With Bipolar Transistor Structure Patents (Class 257/517)
  • Patent number: 7982282
    Abstract: A semiconductor amplifier is provided comprising, a substrate and one or more unit amplifying cells (UACs) formed on the substrate, wherein each UAC is laterally surrounded by a first lateral dielectric filled trench (DFT) isolation wall extending at least to the substrate and multiple UACs are surrounded by a second lateral DFT isolation wall of similar depth outside the first isolation walls, and further semiconductor regions lying between the first isolation walls when two or more unit cells are present, and/or lying between the first and second isolation walls, are electrically floating with respect to the substrate. This reduces the parasitic capacitance of the amplifying cells and improves the power added efficiency. Excessive leakage between buried layer contacts when using high resistivity substrates is avoided by providing a further semiconductor layer of intermediate doping between the substrate and the buried layer contacts.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: July 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dragan Zupac, Brian D. Griesbach, Theresa M. Keller, Joel M. Keys, Sandra J. Wipf, Evan F. Yu
  • Publication number: 20110115047
    Abstract: Methods and structures for a semiconductor device can use mask openings of varying widths to form structures of different depths, different materials, and different functionality. For example, processes and structures for forming shallow trench isolation, deep isolation, trench capacitors, base, emitter, and collector, among other structures for a lateral bipolar transistor are described.
    Type: Application
    Filed: June 4, 2010
    Publication date: May 19, 2011
    Inventors: Francois Hebert, Aaron Gibby, Stephen Joseph Gaul
  • Patent number: 7944022
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 17, 2011
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7923810
    Abstract: A semiconductor device may include a semiconductor region of a semiconductor substrate wherein a P-N junction is defined between the semiconductor region and a bulk of the semiconductor substrate. An insulating isolation structure in the semiconductor substrate may surround sidewalls of the semiconductor region. An interlayer insulating layer may be on the semiconductor substrate, on the semiconductor region, and on the insulating isolation structure, and the interlayer insulating layer may have first and second spaced apart element holes exposing respective first and second portions of the semiconductor region. A first semiconductor pattern may be in the first element hole on the first exposed portion of the semiconductor region, and a second semiconductor pattern may be in the second element hole on the second exposed portion of the semiconductor region.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Won Ha, Sang-Yoon Kim
  • Publication number: 20110062548
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Patent number: 7902630
    Abstract: An isolated bipolar transistor formed in a P-type semiconductor substrate includes an N-type submerged floor isolation region and a filled trench extending downward from the surface of the substrate to the floor isolation region. Together the floor isolation region and the filled trench form an isolated pocket of the substrate which contains the bipolar transistor. The collector of the bipolar transistor may comprise the floor isolation region. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 8, 2011
    Assignee: Advanced Analogic Technologies, Inc.
    Inventors: Donald R. Disney, Richard K. Williams
  • Patent number: 7898060
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 1, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7872326
    Abstract: A process for manufacturing an array of bipolar transistors, wherein deep field insulation regions of dielectric material are formed in a semiconductor body, thereby defining a plurality of active areas, insulated from each other and a plurality of bipolar transistors are formed in each active area. In particular, in each active area, a first conduction region is formed at a distance from the surface of the semiconductor body; a control region is formed on the first conduction region; and, in each control region, at least two second conduction regions and at least one control contact region are formed. The control contact region is interposed between the second conduction regions and at least two surface field insulation regions are thermally grown in each active area between the control contact region and the second conduction regions.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti
  • Publication number: 20100314712
    Abstract: A semiconductor device includes a lower substrate, a thin semiconductor layer and an insulating layer formed between the lower substrate and the semiconductor layer. An active transistor area is formed with a base formed along a surface of the semiconductor layer, an emitter region formed in the base, a buried collector in the thin semiconductor layer to contact the insulating layer, a collector contacting the buried collector, and emitter, collector and base contacts. The active transistor area is configured to operate at an emitter current at least in the order of mA (milli-ampere). An isolation trench extends through the semiconductor layer to the insulating layer and surrounds the active transistor area with a distance in the order of ?m (micron) from the active transistor area and with a space area of more than 50 ?m2 between the active transistor area and the isolation trench.
    Type: Application
    Filed: April 13, 2010
    Publication date: December 16, 2010
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideaki Nonami
  • Patent number: 7838909
    Abstract: A semiconductor device includes a common diffusion structure formed in each region of a substrate in which semiconductor components are formed. The diffusion structures are separated into sections by trenches to form semiconductor components. The trenches define sizes of the semiconductor components and isolate the semiconductor components from the surrounding area.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 23, 2010
    Assignee: Denso Corporation
    Inventors: Hiroaki Himi, Takashi Nakano, Shoji Mizuno
  • Patent number: 7821097
    Abstract: A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 7816264
    Abstract: A wafer processing method having a step of reducing the thickness of a wafer in only a device forming area where semiconductor chips are formed by grinding and etching the back side of the wafer to thereby form a recess on the back side of the wafer. At the same time, an annular projection is formed around the recess to thereby ensure the rigidity of the wafer. Accordingly, handling in shifting the wafer from the back side recess forming step to a subsequent step of forming a back side rewiring layer can be performed safely and easily.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 19, 2010
    Assignee: Disco Corporation
    Inventors: Keiichi Kajiyama, Kazuhisa Arai
  • Patent number: 7800143
    Abstract: A memory cell and methods of making and operating the same are provided. In one aspect, a method of forming a memory cell is provided that includes forming a MOS transistor that has a gate, a source region and a drain region. A bipolar transistor is formed that has a collector, a base and an emitter. The emitter of the bipolar transistor is formed to serve as the source region for the MOS transistor and the base of the bipolar transistor is formed to serve as a capacitive charge storage region for the memory cell.
    Type: Grant
    Filed: December 24, 2006
    Date of Patent: September 21, 2010
    Assignee: GlobalFoundries Inc.
    Inventor: Hyun-Jin Cho
  • Patent number: 7759764
    Abstract: A semiconductor structure includes a substrate; an isolation structure in the substrate, wherein the isolation structure defines a region therein; a first semiconductor region having at least a portion in the region defined by the isolation structure, wherein the first semiconductor region is of a first conductivity type; a second semiconductor region on the first semiconductor region, wherein the second semiconductor region is of a second conductivity type opposite the first conductivity type; and a third semiconductor region of the first conductivity type on the second semiconductor region, wherein the third semiconductor region has at least a portion higher than a top surface of the isolation structure.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuan-Ying Lee, Denny Duan-lee Tang
  • Patent number: 7719086
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7709897
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 4, 2010
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7704824
    Abstract: The present invention provides a highly doped semiconductor layer. More specifically, the present invention provides a semiconductor layer that includes at least two impurities. Each impurity is introduced at a level below its respective degradation concentration. In this manner, the two or more impurities provide an additive conductivity to the semiconductor layer at a level above the conductivity possible with any one of the impurities alone, due to the detrimental effects that would be created by increasing the concentration of any one impurity beyond its degradation concentration.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: April 27, 2010
    Assignee: RF Micro Devices, Inc.
    Inventors: Matthew L. Seaford, Arthur E. Geiss, Wayne Lewis, Larry W. Kapitan, Thomas J. Rogers
  • Patent number: 7692214
    Abstract: A semiconductor device includes: a semiconductor substrate; an IGBT cell; and a diode cell. The substrate includes a first layer on a first surface, second and third layers adjacently arranged on a second surface of the substrate and a fourth layer between the first layer and the second and third layers. The first layer provides a drift layer of the IGBT cell and the diode cell. The second layer provides a collector layer of the IGBT cell. The third layer provides one electrode connection layer of the diode cell. A resistivity ?1 and a thickness L1 of the first layer, a resistivity ?2 and a thickness L2 of the fourth layer, and a half of a minimum width W2 of the second layer on a substrate plane have a relationship of (?1/?2)×(L1·L2/W22)<1.6.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: April 6, 2010
    Assignee: DENSO CORPORATION
    Inventors: Norihito Tokura, Yukio Tsuzuki, Kenji Kouno
  • Publication number: 20090267178
    Abstract: Device structure for active devices fabricated in a semiconductor-on-insulator (SOI) substrate and design structures for a radiofrequency integrated circuit. The device structure includes a first isolation region in the semiconductor layer that extends from a top surface of a semiconductor layer to a first depth, a second isolation region in the semiconductor layer that extends from the top surface of the semiconductor layer to a second depth greater than the first depth, and a first doped region in the semiconductor layer. The first doped region is disposed vertically between the first isolation region and an insulating layer disposed between the semiconductor layer and a handle wafer of the SOI substrate. The device structure may be included in a design structure embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit.
    Type: Application
    Filed: April 24, 2008
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Robert R. Robison, William R. Tonti
  • Patent number: 7582948
    Abstract: Integrated transistor and method for the production is disclosed. An explanation is given of, inter alia, a transistor having an electrically insulating isolating trench extending from a main area in the direction of a connection region remote from the main area. Moreover, the transistor contains an auxiliary trench extending from the main area as far as the connection region remote from the main area. The transistor requires a small chip area and has outstanding electrical properties.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: September 1, 2009
    Assignee: Infineon Technologies AG
    Inventors: Karlheinz Müller, Klaus Röschlau
  • Publication number: 20090115018
    Abstract: A transient voltage-suppressing (TVS) device supported on a semiconductor substrate is applied to protect an electronic device from a transient voltage. The TVS device includes a clamp diode functions with a high-side and a low side diodes for clamping a transient voltage disposed on a top layer of the semiconductor substrate insulated by a insulation layer constituting a TVS on silicon-on-insulator (SOI) device. In an exemplary embodiment, the insulator layer further includes a thick body oxide (BOX) layer having a thickness in the range of 250 Angstroms to 1 micrometer to sustain an application with a breakdown voltage higher than 25 volts. In another exemplary embodiment, the clamp diode further surrounded by a P-well and the P-well is formed on top of a P?/P+ substrate layer disposed above the insulator layer.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 7524730
    Abstract: A method of fabricating a bipolar junction transistor is provided herein. An isolation structure is formed on a first conductive type substrate. A second conductive type deep well is formed in the first conductive type substrate to serve as a collector. Thereafter, a second conductive type well is formed in the substrate and then a first conductive type well is formed in the substrate to serve as a base. A buffer region is formed underneath a portion of the isolation structure and between the base and the second conductive well. The buffer region together with the isolation structure isolates the base from the second conductive type well. A second conductive type emitter and a second conductive type collector pick-up region are selectively formed on the surface of the first conductive type substrate. Thereafter, a first conductive type base pick-up region is selectively formed.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 28, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Mingshang Tsai
  • Publication number: 20090102012
    Abstract: A semiconductor device may include a semiconductor region of a semiconductor substrate wherein a P-N junction is defined between the semiconductor region and a bulk of the semiconductor substrate. An insulating isolation structure in the semiconductor substrate may surround sidewalls of the semiconductor region. An interlayer insulating layer may be on the semiconductor substrate, on the semiconductor region, and on the insulating isolation structure, and the interlayer insulating layer may have first and second spaced apart element holes exposing respective first and second portions of the semiconductor region. A first semiconductor pattern may be in the first element hole on the first exposed portion of the semiconductor region, and a second semiconductor pattern may be in the second element;hole on the second exposed portion of the semiconductor region.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 23, 2009
    Inventors: Dae-Won Ha, Sang-Yoon Kim
  • Patent number: 7521772
    Abstract: A heterostructure bipolar transistor (HBT) and related methods are disclosed. In one embodiment, the HBT includes a heterostructure bipolar transistor (HBT) including: a substrate; a monocrystalline emitter atop the substrate; a collector in the substrate; at least one isolation region adjacent to the collector; a monocrystalline silicon germanium (SiGe) intrinsic base extending over each isolation region; and a monocrystalline silicon extrinsic base. A method may include forming the intrinsic and extrinsic base and the emitter as monocrystalline, with the extrinsic base (and emitter) formed in a self-aligned fashion utilizing selective-epitaxial growth on porous silicon. As a result, some mask levels can be omitted, making this an inexpensive alternative to conventional processing.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas N Adam, Thomas A. Wallner
  • Patent number: 7498654
    Abstract: A transistor apparatus includes a silicon substrate and a barrier structure extending substantially from generally adjacent the silicon substrate to a locus displaced from the silicon substrate. The barrier structure generally surrounds a volume containing connection loci for the transistor apparatus and a buried layer in a silicon medium. The connection loci and the buried layer occupy a space generally presenting a first lateral expanse generally parallel with the silicon substrate. The volume presents a second lateral expanse generally parallel with the silicon substrate. The second lateral expanse is greater than the first lateral expanse within a predetermined distance of the substrate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Leland Scott Swanson, Gregory E. Howard
  • Patent number: 7459766
    Abstract: A semiconductor device including a bipolar transistor in which the collector resistance. The bipolar transistor includes a first conduction type semiconductor substrate having a main surface. A second conduction type collector region is formed in the semiconductor substrate. A shallow trench isolation structure isolates the main surface of the semiconductor substrate into two insulated active regions. A collector leading portion is formed in one of the active regions. A first conduction type base region and a second conduction type emitter region are formed on the other one of the active regions. The collector region has a first depth from the main surface immediately below the shallow trench isolation structure, and the collector region has a second depth from the main surface immediately below the two active regions. The first depth is less than the second depth.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 2, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Shuji Fujiwara
  • Publication number: 20080237783
    Abstract: A bipolar transistor is formed in an isolation structure comprising a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate.
    Type: Application
    Filed: December 17, 2007
    Publication date: October 2, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7420228
    Abstract: A bipolar transistor comprising a collector region of a first conduction type, and a subcollector region of the first conduction type at a first side of the collector region. The transistor further includes a base region of the second conduction type provided at a second side of the collector region, and an emitter region of the first conduction type which is provided above the base region on the side remote from the collection region. A carbon-doped semiconductor region is provided on the first side alongside the collector region. The bipolar transistor is characterized in that the carbon-doped semiconductor region has a carbon concentration of 1019-1021 cm?3 and the base region has a smaller cross section than the collector region and the collector region has, in the overlap region with the base region, a region having an increased doping compared with the remaining region.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 2, 2008
    Assignee: Infineon Technologies AG
    Inventors: Josef Bock, Thomas Meister, Reinhard Stengl, Herbert Schafer
  • Publication number: 20080203379
    Abstract: A process for manufacturing an array of bipolar transistors, wherein deep field insulation regions of dielectric material are formed in a semiconductor body, thereby defining a plurality of active areas, insulated from each other and a plurality of bipolar transistors are formed in each active area. In particular, in each active area, a first conduction region is formed at a distance from the surface of the semiconductor body; a control region is formed on the first conduction region; and, in each control region, at least two second conduction regions and at least one control contact region are formed. The control contact region is interposed between the second conduction regions and at least two surface field insulation regions are thermally grown in each active area between the control contact region and the second conduction regions.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti
  • Patent number: 7358545
    Abstract: A bipolar junction transistor is provided. A p-type well region surrounds an n-type emitter and connects with the bottom of the emitter to serve as a base. A p-type base pick-up region connects with the base and surrounds the emitter. An n-type deep well, connected to the bottom of the base and the bottom of the n-type well, is used as a collector. The n-type well surrounds the base and connects with the n-type deep well. An n-type collector pick-up region connects with the n-type well and surrounds the base. An isolation structure is disposed between the emitter and the base and between a portion of the base and a portion of the n-type well. A buffer region is disposed under a portion of the isolation structure. Furthermore, the buffer region together with a portion of the isolation structure isolates the p-type base from the n-type well.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: April 15, 2008
    Assignee: United Microelectronics Corp.
    Inventor: Mingshang Tsai
  • Patent number: 7354840
    Abstract: According to an exemplary embodiment, a method includes providing a silicon-on-insulator substrate including a buried oxide layer situated over a bulk silicon substrate and a silicon layer situated over the buried oxide layer. A trench is formed in the silicon layer and the buried oxide layer, where the trench exposes a portion of the bulk silicon substrate, and where the trench is situated adjacent to an optical region of said silicon-on-insulator substrate. According to this exemplary embodiment, an epitaxial layer is formed on the exposed portion of the bulk silicon substrate in the trench. The epitaxial layer and the bulk silicon substrate form a bulk silicon electronic region of the silicon-on-insulator substrate.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: April 8, 2008
    Assignee: Newport Fab, LLC
    Inventor: Paul Kempf
  • Patent number: 7339254
    Abstract: According to an exemplary embodiment, a structure includes a silicon-on-insulator substrate including a buried oxide layer situated over a bulk silicon substrate and a silicon layer situated over the buried oxide layer. The structure further includes a trench formed in the silicon layer and the buried oxide layer, where the trench has a bottom surface and a first and a second sidewall, and where the trench is situated adjacent to an optical region of the silicon-on-insulator substrate. According to this exemplary embodiment, the structure further includes an epitaxial layer situated in the trench and situated on the bulk silicon substrate, where the epitaxial layer and the bulk silicon substrate form a bulk silicon electronic region of the silicon-on-insulator substrate. The structure further includes a base of a bipolar transistor situated on the epitaxial layer, where the base can be silicon-germanium.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Newport Fab, LLC
    Inventor: Paul H. Kempf
  • Patent number: 7319263
    Abstract: A semiconductor component is described. In one embodiment, the semiconductor component includes a switching element integrated in the semiconductor component between two functional element semiconductor regions, configured to reduce a parasitic current flow through the semiconductor component.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 15, 2008
    Assignee: Infineon Technologies AG
    Inventor: Wolfgang Horn
  • Publication number: 20070267716
    Abstract: Present invention proposes a dramatic improvement of CMOS IC technology by providing high speed bipolar current amplifiers compatible with CMOS technological process while retaining the footprint compatible to one of standard CMOS devices. This invention promises further increase of speed of ICs as well as a reduction of power dissipation.
    Type: Application
    Filed: May 20, 2006
    Publication date: November 22, 2007
    Inventors: SERGEY ANTONOV, ALEXEI I ANTONOV
  • Patent number: 7288827
    Abstract: A self-aligned oxide mask is formed utilizing differential oxidation rates of different materials. The self-aligned oxide mask is formed on a CVD grown base NPN base layer which compromises single crystal Si (or Si/SiGe) at active area and polycrystal Si (or Si/SiGe) on the field. The self-aligned mask is fabricated by taking advantage of the fact that poly Si (or Si/SiGe) oxidizes faster than single crystal Si (or Si/SiGe). An oxide film is formed over both the poly Si (or Si/siGe) and the single crystal Si (or Si/siGe) by using an thermal oxidation process to form a thick oxidation layer over the poly Si (or Si/siGe) and a thin oxidation layer over the single crystal Si (or Si/siGe), followed by a controlled oxide etch to remove the thin oxidation layer over the single crystal Si (or Si/siGe) while leaving the self-aligned oxide mask layer over the poly Si (or Si/siGe). A raised extrinsic base is then formed following the self-aligned mask formation.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Kathryn T. Schonenberg, Gregory G. Freeman, Andreas D. Stricker, Jae-Sung Rieh
  • Patent number: 7247923
    Abstract: A semiconductor device realizes a high electrostatic discharge withstanding capability and a high surge withstanding capability within the narrow chip area of a lateral MOSFET used in integrated intelligent switching devices, double-integration-type signal input and transfer IC's, and combined power IC's. The semiconductor device includes a vertical bipolar transistor in which a base is electrically connected to an emitter and a collector, and a lateral MOSFET including a drain electrode connected to a surface electrode. The vertical bipolar transistor absorbs electrostatic discharge or surge energy when a high electrostatic discharge voltage or a high surge voltage is applied and limits the electrostatic discharge voltage or the surge voltage to be lower than the breakdown voltage of the lateral MOSFET.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 24, 2007
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kazuhiko Yoshida, Takeshi Ichimura, Tatsuhiko Fujihira, Naoki Kumagai
  • Patent number: 7026690
    Abstract: The invention includes BIFETRAM devices. Such devices comprise a bipolar transistor in combination with a field effect transistor (FET) in a three-dimensional stacked configuration. The memory devices can be incorporated within semiconductor-on-insulator (SOI) constructions. The base region of the bipolar device can be physically and electrically connected to one of the source/drain regions of the FET to act as a storage node for the memory cell. The semiconductor material of the SOI constructions can comprise Si/Ge, and the active region of the FET can extend into the Si/Ge. The SOI constructions can be formed over any of a number of substrates, including, for example, semiconductive materials, glass, aluminum oxide, silicon dioxide, metals and/or plastics.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: April 11, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 6989557
    Abstract: A bipolar junction transistor (BJT) includes a dielectric layer formed on a predetermined region of a substrate, an opening formed in the dielectric layer and a portion of the substrate being exposed, a heavily doped polysilicon layer formed on a sidewall of the opening to define a self-aligned base region in the opening, an intrinsic base doped region formed within the substrate and in a bottom of the opening by implanting through the self-aligned base region, a spacer formed on the heavily doped polysilicon layer to define a self-aligned emitter region in the opening, and an emitter conductivity layer being filled with the self-aligned emitter region and a PN junction being formed between the emitter conductivity layer and the intrinsic base doped region.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: January 24, 2006
    Assignee: United Microelectronics Corp.
    Inventor: Anchor Chen
  • Patent number: 6977425
    Abstract: A semiconductor device realizes a high electrostatic discharge withstanding capability and a high surge withstanding capability within the narrow chip area of a lateral MOSFET used in integrated intelligent switching devices, double-integration-type signal input and transfer IC's, and combined power IC's. The semiconductor device includes a vertical bipolar transistor in which a base is electrically connected to an emitter and a collector, and a lateral MOSFET including a drain electrode connected to a surface electrode. The vertical bipolar transistor absorbs electrostatic discharge or surge energy when a high electrostatic discharge voltage or a high surge voltage is applied and limits the electrostatic discharge voltage or the surge voltage to be lower than the breakdown voltage of the lateral MOSFET.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 20, 2005
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kazuhiko Yoshida, Takeshi Ichimura, Tatsuhiko Fujihira, Naoki Kumagai
  • Patent number: 6972466
    Abstract: Complementary metal-oxide-semiconductor (CMOS) integrated circuits with bipolar transistors and methods for fabrication are provided. A bipolar transistor may have a lightly-doped base region. To reduce the resistance associated with making electrical contact to the lightly-doped base region, a low-resistance current path into the base region may be provided. The low-resistance current path may be provided by a base conductor formed from heavily-doped epitaxial crystalline semiconductor. Metal-oxide-semiconductor (MOS) transistors with narrow gates may be formed on the same substrate as bipolar transistors. The MOS gates may be formed using a self-aligned process in which a patterned gate conductor layer serves as both an implantation mask and as a gate conductor. A base masking layer that is separate from the patterned gate conductor layer may be used as an implantation mask for defining the lightly-doped base region.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: December 6, 2005
    Assignee: Altera Corporation
    Inventors: Minchang Liang, Yow-Juang Liu, Fangyun Richter
  • Patent number: 6972472
    Abstract: An emitter stack for a quasi-self-aligned bipolar (NPN or PNP) transistor is formed where two layers over the emitter of a silicon substrate are windowed in a manner to under cut the top layer thereby exposing the substrate material. The emitter polysilicon structure is then formed over the window and conformally extends into the undercut region thereby widening the emitter region and so reducing the distance between the edge of the emitter and the extrinsic base (the base link distance) and therefore reducing the total base resistance of the transistor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: December 6, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven M. Leibiger, Daniel J. Hahn, Laurence M. Szendrei
  • Patent number: 6964907
    Abstract: In a BJT, the extrinsic base to collector capacitance is reduced by forming a lateral trench between the extrinsic base region and collector. This is typically done by using an anisotropic wet etch process in a <110> direction of a <100> orientation wafer.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 15, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, Vladislav Vashchenko, Peter Johnson
  • Patent number: 6911715
    Abstract: A bipolar transistor in which the occurrence of Kirk effect is suppressed when a high current is injected into the bipolar transistor and a method of fabricating the bipolar transistor are described. The bipolar transistor includes a first collector region of a first conductive type having high impurity concentration, a second collector region of a first conductive type which has high impurity concentration and is formed on the first collector region, a base region of a second conductive type being formed a predetermined portion of the second collector region, and an emitter region of a first conductive type being formed in the base region. The bipolar transistor further includes the third collector region, which has higher impurity concentration than the second collector region, at the bottom of the base region.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 28, 2005
    Assignee: Fairchild Korea Semiconductor Ltd
    Inventors: Chan-ho Park, Jin-myung Kim, Kyeong-seok Park, Dong-ho Hyun
  • Patent number: 6903386
    Abstract: A transistor includes a means for providing a non-silicon-based emitter with a flexible structure to relieve lattice mis-match between the emitter and the base.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: June 7, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hung Liao, Bao-Sung Bruce Yeh
  • Patent number: 6853048
    Abstract: The present invention provides a bipolar transistor and a method of manufacture thereof. The bipolar transistor includes a dielectric region located in a semiconductor substrate and a collector located in the semiconductor substrate and at least partially over the dielectric region. The bipolar transistor device further includes a base located over and in contact with the dielectric region and at least partially about the collector and an emitter located over and in contact with the dielectric region and adjacent the base.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: February 8, 2005
    Assignee: Agere Systems Inc.
    Inventor: Ian Wylie
  • Patent number: 6853017
    Abstract: A bipolar transistor structure includes trench isolation dielectric material formed in a semiconductor substrate to define a substrate active device region. A collector region is formed beneath the surface of the active device region. A base region is formed in the active device region above the collector region and extends to the surface of the active device region. A layer of dielectric material is formed to extend at least partially over the trench isolation and over the surface of the base region. A layer of doped polysilicon is formed over the layer of dielectric material and extends over the edge of the layer of dielectric material and over the surface of the base region. The doped polysilicon is patterned to define a polysilicon emitter region that extends over the edge of the layer of dielectric material to provide an ultra-small emitter contact on the surface of the base region.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: February 8, 2005
    Assignee: National Semiconductor Corporation
    Inventor: Abdalla Aly Naem
  • Patent number: 6847094
    Abstract: The forming of a contact with a deep region of a first conductivity type formed in a silicon substrate. The contact includes a doped silicon well region of the first conductivity type and an intermediary region connected between the deep layer and the well. This intermediary connection region is located under a trench. The manufacturing method enables forming of vertical devices, in particular fast bipolar transistors.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 25, 2005
    Assignee: STMicroelectronics S.A.
    Inventor: Thierry Schwartzmann
  • Patent number: 6844594
    Abstract: A method of forming minimally spaced word lines is described. A double exposure technique is employed at the gate formation level. A small trench is defined through gate stack layers by using a tapered etch or spacers to achieve the desired width of the trench. A filler material fills the trench and forms a filler plug. The gate layers adjacent to the trench are then patterned and etched and the filler plug is removed to obtain gate stacks spaced apart by a distance of less than about 400 Angstroms.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 18, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 6838709
    Abstract: A bipolar transistor includes the first group of transistors 610a, the second group of transistors 610b, the third group of transistors 610c and the fourth group of transistors 610d. The groups of transistors have unit transistors with emitters, bases and collectors that are connected electrically in parallel and the number of unit transistors is different from group to group and 2, 4, 8, and 16, respectively.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: January 4, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinichi Sonetaka, Yasuyuki Toyoda, Kazuhiro Arai, Yorito Ota
  • Patent number: 6828649
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the same. In one advantageous embodiment, the semiconductor device includes a doped layer located over a semiconductor substrate, and an isolation trench located in the doped layer and having a dielectric layer located on a sidewall thereof. The semiconductor device may further include a conductive material located within the isolation trench and an interconnect that electrically connects the conductive material and the doped layer.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Agere Systems Inc.
    Inventors: John C. Desko, Thomas J. Krutsick, Chung-Ming Hsieh, Brian E. Thompson, Bailey Jones, Steve Wallace