Light Responsive Pn Junction Patents (Class 257/461)
  • Patent number: 8039917
    Abstract: A photodiode includes a first silicon semiconductor layer formed over an insulating layer, a second silicon semiconductor layer formed over the insulating layer, having a thickness ranging from greater than or equal to 3 nm to less than or equal to 36 nm, a low-concentration diffusion layer which is formed in the second silicon semiconductor layer and in which an impurity of either one of a P type and an N type is diffused in a low concentration, a P-type high-concentration diffusion layer which is formed in the first silicon semiconductor layer and in which the P-type impurity is diffused in a high concentration, and an N-type high-concentration diffusion layer which is opposite to the P-type high-concentration diffusion layer with the low-concentration diffusion layer interposed therebetween and in which the N-type impurity is diffused in a high concentration.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: October 18, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Noriyuki Miura
  • Patent number: 8035184
    Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 11, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Robert Olah
  • Patent number: 8030729
    Abstract: A device disclosed herein includes a first layer, a second layer, and a first plurality of nanowires established between the first layer and the second layer. The first plurality of nanowires is formed of a first semiconductor material. The device further includes a third layer, and a second plurality of nanowires established between the second and third layers. The second plurality of nanowires is formed of a second semiconductor material having a bandgap that is the same as or different from a bandgap of the first semiconductor material.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel Quitoriano, Theodore I. Kamins
  • Patent number: 8026540
    Abstract: A system is provided for determining a color using a CMOS image sensor. The system includes an input port for receiving a user command. The system further includes an image sensor, an optical device that forms an image on the image sensor, and a processor. The image sensor includes an n-type substrate and a p-type epitaxy layer overlying the n-type substrate. The image sensor includes a control circuit that applies a first voltage on the n-type substrate to obtain a first output. The control circuit applies a second voltage on the n-type substrate to obtain a second output. The control circuit also applies a third voltage on the n-type substrate to obtain a third output. The p-type epitaxy layer includes a silicon germanium material. The image sensor additionally includes an epitaxy layer interposed between the n-type substrate and the p-type epitaxy layer.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 27, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hong Zhu, Jim Yang
  • Patent number: 8026122
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate including a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species and form a copper indium disulfide material. The copper indium disulfide material includes a thickness of substantially copper sulfide material. The thickness of the copper sulfide material is removed to expose a surface region having a copper poor surface characterized by a copper to indium atomic ratio of less than about 0.95:1. The method subjects the copper poor surface to a metal cation species to convert the copper poor surface from an n-type semiconductor characteristic to a p-type semiconductor characteristic.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 27, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8026569
    Abstract: In one embodiment of the present invention, a semiconductor device has a photodiode over a P-type substrate, an NPN transistor formed over the P-type substrate, an N+-type buried region provided right under the NPN transistor as being buried in the P-type substrate, and a P+-type buried region formed in the N+-type buried region.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 27, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Toshiaki Miura
  • Patent number: 8022495
    Abstract: A PIN photodiode having a substrate, a first type electrode layer disposed on the substrate, a first layer of intrinsic material disposed over a portion of the first-type electrode layer, and a first type window layer disposed over the intrinsic layer. An island shaped region of intrinsic material is disposed over the window layer and a dielectric layer is disposed over the island region and at least the peripheral portion of said island shaped region whereby an opening is formed in the island shaped region. A dopant is diffused through the opening so as to form a PN junction that extends into the first layer of intrinsic material.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 20, 2011
    Assignee: Emcore Corporation
    Inventors: Xiang Gao, Alex Ceruzzi, Linlin Liu, Stephen Schwed
  • Patent number: 8022494
    Abstract: A lateral photodiode, with improved response speed, includes a semiconductor substrate having active regions, and a p-type region and an n-type region arranged parallel to the surface of the substrate. The active regions are an n-layer and a p-layer respectively, and stacked in the thickness direction of the substrate to form a p-n junction. In addition, a barrier layer, for preventing movement of carriers from the substrate toward the active region, is provided on the side of the active regions toward the substrate.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: September 20, 2011
    Assignees: FUJIFILM Corporation, Massachusetts Institute of Technology
    Inventors: Yukiya Miyachi, Wojciech P. Giziewicz, Jurgen Michel, Lionel C. Kimerling
  • Publication number: 20110221025
    Abstract: In one embodiment, a detector includes an AlzIn(1-x)Sb passivation/etch stop layer, an AlxIn(1-x)Sb absorber layer disposed above the Alzn(1-x)Sb passivation/etch stop layer, and an AlIn(1-y)Sb passivation layer disposed above the AlxIn(1-x)Sb absorber layer, wherein x<z and x<y. The detector further includes a junction formed in a region of the AlxIn(1?x)Sb absorber layer, and a metal contact disposed above the junction and through the AlyIn(1-y)Sb passivation layer.
    Type: Application
    Filed: July 30, 2010
    Publication date: September 15, 2011
    Applicant: FLIR SYSTEMS, INC.
    Inventors: Richard E. Bornfreund, Jeffrey B. Barton
  • Publication number: 20110221026
    Abstract: Disclosed is a photovoltaic device. The photovoltaic device of the present invention includes: a first electrode and a second electrode, which are sequentially placed on a substrate; a first photoelectric conversion layer being placed between the first electrode and the second electrode, and including an n-type semiconductor layer, an intrinsic semiconductor layer and a p-type semiconductor layer, which are sequentially stacked; a second photoelectric conversion layer being placed between the first photoelectric conversion layer and the second electrode, and including an n-type semiconductor layer, an intrinsic semiconductor layer and a p-type semiconductor layer, which are sequentially stacked; and light transmitting particles placed within the second electrode.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 15, 2011
    Inventor: Seung-Yeop Myong
  • Publication number: 20110221024
    Abstract: In one embodiment, a detector includes an AlxIn(1-x)Sb absorber layer, and an AlyIn(1-y)Sb passivation layer disposed above the AlxIn(1-x)Sb absorber layer, wherein x<y. The detector further includes a junction formed in a region of the AlxIn(1-x)Sb absorber layer, and a metal contact disposed above the junction and through the AlyIn(1-y)Sb passivation layer.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Applicant: FLIR SYSTEMS, INC.
    Inventors: Richard E. Bornfreund, Jeffrey B. Barton
  • Patent number: 8017980
    Abstract: An illumination apparatus includes a plurality of light emitting diode devices mounted therein and the light emitting diode device includes a substrate, a light emission area having a light emitting layer and a clad layer formed by growing crystal on the substrate, a negative polarity and a positive polarity. The light emission area has 6 or more opposite corners, which are disposed symmetrically to the middle of the light emitting diode device.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 13, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Toshiaki Tanaka, Hiroki Kaneko
  • Publication number: 20110215224
    Abstract: An apparatus includes a first photoelectric conversion element configured to convert light into a current by a photoelectric conversion, a first current amplification unit configured to amplify the current, a first current monitoring unit configured to monitor the amplified current amplified and output a monitor signal, and a first bias voltage setting unit configured to gain the monitor signal by a factor less than 1 and apply a reverse bias voltage to the first photoelectric conversion element according to the gained monitor signal.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 8, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Hideo Kobayashi
  • Patent number: 8013365
    Abstract: A complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) includes a semiconductor substrate including a photodiode therein as a light sensing unit. A floating diffusion region of a first conductivity type is provided in the semiconductor substrate, and is configured to receive charges generated in the photodiode. A power supply voltage region of the first conductivity type is also provided in the semiconductor substrate. A reset transistor including a reset gate electrode on a surface of the substrate between the floating diffusion region and a power supply voltage region is configured to discharge charges stored in the floating diffusion region in response to a reset control signal. The reset transistor includes a channel region in the substrate extending between the floating diffusion region and the power supply voltage region such that the floating diffusion region and the power supply voltage regions define source/drain regions for the reset transistor.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-hyun Ko, Jong-jin Lee, Jung-chak Ahn
  • Patent number: 8008695
    Abstract: An image sensor includes a semiconductor layer that low-pass filters light of different wavelengths. For example, the semiconductor layer proportionately absorbs photons of shorter wavelengths and proportionately passes more photons of longer wavelengths such that the longer wavelength photons often pass through without being absorbed. An imaging pixel having a photodiode is formed on a front surface of the semiconductor layer, where the photodiode is an N? region formed within the P-type region of the semiconductor layer. A P+ layer is formed between the N? region of the photodiode and a back surface of the semiconductor layer. A mirror that primarily reflects photons of red and/or infra-red wavelengths is formed on the back surface of the semiconductor layer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 30, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Howard E. Rhodes, Hidetoshi Nozaki
  • Patent number: 8003429
    Abstract: A method of fabricating an image sensor includes forming a photoelectric transformation device on a substrate and forming a dielectric layer structure on the substrate. The dielectric layer structure includes multi-layer interlayer dielectric layers and multi-layer metal interconnections which are located between the multi-layer interlayer dielectric layers. A cavity which penetrates the multi-layer interlayer dielectric layers on the photoelectric transformation device is formed. A heat treatment is performed on the substrate on which the cavity is formed.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Lee, Sang-Il Jung, Young-Hoon Park, Jun-Seok Yang, An-Chul Shin, Min-Young Jung
  • Patent number: 8003883
    Abstract: A photovoltaic device that includes a substrate and a nanowall structure disposed on the substrate surface. The device also includes at least one layer conformally deposited over the nanowall structure. The conformal layer(s) is at least a portion of a photoactive junction. A method for making a photovoltaic device includes generating a nanowall structure on a substrate surface and conformally depositing at least one layer over the nanowall structure thereby forming at least one photoactive junction. A solar panel includes at least one photovoltaic device based on a nanowall structure. The solar panel isolates such devices from its surrounding atmospheric environment and permits the generation of electrical power. Optoelectronic device may also incorporate a photovoltaic device based on a nanowall structure.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: August 23, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos, Joleyn Balch
  • Patent number: 8003884
    Abstract: The present invention relates to a photovoltaic device, especially hybrid solar cells, comprising at least one layer comprising evaporated fluoride and/or acetate; and to a method for preparing the same.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: August 23, 2011
    Assignee: Sony Deutschland GmbH
    Inventors: Tzenka Miteva, Gabriele Nelles, Akio Yasuda
  • Patent number: 7999252
    Abstract: An image sensor includes an epi-layer of a first conductivity type formed in a substrate, a photodiode formed in the epi-layer, and a first doping region of a second conductivity type formed under the photodiode to separate the first doping region from the photodiode.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 16, 2011
    Assignee: Crosstek Capital L.L.C.
    Inventor: Youn-Sub Lim
  • Patent number: 7999340
    Abstract: An apparatus and method for forming optical black pixels having uniformly low dark current. Optical Black opacity is increased without having to increase Ti/TiN layer thickness. A hybrid approach is utilized combining a Ti/TiN OB layer in conjunction with in-pixel metal stubs that further occlude the focal radius of each pixel's incoming light beam. Additional metal layers can be used to increase the opacity into the infrared region.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 16, 2011
    Assignee: AltaSens, Inc.
    Inventors: Giuseppe Rossi, Lester Kozlowski, Henry Lin, John Richardson, Gregory Chow, Gaurang Patel
  • Patent number: 7999231
    Abstract: A moisture detector includes a light-receiving element including an absorption layer having a pn-junction, or an array of the light-receiving elements, wherein the absorption layer has a multiquantum well structure composed of a Group III-V semiconductor, the pn-junction is formed by selectively diffusing an impurity element into the absorption layer, and the concentration of the impurity in the absorption layer is 5×1016/cm3 or less. The moisture detector receives light having at least one wavelength included in an absorption band of water lying in a wavelength range of 3 ?m or less, thereby detecting moisture.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Electric Inductries, Ltd.
    Inventors: Yasuhiro Iguchi, Youichi Nagai
  • Patent number: 7994420
    Abstract: A photovoltaic solar cell including an upper electrode, a layer with light scattering and/or reflection properties, and a lower electrode. The layer with light scattering and/or reflection properties is located between the upper electrode and the lower electrode.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: August 9, 2011
    Assignee: Saint-Gobain Glass France
    Inventors: Nils-Peter Harder, Paul Mogensen, Ulf Blieske
  • Patent number: 7982276
    Abstract: An optical semiconductor device is provided with a low concentration p-type silicon substrate (1); a low dopant concentration n-type epitaxial layer (second epitaxial layer) (26); a low dopant concentration p-type anode layer (27); a high concentration n-type cathode contact layer (9); a photodiode (2) made of the anode layer (27) and the cathode contact layer (9); and an NPN transistor (3) formed on the n-type epitaxial layer (26). The anode can be substantially completely depleted in the case where the anode layer (27) has its dopant concentration peak in the vicinity of the interface between the silicon substrate (1) and the n-type epitaxial layer (26). Therefore, high speed and high light receiving sensitivity characteristics can be obtained, and further, any influence of auto-doping from peripheral embedding layers can be controlled, so that a depletion layer can be stably formed in the anode.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 19, 2011
    Assignee: Panasonic Corporation
    Inventor: Takaki Iwai
  • Patent number: 7977568
    Abstract: A photovoltaic device includes a substrate having at least two surfaces and a multilayered film disposed on at least a portion of at least one surface of the substrate. Elongated nanostructures are disposed on the multilayered film. The device incorporates a top layer of the multilayered film contacting the elongated nanostructures that is a tunnel junction. The device has at least one layer deposited over the elongated nanostructures defining a portion of a photoactive junction. A solar panel includes at least one photovoltaic device. The solar panel isolates each such devices from its surrounding atmospheric environment and permits the generation of electrical power.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: July 12, 2011
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos
  • Publication number: 20110163404
    Abstract: A germanium (Ge) photodiode array on a glass substrate is provided with a corresponding fabrication method. A Ge substrate is provided that is either not doped or lightly doped with a first dopant. The first dopant can be either an n or p type dopant. A first surface of the Ge substrate is moderately doped with the first dopant and bonded to a glass substrate top surface. Then, a first region of a Ge substrate second surface is heavily doped with the first dopant. A second region of the Ge substrate second surface is heavily doped with a second dopant, having the opposite electron affinity than the first dopant, forming a pn junction. An interlevel dielectric (ILD) layer is formed overlying the Ge substrate second surface and contact holes are etched in the ILD layer overlying the first and second regions of the Ge substrate second surface. The contact holes are filled with metal and metal pads are formed overlying the contact holes.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Inventors: Jong-Jan Lee, Steven R. Droes, John W. Hartzell, Jer-Shen Maa
  • Patent number: 7968888
    Abstract: An object of the present invention is to provide a small solid-state image sensor which realizes significant improvement in sensitivity. The solid-state image sensor of the present invention includes a semiconductor substrate in which photoelectric conversion units are formed, a light-blocking film which is formed above the semiconductor substrate and has apertures formed so as to be positioned above respective photoelectric conversion units, and a high refractive index layer formed in the apertures. Here, each aperture has a smaller aperture width than a maximum wavelength in a wavelength of light in a vacuum converted from a wavelength of the light entering the photoelectric conversion unit through the apertures, and the high refractive index is made of a high refractive index material having a refractive index which allows transmission of light having the maximum wavelength through the aperture.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: June 28, 2011
    Assignee: Panasonic Corporation
    Inventors: Takumi Yamaguchi, Takahiko Murata, Shigetaka Kasuga
  • Publication number: 20110147879
    Abstract: A wafer structure for an image sensor includes a substrate that has a given conductivity type, a given dopant concentration, and a given concentration of oxygen. An intermediate epitaxial layer is formed over the substrate. The intermediate epitaxial layer has the same conductivity type and the same, or substantially the same, dopant concentration as the substrate but a lower oxygen concentration than the substrate. A thickness of the intermediate epitaxial layer is greater than the diffusion length of a minority carrier in the intermediate layer. A device epitaxial layer is formed over the intermediate epitaxial layer. The device epitaxial layer has the same conductivity type but lower dopant and oxygen concentrations than the substrate.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventor: Cristian A. Tivarus
  • Publication number: 20110147874
    Abstract: Consistent with the present disclosure, a current blocking layer is provided between output waveguides carrying light to be sensed by the photodiodes in a balanced photodetector, and the photodiodes themselves. Preferably, the photodiodes are provided above the waveguides and sense light through evanescently coupling with the waveguides. In addition, the current blocking layer may include alternating p and n-type conductivity layers, such that, between adjacent ones of such layers, a reverse biased pn-junction is formed. The pn-junctions, therefore, limit the amount of current flowing from one photodiode of the balanced detector to the other, thereby improving performance.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: RADHAKRISHNAN L. NAGARAJAN, ANDREW G. DENTAI, SCOTT CORZINE, STEVEN NGUYEN, VIKRANT LAL, Jacco L. Pleumeekers, Peter W. Evans
  • Publication number: 20110147877
    Abstract: A broadband radiation detector includes a first layer having a first type of electrical conductivity type. A second layer has a second type of electrical conductivity type and an energy bandgap responsive to radiation in a first spectral region. A third layer has the second type of electrical conductivity type and an energy bandgap responsive to radiation in a second spectral region comprising longer wavelengths than the wavelengths of the first spectral region. The broadband radiation detector further includes a plurality of internal regions. Each internal region may be disposed at least partially within the third layer and each internal region may include a refractive index that is different from a refractive index of the third layer. The plurality of internal regions may be arranged according to a regularly repeating pattern.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: Raytheon Company
    Inventors: Justin G. A. Wehner, Scott M. Johnson
  • Patent number: 7964925
    Abstract: Various embodiments of the present invention are directed to a photodiode module including a structure configured to selectively couple light to a dielectric-surface mode of a photonic crystal of the photodiode module. In one embodiment of the present invention, a photodiode module includes a semiconductor structure having a p-region and an n-region. The photodiode module further includes a photonic crystal having a surface positioned adjacent to the semiconductor structure. A diffraction grating of the photodiode module may be positioned and configured to selectively couple light incident on the diffraction grating to a dielectric-surface mode associated with the surface of the photonic crystal. In another embodiment of the present invention, a photodiode apparatus includes multiple, stacked photodiode modules, each of which is configured to selectively absorb light at a selected wavelength or range of wavelengths.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: June 21, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Fattal, Jason Blackstock, Duncan Stewart
  • Publication number: 20110140224
    Abstract: A bolometer has a semiconductor membrane having a single-crystalline portion, and spacers so as to keep the semiconductor membrane at a predetermined distance from an underlying substrate. The complementarily doped regions of the single-crystalline portion form a diode and the predetermined distance corresponds to a fourth of an infrared wavelength.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Inventors: Piotr Kropelnicki, Marco Russ, Holger Vogt
  • Patent number: 7960766
    Abstract: Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 14, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Alexander Kalnitsky, Dong Zheng, Joy Jones, Xijian Lin, Gregory Cestra
  • Patent number: 7956347
    Abstract: A novel package that integrates components for a modulating retro reflector into a single package is disclosed according to various embodiments. According to some embodiments the package is configured to secure a retro reflector, a quantum well modulator and photodiode. In some embodiments, the package may include interconnects to surface mount to a circuit board. Such interconnects may be coupled with the photodiode and/or the quantum well modulator. In some embodiments, the package may be constructed of liquid crystal polymers and/or may include one or more windows.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: June 7, 2011
    Assignee: Cubic Corporation
    Inventors: Mahyar Dadkhah, Tony Maryfield, Thomas Davidson
  • Publication number: 20110127630
    Abstract: An image sensor includes a trench formed by a shallow trench isolation (STI) process, a channel stop layer formed over a substrate in the trench, an isolation structure filled in the trench, and a photodiode formed in the substrate adjacent to a sidewall of the trench. In more detail of the image sensor, a trench is formed in a substrate through a STI process, and a channel stop layer is formed over the substrate in the trench. An isolation structure is formed in the trench, and a photodiode is fanned in the substrate adjacent to a sidewall of the trench.
    Type: Application
    Filed: February 9, 2011
    Publication date: June 2, 2011
    Applicant: CROSSTEK CAPITAL, LLC
    Inventor: Kwang-Ho Lee
  • Patent number: 7952158
    Abstract: An elevated photosensor for image sensors and methods of forming the photosensor. The photosensor may have light sensors having indentation features including, but not limited to, v-shaped, u-shaped, or other shaped features. Light sensors having such an indentation feature can redirect incident light that is not absorbed by one portion of the photosensor to another portion of the photosensor for additional absorption. In addition, the elevated photosensors reduce the size of the pixel cells while reducing leakage, image lag, and barrier problems.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: May 31, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Publication number: 20110121423
    Abstract: A mask for use in making a planar PN junction in a semiconductor device includes a central mask opening and a plurality of spaced apart concentric mask openings surrounding the central mask opening. The concentric mask openings each have a width less than a maximum dimension of the central mask opening. The central mask opening can be circular and the concentric mask openings can have a ring-shape. The mask can be used to form openings in a wafer layer for introducing an impurity to dope that wafer layer.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: Sensors Unlimited, Inc.
    Inventors: Keith Forsyth, Noah Clay
  • Patent number: 7948049
    Abstract: The present invention is a photodiode and/or photodiode array, having a p+ diffused area that is smaller than the area of a mounted scintillator crystal, designed and manufactured with improved device characteristics, and more particularly, has relatively low dark current, low capacitance and improved signal-to-noise ratio characteristics. More specifically, the present invention is a photodiode and/or photodiode array that includes a metal shield for reflecting light back into a scintillator crystal, thus allowing for a relatively small p+ diffused area.
    Type: Grant
    Filed: March 14, 2010
    Date of Patent: May 24, 2011
    Assignee: UDT Sensors, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 7948048
    Abstract: In a semiconductor device 10 including a structure where transfer electrodes 2a to 2c are disposed on a semiconductor substrate 1 via an insulation layer 3, a first semiconductor region 4 of a first conductivity type, a second semiconductor region 5 of a conductivity type opposite to the first conductivity type, and a third semiconductor region 6 of the first conductivity type in a position that overlaps a region of the semiconductor substrate 1 directly underneath the transfer electrodes 2a to 2c. The second semiconductor region 5 is formed on the first semiconductor region 4. The third semiconductor region 6 is formed on the second semiconductor region 5 so that a position of a maximal point 8 of electric potential of the second semiconductor region 5 when being depleted is deeper than a position of the maximal point 8 in a case where the third semiconductor region 6 does not exist.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: May 24, 2011
    Assignee: Panasonic Corporation
    Inventor: Takao Kuroda
  • Patent number: 7948006
    Abstract: A photodetector with an improved electrostatic discharge damage threshold is disclosed, suitable for applications in telecommunication systems operating at elevated data rates. The photodetector may be a PIN or an APD fabricated in the InP compound semiconductor system. The increased ESD damage threshold is achieved by reducing the ESD induced current density in the photodetector by a suitable widening of the contact at a critical location, increasing the series resistance and promoting lateral current spreading by means of a current spreading layer.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: May 24, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Zhong Pan, David Venables
  • Patent number: 7943977
    Abstract: An apparatus that can effectively operate in high temperatures including a CMOS image sensor, a thermoelectric semiconductor formed under the CMOS image sensor for selectively cooling the image sensor and a heat sink formed under the thermoelectric semiconductor.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: May 17, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Chang-Hun Han
  • Patent number: 7935966
    Abstract: A semiconductor device including, on at least one surface of a crystalline semiconductor substrate, at least one first amorphous semiconductor region doped with a first type of conductivity. The semiconductor substrate includes, on the same at least one surface, at least one second amorphous semiconductor region doped with a second type of conductivity, opposite the first type of conductivity. The first amorphous semiconductor region, insulated for the second amorphous semiconductor region by at least ore dielectric region in the contact with the semiconductor substrate, and the second amorphous semiconductor region form an interdigitated structure.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: May 3, 2011
    Assignee: Commissariat a l'Energie Atomique Et Aux Energies Alternatives
    Inventors: Pierre Jean Ribeyron, Claude Jaussaud, Pere Roca I. Cabarrocas, Jerome Damon-Lacoste
  • Patent number: 7928527
    Abstract: A plurality of image sensor structures and a plurality of methods for fabricating the plurality of image sensor structures provide for inhibited cracking and delamination of a lens capping layer with respect to a planarizing layer within the plurality of image sensor structures. Particular image sensor structures and related methods include at least one dummy lens layer of different dimensions than active lens layer located over a circuitry portion of a substrate within the particular image sensor structures. Additional particular image sensor structures include at least one of an aperture within the planarizing layer and a sloped endwall of the planarizing layer located over a circuitry portion within the particular image sensor structures.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Charles F. Musante, Richard J. Rassel
  • Patent number: 7923800
    Abstract: The present invention has a photodiode and a circuit used to amplify the output of the photodiode. Two terminals are formed over the photodiode and circuit with an insulating layer interposed therebetween, and a dummy electrode with a larger area than that of either of the two terminals is formed thereover, adjacent to the two terminals. The dummy electrode is not connected to the photodiode or to the circuit of the semiconductor device. Because the dummy electrode has a wide area, damage due to electrostatic discharge occurs in the dummy electrode more easily than in the two terminals; thus, damage due to electrostatic discharge can be prevented from occurring in the semiconductor device.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: April 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsushi Hirose, Hideaki Shishido
  • Patent number: 7915652
    Abstract: An integrated infrared (IR) and full color complementary metal oxide semiconductor (CMOS) imager array is provided. The array is built upon a lightly doped p doped silicon (Si) substrate. Each pixel cell includes at least one visible light detection pixel and an IR pixel. Each visible light pixel includes a moderately p doped bowl with a bottom p doped layer and p doped sidewalls. An n doped layer is enclosed by the p doped bowl, and a moderately p doped surface region overlies the n doped layer. A transfer transistor has a gate electrode overlying the p doped sidewalls, a source formed from the n doped layer, and an n+ doped drain connected to a floating diffusion region. The IR pixel is the same, except that there is no bottom p doped layer. An optical wavelength filter overlies the visible light and IR pixels.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 29, 2011
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Douglas J. Tweet, Jon M. Speigle
  • Publication number: 20110068430
    Abstract: An image sensor with a plurality of photodiodes arranged in an array. A barrier region is disposed between adjacent photodiodes and inhibits depletion region merger between adjacent photodiodes, thereby inhibiting a capacitive coupling between the adjacent photodiodes.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 24, 2011
    Inventor: Hiok Nam TAY
  • Publication number: 20110068426
    Abstract: A photodiode includes an opening over an active photodiode region so that a top passivation layer and interlayer dielectric layers (ILDs) do not affect the spectral response of the photodiode. A dielectric reflective optical coating filter, which includes a plurality of dielectric layers, fills at least a portion of the opening and thereby covers the active photodiode region, to shape a spectral response of the photodiode. Alternatively, the dielectric reflective optical coating filter is formed prior to the opening, and the opening is formed by removing a top passivation coating and ILDs to expose the dielectric reflective optical coating filter.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 24, 2011
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Dong Zheng, Joy Jones
  • Patent number: 7910954
    Abstract: An image sensor element is provided according to an embodiment which comprises image sensor element portions sensitive to at least partially different wavelength ranges.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: March 22, 2011
    Assignee: Sony Ericsson Mobile Communications AB
    Inventor: Björn Hansson
  • Patent number: 7911015
    Abstract: An infrared detector includes a first PN junction diode and a second PN junction diode which are formed in a silicon layer formed apart from a support substrate, the silicon layer having a P-type first region and an N-type second region, wherein the first PN junction diode is composed of the P-type first region and an N-type first region formed in the P-type first region at a position separated from the N-type second region, and the second PN junction diode is composed of the N-type second region and a P-type second region formed in the N-type second region at a position separated from the P-type first region, and wherein the first PN junction diode and the second PN junction diode are connected by a metal film formed on a surface of a concave portion spreading both of the P-type first region and the N-type second region.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takaki Sugino
  • Publication number: 20110062543
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuo NISHI, Tatsuya ARAO, Atsushi HIROSE, Yuusuke SUGAWARA, Naoto KUSUMOTO, Daiki YAMADA, Hidekazu TAKAHASHI
  • Publication number: 20110062542
    Abstract: Pixel sensor cells, method of fabricating pixel sensor cells and design structure for pixel sensor cells. The pixel sensor cells including: a photodiode body in a first region of a semiconductor layer; a floating diffusion node in a second region of the semiconductor layer, a third region of the semiconductor layer between and abutting the first and second regions; and dielectric isolation in the semiconductor layer, the dielectric isolation surrounding the first, second and third regions, the dielectric isolation abutting the first, second and third regions and the photodiode body, the dielectric isolation not abutting the floating diffusion node, portions of the second region intervening between the dielectric isolation and the floating diffusion node.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James William Adkisson, John Joseph Ellis-Monaghan, Mark David Jaffe, Richard John Rassel