can be chosen to ensure that the focal lengths of microlenses are optimized for maximum sensor signal.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Ulrich C. Boettiger, Jin Li
  • Patent number: 7193241
    Abstract: An ultraviolet sensor includes a substrate; a diamond layer, placed on the substrate, functioning as a detector; and at least one pair of surface electrodes arranged on the diamond layer. The diamond layer has a detecting region present at the surface thereof, the detecting region has at least one sub-region exposed from the surface electrodes, and the sub-region has a covering layer, made of oxide or fluoride, lying thereon. A method for manufacturing the ultraviolet sensor includes a step of forming a diamond layer, functioning as a detector, on a substrate; a step of forming at least one pair of surface electrodes on the diamond layer; and a step of forming a covering layer, made of oxide or fluoride, on at least one sub-region of a detecting region present at the surface of the diamond layer, the sub-region being exposed from the surface electrodes.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: March 20, 2007
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Kazushi Hayashi, Takeshi Tachibana, Yoshihiro Yokota, Nobuyuki Kawakami
  • Patent number: 7193289
    Abstract: An image sensor array and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack with improved thickness uniformity to result in a pixel array exhibiting increased light sensitivity. In the sensor array, each Cu metallization level includes a Cu metal wire structure formed at locations between each array pixel and, a barrier material layer is formed on top each Cu metal wire structure that traverses the pixel optical path. By implementing a single mask or self-aligned mask methodology, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path. The etched opening is then refilled with dielectric material.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: March 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Anthony K. Stamper
  • Patent number: 7180150
    Abstract: A CMOS image sensor and a method for detecting color sensitivity of red, green and blue light without using a color filter layer is disclosed, which includes a semiconductor substrate having an active region; a photodiode formed in the active region of the semiconductor substrate, and generating an optical electric charge in accordance with irradiation of light; an insulating interlayer formed on an entire surface of the semiconductor substrate; and a micro lens formed on the insulating interlayer in perpendicular to the photodiode, wherein, a back-bias voltage is applied to the semiconductor substrate to vary a width of a depletion area of the photodiode.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: February 20, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Wi Sik Min
  • Patent number: 7176544
    Abstract: A pixel for detecting red and green light is a single pixel is described. The pixel comprises a deep N well formed in a P type epitaxial substrate. The pixel comprises a deep N well formed in a P type epitaxial substrate. A number of P wells, which are used as the sensor nodes, are formed in the deep N well. The use of these P wells as the sensor nodes improves the modulation transfer function. The depth of the deep N well is about equal to the depth of hole electron pairs generated by red light in silicon. The depth of the P wells is about equal to the depth of hole electron pairs generated by green light in silicon. A red/green signal is determined at each P well by determining the potentials between each of the P wells and the deep N well after a charge integration cycle with the P wells and the deep N well isolated.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: February 13, 2007
    Assignee: Dialog Imaging Systems GmbH
    Inventors: Taner Dosluoglu, Michael Henry Brill
  • Patent number: 7166880
    Abstract: A vertical color filter sensor group formed on a substrate (preferably a semiconductor substrate) and including at least two vertically stacked, photosensitive sensors, and an array of such sensor groups. In some embodiments, a carrier-collection element of at least one sensor of the group has substantially larger area, projected in a plane perpendicular to a normal axis defined by a top surface of a top sensor of the group, than does each minimum-sized carrier-collection element of the group. In some embodiments, the array includes at least two sensor groups that share at least one carrier-collection element. Optionally, the sensor group includes at least one filter positioned relative to the sensors such that radiation that has propagated through or reflected from the filter will propagate into at least one sensor of the group.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: January 23, 2007
    Assignee: Foveon, Inc.
    Inventors: Richard B. Merrill, Richard F. Lyon, Richard M. Turner, Paul M. Hubel
  • Patent number: 7164444
    Abstract: A vertical color filter detector group with highlight detector for generating data for a picture element. In one embodiment, the detector group includes three photodiodes each having its own spectral sensitivity and saturation exposure level and a highlight diode having a highlight saturation exposure level. The three photodiodes are located substantially each above or below the others in a semiconductor substrate with the highlight diode in close physical proximity thereto. The four diodes react to light exposure at about the same time as one another. The saturation exposure levels of the three photodiodes are about equal to each other and the highlight saturation exposure level is higher than each of the other three levels. The highlight diode may not be directly exposed to light, but it is close enough to the exposed photodiode region to collect some photoelectrons that are not collected by the three photodiodes.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: January 16, 2007
    Assignee: Foveon, Inc.
    Inventor: Richard B. Merrill
  • Patent number: 7154157
    Abstract: A radiation sensing structure includes red, green and blue photodiodes stacked Above an infrared radiation sensing photodiode.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: December 26, 2006
    Assignee: Intel Corporation
    Inventors: Gary R. Bradski, Horst Haussecker, Cynthia S. Bell
  • Patent number: 7138656
    Abstract: A liquid crystal display panel and a fabricating method thereof for reducing the number of data lines and the capacitance of a parasitic capacitor between pixel electrodes are disclosed. A first switching part has at least two thin film transistors for applying a first pixel signal that is supplied to a first data line to a first pixel electrode under control of the second control line and the gate line. A second switching part has at least two thin film transistors for applying a second pixel signal supplied to the second data line to the second pixel electrode under control of the first control line and the gate line. A turn-on current value of wither of the two thin film transistors, in each of the first and second switching parts, is more than that of the other thin film transistor.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: November 21, 2006
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Sang Hee Yu, Won Seok Kang
  • Patent number: 7132724
    Abstract: A vertical-color-filter detector disposed in a semiconductor structure comprises a complete-charge-transfer detector comprising semiconductor material doped to a first conductivity type and has a horizontal portion disposed at a first depth in the semiconductor structure substantially below an upper surface thereof and a vertical portion communicating with the upper surface of the semiconductor structure. The complete-charge-transfer detector is disposed within a first charge container forming a potential well around it. The horizontal portion of the complete-charge-transfer detector has a substantially uniform doping density in a substantially horizontal direction and the vertical portion of the complete-charge-transfer detector has a doping density that is a monotonic function of depth and is devoid of potential wells. A first charge-transfer device is disposed substantially at an upper surface of the semiconductor structure and is coupled to the vertical portion of the complete-charge-transfer detector.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: November 7, 2006
    Assignee: Foveon, Inc.
    Inventor: Richard B. Merrill
  • Patent number: 7129466
    Abstract: A light-receiving device comprises, on a substrate, a first light-receiving part for detecting light of a first wavelength range, and a second light-receiving part for detecting light of a second wavelength range. At least a part of incident light is transmitted through the first light-receiving part and then received by the second light-receiving part. The central wavelength of the first wavelength range is longer than the central wavelength of the second wavelength range, and the first light-receiving part is composed of an organic semiconductor having an absorption spectral maximum in the first wavelength range.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: October 31, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tatsuya Iwasaki
  • Patent number: 7122844
    Abstract: A susceptor for holding semiconductor wafers in an MOCVD reactor during growth of epitaxial layers on the wafers is disclosed. The susceptor comprises a base structure made of a material having low thermal conductivity at high temperature, and has one or more plate holes to house heat transfer plugs. The plugs are made of a material with high thermal conductivity at high temperatures to transfer heat to the semiconductor wafers. A metalorganic organic chemical vapor deposition reactor is also disclosed utilizing a susceptor according to the present invention.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: October 17, 2006
    Assignee: Cree, Inc.
    Inventors: Shuji Nakamura, Steven DenBaars, Max Batres, Michael Coulter
  • Patent number: 7122396
    Abstract: The present invention provides a semiconductor acceleration sensor wherein a semiconductor element is prevented from being damaged even when at least part of a weight is disposed in an internal space of a semiconductor sensor element and the mass of a weight is accordingly increased. An inner peripheral surface of a support portion 9 is constituted by four trapezoidal inclined surfaces 13 of a substantially identical shape which are annularly combined so as to define an outer peripheral surface of a frust-pyramidal space. A weight 3 is so constructed as to have an abutting portion including a linear portion 3d which abuts against the inclined surfaces 13 constituting the inner peripheral surface of the support portion 9 when the weight 3 makes a maximum displacement in a direction where a diaphragm portion 11 is located. The abutting portion 3d has a circular outline shape as seen from a side where a weight fixing portion 7 is located.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 17, 2006
    Assignee: Hokuriku Electric Industry Co., Ltd.
    Inventors: Yoshiyuki Nakamizo, Tsutomu Sawai, Masato Ando
  • Patent number: 7115963
    Abstract: In-pixel circuit architectures for CMOS image sensors are disclosed, which are suitable for avalanche photo-diodes operating either in linear or in non-linear mode. These architectures apply in particular to photo-diodes and image sensors in which CMOS devices are fabricated on thin-film silicon-on-insulator substrates.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: October 3, 2006
    Assignee: Quantum Semiconductor LLC
    Inventors: Carlos J. R. P. Augusto, Pedro N. C. Diniz
  • Patent number: 7109488
    Abstract: A multi-color IR imaging device includes optics that direct mid-wave infrared (MWIR) and long-wave infrared (LWIR) radiation onto a focal plane array having LWIR and MWIR detection layers. Pixel groups that include at least one first pixel and one second pixel are defined on the focal plane array, and a first filter and a second filter which form part of an inhomogeneous filter is placed over the respective first and second pixels in a checkerboard pattern, in close proximity to the detection layers. This allows MWIR radiation in M band, and LWIR radiation in an L1 band to pass therethrough and illuminate the first pixels, and M, L1, and a separate LWIR band designated L2 to pass therethrough and illuminate the second pixels. To simultaneously image both MWIR and LWIR, the focal plane array is placed at a predetermined distance from the optics so that the MWIR spot size covers a single pixel and the LWIR spot size is about the same area as the area of a group of two first pixels and two second pixels.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: A. Fenner Milton
  • Patent number: 7105906
    Abstract: The loss of photogenerated electrons to surface electron-hole recombination sites is minimized by utilizing a first p-type surface region to form a depletion region that functions as a first barrier that repels photogenerated electrons from the surface recombination sites, and a second p-type surface region that provides a substantial change in the dopant concentration.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: September 12, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Michael Mian, Robert Drury
  • Patent number: 7098439
    Abstract: Method and systems related to obstructing a first predefined portion of at least one defined wavelength of light incident upon a first photo-detector array; and detecting the at least one defined wavelength of light with a photo-detector in a second photo-detector array.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: August 29, 2006
    Assignee: Searete LLC
    Inventors: W. Daniel Hillis, Roderick A. Hyde, Nathan P. Myhrvold, Lowell L. Wood, Jr.
  • Patent number: 7087832
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
  • Patent number: 7087833
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Stephen A. Empedocles
  • Patent number: 7084472
    Abstract: A solid-state imaging device includes a plurality of two-dimensionally arranged photo diodes and a plurality of microlenses having substantially hemispherical shapes which cover the respective photo diodes. The microlens has a multilayer structure including at least a transparent resin upper layer which forms at least a portion of the substantially hemispherical shape, and a colored lower layer provided on a portion of the transparent resin upper layer which is located above the photo diode, with an interface between the colored lower layer and the transparent resin upper layer having a shape conforming to a surface of the photo diode.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 1, 2006
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Kenzo Fukuyoshi, Tadashi Ishimatsu, Satoshi Kitamura, Keisuke Ogata
  • Patent number: 7083999
    Abstract: A second substrate including a transparent substrate is bonded to a first substrate including a plurality of optical elements each of which has an optical section, with a light transmissive adhesive layer interposed, to seal the optical sections. The first substrate is then cut into the individual optical elements.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: August 1, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7081368
    Abstract: An indium electrode film (2) is formed closely adhering to one face of an organic semiconductor film (1) made of copper phthalocyanine while a gold electrode film (3) is formed on the other face. A voltage is applied to the organic semiconductor film (1) so that the indium electrode (2) side is biased positively. By applying a voltage so that the electrode (2) side is charged positively and irradiating with a light having a wavelength absorbable by the organic semiconductor film (1) the phenomenon of photocurrent multiplication arises at the interface of the organic semiconductor film (1) and the electrode (2). When put under an oxygen or moisture atmosphere in the above state, this gas sensor can detect oxygen or moisture depending on a change in photocurrent due to the multiplication.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: July 25, 2006
    Assignee: Japan Science and Technology Corporation
    Inventors: Masahiro Hiramoto, Masaaki Yokoyama, Manabu Yoshida
  • Patent number: 7075124
    Abstract: A radiation-sensitive semiconductor body which has at least one radiation-absorbent active area (2) between at least two contact layers (6, 7) and which receives electromagnetic radiation in a wavelength range between ?1 and ?2 where ?2>?1. A filter layer (5) is arranged between the active area (2) and a radiation input surface (9). The active area (2) detects electromagnetic radiation at a wavelength below ?2. The filter layer (5) absorbs electromagnetic radiation at a wavelength below ?1, and passes electromagnetic radiation at a wavelength above ?1.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: July 11, 2006
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Tony Albrecht, Peter Brick, Glenn-Yves Plaine, Marc Philippens
  • Patent number: 7053457
    Abstract: The invention relates to an opto-electronic component for converting electromagnetic radiation into an intensity-dependent photocurrent, comprising a substrate (1) with a microelectronic circuit whose surface is provided with a first layer (7) which is electrically contacted thereto and made of amorphous silicon a-i:H or alloys thereof, and at least one other optically active layer (8) is disposed upstream from said first layer in the direction of incident light thereof (7). The invention also relates to the production thereof. The aim of the invention is to improve upon an opto-electronic component of the above-mentioned variety in order to obtain high spectral sensitivity within the visible light range and, correspondingly, significantly reduce sensitivity to radiation in the infrared range without incurring any additional construction costs.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: May 30, 2006
    Assignee: STMicroelectronics NV
    Inventors: Peter Rieve, Jens Prima, Konstantin Seibel, Marcus Walder
  • Patent number: 7026700
    Abstract: Embodiments of the present invention include an apparatus, method, and system for a photodetector with a polarization state sensor.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: April 11, 2006
    Assignee: Intel Corporation
    Inventor: Peter Jesper Hanberg
  • Patent number: 7026596
    Abstract: A pixel circuit, and a method for operating a high-low sensitivity (HLS) pixel circuit, to provide increased dynamic range in an imager. The pixel circuit combines a four transistor (“4T”) and a three-transistor plus capacitor (“3TC”) configuration in one pixel, where the 4T portion of the pixel is coupled to a high sensitivity buried photodiode region, and the 3TC portion of the pixel is coupled to a low sensitivity buried photodiode region. The pixel circuit first reads out charge from the high sensitivity photodiode region and compares it to a reset voltage, then reads out charge from the low sensitivity photodiode region. Under an alternate embodiment, multiple HLS pixels are coupled through a common floating diffusion node.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: April 11, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Eric R. Fossum
  • Patent number: 6998660
    Abstract: An array of vertical color filter (VCF) sensor groups, each VCF sensor group including at least two vertically stacked, photosensitive sensors. Preferably, the array is fabricated, or the readout circuitry is configured (or has a state in which it is configured), to combine the outputs of sensors of multiple sensor groups such that the array emulates a conventional array of single-layer sensors arranged in a Bayer pattern or other single-layer sensor pattern, and such that the outputs of at least substantially all of the sensors of each of the VCF sensor groups are utilized to emulate the array of single-layer sensors.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 14, 2006
    Assignee: Foveon, Inc.
    Inventors: Richard F. Lyon, Richard B. Merrill
  • Patent number: 6980748
    Abstract: A synchronized optical clocking signal is provided to a plurality of optical receivers by providing a layer of a high absorption coefficient material, such as SiGe or Ge, on a front surface of a low absorption coefficient substrate, such as silicon. Diodes are formed in the germanium containing layer for receiving an optical signal and converting the optical signal into an electrical signal. An optical clocking signal is shined on the back surface of the silicon substrate. The light has a wavelength long enough so that it penetrates through the silicon substrate to the germanium containing layer. The wavelength is short enough so that the light is absorbed in the germanium containing layer and converted to the electrical clocking signal used for neighboring devices and circuits. The germanium concentration is graded so that minority carriers are quickly swept across junctions of the diodes and collected.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: December 27, 2005
    Assignee: International Business Machines Corporation
    Inventor: James M. Leas
  • Patent number: 6965152
    Abstract: A quantum well can be designed to detect light of a particular wavelength by tailoring the potential depth and width of the well. The design produces two energy states in the well separated by the desired photon energy. The GaAs/AlxGa1-xAs material system allows the quantum well shape to be varied over a range wide enough to enable light detection at wavelengths longer than approximately 6 ?m. Hence, large bandgap materials such as GaAs/AlxGa1-xAs material has made fabrication of a large focal plane arrays tuned to detect light at wavelengths from 6 to 25 ?m possible.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: November 15, 2005
    Assignee: California Institute of Technology
    Inventors: Sumith V. Bandara, Sarath D Gunapala
  • Patent number: 6960799
    Abstract: An array of photodiodes includes regions of a second conductivity type formed in a semiconductive region of a first conductivity type, divided into three interleaved sub-arrays. All the photodiodes of a same sub-array are coated with a same interference filter including at least one insulating layer of determined thickness coated with at least one conductive layer. According to the present invention, the conductive layers are electrically connected to the semiconductive region of a first conductivity type.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: November 1, 2005
    Assignee: STMicroelectronics A.A.
    Inventor: Pierrick Descure
  • Patent number: 6960813
    Abstract: A method and system for cutting a wafer comprising a semiconductor substrate attached to an array of integrated devices includes placing the wafer on a stage such as a movable X-Y stage including a vacuum chuck having a porous mounting surface, and securing the wafer during and after cutting by vacuum pressure through the pores. The wafer is cut by directing UV pulses of laser energy at the substrate using a solid-state laser having controlled polarization. An adhesive membrane can be attached to the separated die to remove them from the mounting surface, or the die can otherwise be removed after cutting from the wafer.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 1, 2005
    Assignee: New Wave Research
    Inventor: Kuo-Ching Liu
  • Patent number: 6958194
    Abstract: An imaging cell reduces recombination losses and increases sensitivity by forming a low resistance lateral path with a silicon germanium layer of a conductivity type that is sandwiched between silicon layers of the same conductivity type. The silicon germanium layer also provides a quantum well from which photo-generated electrons find it difficult to escape, thereby providing a barrier that reduces cross-talk.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: October 25, 2005
    Assignee: Foveon, Inc.
    Inventors: Peter J. Hopper, Philipp Lindorfer, Michael Mian, Robert Drury
  • Patent number: 6956273
    Abstract: In a photoelectric conversion element which is formed by alternately stacking a region of a first conductivity type and a region of a second conductivity type as a conductivity type opposite to the first conductivity type to form a multi-layered structure, in which junction surfaces between the neighboring regions of the first and second conductivity types are formed to have depths suited to photoelectrically convert light in a plurality of different wavelength ranges, and which outputs signals for respective wavelength ranges, a region of a conductivity type opposite to the conductivity type of a surface-side region of the junction surface closest to a surface is formed in the surface of the surface-side region. Thus, highly color-separable signals which suffer less color mixture upon reading out signals from a plurality of photodiode layers is read out.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 18, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toru Koizumi
  • Patent number: 6946715
    Abstract: A CMOS imaging device including a two pixel detection system for red, green, and blue light. One pixel detects red and blue light and another pixel detects green light. The detection of red and blue is based on wavelength and the device is structured such that in the red/blue pixel, detection of blue light is at a shallow substrate depth, while detection of red is at a deeper substrate depth. The pixel array is structured such that the red/blue pixel is adjacent to the green pixel and alternates between red/blue and green pixels. The invention is also related to methods of forming such an imager array and pixels.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: September 20, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Sungkwon (Chris) Hong
  • Patent number: 6933585
    Abstract: The invention concerns a color image sensor that can be used to make a miniature camera, and a corresponding method for making this sensor. The image sensor comprises a transparent substrate (40) on the upper part of which are superimposed, successively, a mosaic of color filters (18), a very thin silicon layer (30) comprising photosensitive zones, and a stack of conductive layers (14) and insulating layers (16) defining image detection circuits enabling the collection of the electrical charges generated by the illumination of the photosensitive zones through the transparent substrate. The manufacturing method consists in producing the photosensitive circuits on a silicon wafer, transferring said wafer on to a temporary substrate, thinning the wafer down to a thickness of about three to 30 micrometers, depositing color filters on the surface of the remaining silicon layer and transferring the structure to a permanent transparent substrate and eliminating the temporary substrate.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: August 23, 2005
    Assignee: Atmel Grenoble S.A.
    Inventors: Louis Brissot, Eric Pourquier
  • Patent number: 6933168
    Abstract: A method and apparatus for employing a light shield to modulate pixel color responsivity. The improved pixel includes a substrate having a photodiode with a light receiving area. A color filter array material of a first color is disposed above the substrate. The pixel has a first relative responsivity. A light shield is disposed above the substrate to modulate the pixel color responsivity. The light shield forms an aperture whose area is substantially equal to the light receiving area adjusted by a reduction factor. The reduction factor is the result of an arithmetic operation between the first relative responsivity and a second relative responsivity, associated with a second pixel of a second color.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: August 23, 2005
    Assignee: Intel Corporation
    Inventors: Edward J. Bawolek, Lawrence T. Clark, Mark A. Beiley
  • Patent number: 6934050
    Abstract: A method for storing a full Red, Green, Blue (RGB) data set. A full RGB data set is three-color image data captured with an imager array formed on a semiconductor substrate and comprising a plurality of vertical-color-filter detector groups. Each of the vertical color detector groups comprises three detector layers each configured to collect photo-generated carriers of a first polarity, separated by intervening reference layers configured to collect and conduct away photo-generated carriers of opposite polarity, the three detector layers being disposed substantially in vertical alignment with respect to one another and having different spectral sensitivities. The three-color image data is then stored as digital data in a digital storage device without performing interpolation on the three-color image data.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: August 23, 2005
    Assignee: Foveon, Inc.
    Inventors: Richard B. Merrill, Richard F. Lyon, Carver A. Mead
  • Patent number: 6924472
    Abstract: An image sensor includes a semiconductor substrate; a photosensor having, a first photosensing region including a first stack of one or more layers of transparent materials covering the substrate, the first photosensing region having a spectral response having minima and maxima as a function of wavelength of light; a second photosensing region including a second stack of one or more layers of transparent materials covering the substrate, the second photosensing region having a spectral response having maxima and minima; and a third photosensing region including a third stack of one or more layers of transparent materials covering the substrate, the third photosensing region having a spectral response having maxima and minima; and wherein at least one maximum or minimum of the spectral response of the separate regions is matched with a minimum or maximum such that the average spectral response of the photosensor has less variation with wavelength of light than the individual spectral responses of each of the s
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 2, 2005
    Assignee: Eastman Kodak Company
    Inventors: David L. Losee, Stephen L. Kosman
  • Patent number: 6914314
    Abstract: A vertical color filter sensor group formed on a substrate (preferably a semiconductor substrate) and including at least two vertically stacked, photosensitive sensors, each having a different spectral response. At least one of the sensors includes at least one layer of a semiconductor material other than crystalline silicon (for example, silicon carbide, or InxGa1-xN, or another III-V semiconductor material, or polysilicon, or amorphous silicon). Other aspects of the invention are arrays of such vertical color filter sensor groups, and methods for fabricating such vertical color filter sensor groups and arrays thereof.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 5, 2005
    Assignee: Foveon, Inc.
    Inventors: Richard B. Merrill, Russel A. Martin
  • Patent number: 6911712
    Abstract: A CMOS pixel responsive to different colors of optical radiation without the use of color filters is described. A deep N well is formed in a P type silicon substrate. An N well is then formed at the outer periphery of the deep N well to form a P well within an N well structure. Two N+ regions are formed in the P well and at least one P+ region is formed in the N well. A layer of gate oxide and a polysilicon electrode is then formed over one of the N+ regions. The PN junction between the deep N well and the P type silicon substrate is responsive to red light. The PN junction between the deep N well and the P well is responsive to red light. The PN junction between the P well and the N+ region which is not covered by polysilicon and the PN junction formed by the N well and the P+ region are responsive to green or blue light. The PN junction formed by the junction between the P well and the N+ region which is covered by polysilicon is responsive to green light.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 28, 2005
    Assignee: Dialog Semiconductor GmbH
    Inventors: Taner Dosluoglu, Nathaniel Joseph McCaffrey
  • Patent number: 6903394
    Abstract: CMOS image sensors have charge storage capacitors connected to various light sensitive and/or electrical elements. The capacity of the capacitors used for each pixel is tailored to the color to be detected. Charge storage capacitors may be formed entirely over a field oxide region of the CMOS imager, entirely over an active area of a pixel sensor cell, or partially over a field oxide region and partially over an active pixel area of a pixel sensor cell.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: June 7, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal