Air Isolation (e.g., Beam Lead Supported Semiconductor Islands) Patents (Class 257/522)
  • Patent number: 6940146
    Abstract: An interconnect is formed on the substrate. The conductive structure at least includes a first conductive structure and a second conductive structure, which have a gap region in-between. The substrate is exposed at the gap region. A first structured dielectric layer is formed over the substrate to cover the first and the second conductive structures. The first structured dielectric layer also has a void at the gap region between the first and the second conductive structures. The void significantly extends to the whole gap region. The first structured dielectric layer also has an indent region above the void. An anti-etch layer fills the indent region of the first structured dielectric layer. As a result, the first structured dielectric layer has a substantially planar surface. A second structured dielectric layer is formed on the first structured dielectric layer and the anti-etch layer.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: September 6, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Ellis Lee, Tsing-Fong Hwang
  • Patent number: 6917115
    Abstract: An alignment pattern comprises at least a sloped surface which communicates between a top surface of an inter-layer insulator extending over a surface of a substrate and a field oxide film selectively formed over the surface of the substrate and a flat surface of a metal plug, and the flat surface being lower in level than the top surface of the inter-layer insulator. The metal plug is buried within an alignment hole which completely penetrates the insulation layer and at least reaches the field oxide film, so that the alignment hole has a bottom level which is deeper than a bottom level of the inter-layer insulator.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: July 12, 2005
    Assignee: NEC Electronics Corporation
    Inventor: Chieri Teramoto
  • Patent number: 6917109
    Abstract: An air gap structure and formation method for substantially reducing the undesired capacitance between adjacent interconnects, metal lines or other features in an integrated circuit device is disclosed. The air gap extends above, and may also additionally extend below, the interconnects desired to be isolated thus minimizing fringing fields between the lines. The integrated air gap structure and formation method can be utilized in conjunction with either damascene or conventional integrated circuit metallization schemes. Also, multiple levels of the integrated air gap structure can be fabricated to accommodate multiple metal levels while always ensuring that physical dielectric layer support is provided to the device structure underlying the interconnects.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 12, 2005
    Assignee: United Micorelectronics, Corp.
    Inventors: Water Lur, David Lee, Kuang-Chih Wang, Ming-Sheng Yang
  • Patent number: 6914317
    Abstract: A microelectronic substrate and method for manufacture. In one embodiment, the microelectronic substrate includes a body having a first surface, a second surface facing a direction opposite from the first surface, and a plurality of voids in the body between the first and second surfaces. The voids can extend from the first surface to a separation region beneath the first surface. At least one operable microelectronic device is formed at and/or proximate to the first surface of the substrate material, and then a first stratum of the microelectronic substrate above the separation region is separated from a second stratum of the microelectronic substrate below the separation region. The first stratum of the microelectronic substrate can be further separated into discrete microelectronic dies before the first stratum is separated from the second stratum. In one aspect of this embodiment, the substrate can support a film and microelectronic devices can be formed in the film and/or in the substrate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 5, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Charles E. Larson, Timothy E. Murphy, Bryan L. Taylor, Jon M. Long, Mark W. Ellis, Vincent L. Riley
  • Patent number: 6914318
    Abstract: An interconnect is formed on the substrate. The conductive structure at least includes a first conductive structure and a second conductive structure, which have a gap region in-between. The substrate is exposed at the gap region. A first structured dielectric layer is formed over the substrate to cover the first and the second conductive structures. The first structured dielectric layer also has a void at the gap region between the first and the second conductive structures. The void significantly extends to the whole gap region. The first structured dielectric layer also has an indent region above the void. An anti-etch layer fills the indent region of the first structured dielectric layer. As a result, the first structured dielectric layer has a substantially planar surface. A second structured dielectric layer is formed on the first structured dielectric layer and the anti-etch layer.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: July 5, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Ellis Lee, Tsing-Fong Hwang
  • Patent number: 6914335
    Abstract: An improved semiconductor device is described. That semiconductor device includes a first insulating layer, having a low-k dielectric constant that preferably comprises a carbon doped oxide, that is formed on a substrate. The device further includes a second layer, which is formed on the first layer, that has a relatively high dielectric constant and superior mechanical strength. The second layer is preferably under compressive stress. A third layer may be formed on the second layer, which has a relatively low dielectric constant and relatively poor mechanical strength, and a fourth layer may be formed on the third layer, which has a relatively high dielectric constant and superior mechanical strength.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: July 5, 2005
    Assignee: Intel Corporation
    Inventors: Ebrahim Andideh, Qing Ma, Quan Tran, Steve Towle
  • Patent number: 6911686
    Abstract: There is provided a semiconductor device which is manufactured via steps of forming a capacitor which is obtained by forming in sequence an upper electrode, a dielectric film formed of ferroelectric material or high-dielectric material, and a lower electrode on a semiconductor substrate, then forming an interlayer insulating film on the capacitor, then planarizing a surface of the interlayer insulating film by the CMP polishing, then removing a moisture attached to a surface of the interlayer insulating film or a moisture contained in the interlayer insulating film by applying the plasma annealing using an N2O gas, and then forming a redeposited interlayer film on the interlayer insulating film.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: June 28, 2005
    Assignee: Fujitsu Limited
    Inventor: Akio Itoh
  • Patent number: 6909128
    Abstract: A method used during the manufacture of a semiconductor device comprises providing at least first, second, and third spaced conductive structures, where the second conductive structure is interposed between the first and third conductive structures. A first dielectric is formed over these conductive structures, then a portion of the first dielectric layer is removed which forms a hole in the dielectric layer to expose the second conductive structure. Subsequently, the second conductive structure is removed to leave a void or tunnel in the dielectric layer where the second conductive structure had previously existed. Finally, a second dielectric layer is provided to fill the hole but to leave the void or tunnel in the dielectric layer subsequent to the formation of the second dielectric layer. An inventive structure resulting from the inventive method is also described.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Philip J. Ireland
  • Patent number: 6906419
    Abstract: In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: June 14, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Nitta, Yoshiaki Fukuzumi, Yusuke Kohyama
  • Patent number: 6890828
    Abstract: A method for forming interlevel dielectric levels in a multilevel interconnect structure formed by a damascene process. The conductive features characteristic of the damascene process are formed in a removable mandrel material for each level of the interconnect structure. In at least one level, a portion of the mandrel material underlying the bond pad is clad on all sides with the metal forming the conductive features to define a support pillar. After all levels of the interconnect structure are formed, the mandrel material surrounding the conductive features is removed to leave air-filled voids that operate as an interlevel dielectric. The support pillar is impermeable to the etchant such that mandrel material and metal inside the support pillar is retained. The support pillar braces the bond pad against vertical mechanical forces applied by, for example, probing or wire bonding and thereby reduces the likelihood of related damage to the interconnect structure.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 6888247
    Abstract: An interconnect is formed on the substrate. The conductive structure at least includes a first conductive structure and a second conductive structure, which have a gap region in-between. The substrate is exposed at the gap region. A first structured dielectric layer is formed over the substrate to cover the first and the second conductive structures. The first structured dielectric layer also has a void at the gap region between the first and the second conductive structures. The void significantly extends to the whole gap region. The first structured dielectric layer also has an indent region above the void. An anti-etch layer fills the indent region of the first structured dielectric layer As a result, the first structured dielectric layer has a substantially planar surface A second structured dielectric layer is formed on the first structured dielectric layer and the anti-etch layer.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: May 3, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Ellis Lee, Tsing-Fong Hwang
  • Patent number: 6888249
    Abstract: A method of forming an air gap or gaps within solid structures and specifically semiconductor structures to reduce capacitive coupling between electrical elements such as metal lines, wherein a sacrificial material is used to occupy a closed interior volume in a semiconductor structure is disclosed. The sacrificial material is caused to decompose into one or more gaseous decomposition products which are removed, in one embodiment by diffusion, through an overcoat layer. The decomposition of the sacrificial material leaves an air gap or gaps at the closed interior volume previously occupied by the sacrificial material. The air gaps may be disposed between electrical leads to minimize capacitive coupling therebetween. Also disclosed are methods of forming multi-level air gaps and methods or forming over-coated conductive lines or leads wherein a portion of the overcoating is in contact with at least one air gap.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: May 3, 2005
    Assignee: Georgia Tech Research Corporation
    Inventors: Paul Albert Kohl, Sue Ann Bidstrup Allen, Clifford Lee Henderson, Hollie Ann Reed, Dhananjay M. Bhusari
  • Patent number: 6888213
    Abstract: A dielectric insulation structure is formed in a silicon layer by integrating a dielectric trench structure therein. The dielectric trench structure defines an insulation well where semiconductor devices are to be integrated therein. The dielectric trench structure is on a hollow region that is completely surrounded by a dielectric area. The dielectric area also forms the side insulation of the dielectric trench structure. The dielectric trench structure is interrupted by a plurality of points to define a plurality of side support regions for the insulation well.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: May 3, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventors: Salvatore Leonardi, Roberto Modica, Giuseppe Arena
  • Patent number: 6882011
    Abstract: An ESD protection device having reduced trigger voltage is disclosed. A first MOS transistor includes a first gate, a first heavily doped region at one side of the first gate, and a second heavily doped region at the other side of the first gate. A second MOS transistor is laterally disposed in proximity to the first MOS transistor. The second MOS transistor includes a second gate, a third heavily doped region at one side of the second gate, and a fourth heavily doped region at the other side of the second gate. The floating gate MOS transistor is located between the first and second MOS transistors. A floating gate MOS transistor is serially connected to the first MOS transistor via the second heavily doped region and is serially connected to the second MOS transistor via the third heavily doped region.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: April 19, 2005
    Assignee: United Microelectronics Corp.
    Inventor: Shiao-Shien Chen
  • Patent number: 6876017
    Abstract: Method and structure for optimizing dual damascene patterning with polymeric dielectric materials are disclosed. Certain embodiments of the invention comprise polymeric sacrificial light absorbing materials (“polymer SLAM”) functionalized to have a controllable solubility switch wherein such polymeric materials have substantially the same etch rate as conventionally utilized polymeric dielectric materials, and subsequent to chemical modification of solubility-modifying protecting groups comprising the SLAM materials by thermal treatment or in-situ generation of an acid, such SLAM materials become soluble in weak bases, such as those conventionally utilized to remove materials in lithography treatments.
    Type: Grant
    Filed: February 8, 2003
    Date of Patent: April 5, 2005
    Assignee: Intel Corporation
    Inventor: Michael D. Goodner
  • Patent number: 6861332
    Abstract: A low-k dielectric sacrificial material is formed within a microelectronic structure covered with a layer defining an exhaust vent. At an appropriate time, the underlying sacrificial material is decomposed and exhausted away through the exhaust vent. Residue from the exhausted sacrificial material accumulates at the vent location during exhaustion until the vent is substantially occluded. As a result, an air gap is created having desirable characteristics as a dielectric.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 1, 2005
    Assignee: Intel Corporation
    Inventors: Hyun-Mog Park, Grant M. Kloster
  • Patent number: 6841844
    Abstract: An inter-level insulator structure is provided having an effective insulator dielectric constant approaching 1. An embodiment of the inter-level insulator comprises a first metal layer comprising a first plurality of metal lines; a second metal layer comprising a second plurality of metal lines, and at least one via connected to the first metal layer; and an air gap interposed between the first metal layer and the second metal layer. In one embodiment, the air gap is also present between metal lines on either metal layer, such that air gaps act as intra-level as well as inter-level insulators. A method is also provided to deposit and pattern a sacrificial polymer, and form metal layers. The sacrificial polymer is capable of being decomposed to become air gaps during annealing.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: January 11, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan
  • Patent number: 6828646
    Abstract: An isolation trench formed in a semiconductor substrate has side walls and a bottom wall. Spacers are on the side walls and face each other for forming a narrow channel therebetween. The bottom wall and the spacers are coated with an electrically insulating material for delimiting a closed empty cavity in the channel. The isolation trench is applicable to the manufacture of integrated circuits.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: December 7, 2004
    Assignee: STMicroelectronics SA
    Inventors: Michel Marty, Francois Leverd, Philippe Coronel, Joaquin Torres
  • Patent number: 6812508
    Abstract: A semiconductor substrate device comprises a first semiconductor substrate including a concave-convex surface and a second semiconductor substrate having an insulating film on a surface thereof. The first semiconductor substrate and the second semiconductor substrate are brought together so that the surface of the first semiconductor substrate and the insulating film provided on the surface of the second semiconductor substrate contact each other to form a cavity in the semiconductor substrate device.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: November 2, 2004
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masayuki Fukumi
  • Patent number: 6809384
    Abstract: A method and apparatus for protecting a conductor in an integrated circuit. A protective covering can be disposed over a conductor for a substantial length along the conductor while allowing a portion of the conductor to be exposed. The protective covering can be configured as a tunnel which runs for a substantial length along the conductor and can be operable to prevent the occurrence of electrical shorts during operation of the integrated circuit. According to one embodiment of the invention the integrated circuit can be configured as a micromachined device with active mechanical components exposed to the atmosphere.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: October 26, 2004
    Assignee: PTS Corporation
    Inventors: Robert L. Anderson, David Reyes
  • Patent number: 6787804
    Abstract: A semiconductor acceleration sensor includesa non-single-crystal-silicon-based substrate, an insulating beam structure having a movable section and a stationary section, at least one piezoresistor positioned on the beam structure, an insulating supporter positioned on the non-single-crystal-silicon-based substrate for fixing the stationary section of the beam structure and forming a distance between the beam structure and the non-single-crystal-silicon-based substrate, and a thin film transistor (TFT) control circuit positioned on the non-single-crystal-silicon-based substrate and electrically connected to the piezoresistor and the beam structure.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: September 7, 2004
    Assignee: AU Optronics Corp.
    Inventor: Chien-Sheng Yang
  • Patent number: 6774491
    Abstract: Conductive lines, such as co-axial lines, integrated circuitry incorporating such conductive lines, and methods of forming the same are described. In one aspect, a substrate having an outer surface is provided. A masking material is formed over the outer surface and subsequently patterned to form a conductive line pattern. An inner conductive layer is formed within the conductive line pattern, followed by formation of a dielectric layer thereover and an outer conductive layer over the dielectric layer. Preferred implementations include forming the inner conductive layer through electroplating, or alternatively, electroless plating techniques. Other preferred implementations include forming the dielectric layer from suitable polymer materials having desired dielectric properties. A vapor-deposited dielectric layer of Parylene is one such preferred dielectric material.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Kie Y. Ahn
  • Patent number: 6774416
    Abstract: A small area cascode FET structure capable of operating at mm-wave frequenices cascades a common-source (CS) FET with a common gate (CG) FET, in a smaller physical area than conventional cascode FET structures. The small area of the cascode FET structure is partially achieved by using small source via grounds, requiring a thin gallium arsenide substrate (typically between 50 and 70 microns thick). The overall cascode area is reduced further, by having the two FETs share a common node. This common node is the output drain manifold of the CS FET, which is also an input source finger of the CG FET. In addition, small via grounds within the MIM capacitors and CS FET, which provide the ground connection to the gate manifolds of the CG FET, further reduce circuit area. Advantageously, the small area cascode FET can be applied to many different MMICs to reduce MMIC area requirements and cost.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: August 10, 2004
    Assignee: Nanowave, Inc
    Inventor: Stephen R. Nelson
  • Patent number: 6765297
    Abstract: A semiconductor device in which a problem such as a thermal diffusion defect in a hollow wiring technique can be solved. In the semiconductor device, a gap is formed between wirings formed on a substrate, and the gap is filled with a gas having a thermal conductivity equal to or higher than three times that of air at 0° C.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 20, 2004
    Assignee: Sony Corporation
    Inventors: Junichi Aoyama, Toshio Kobayashi
  • Publication number: 20040124495
    Abstract: A method for implementing a bismaleimide (BMI) polymer as a sacrificial material for an integrated circuit air gap dielectric. The method of one embodiment comprises forming a first and second metal interconnect lines on a substrate, wherein at least a portion of the first and second metal interconnect lines extend parallel to one another and wherein a trough is located between the parallel portion of said first and second metal interconnect lines. A layer of bismaleimide is spin coated over the substrate. The layer of bismaleimide is polished with a chemical mechanical polish, wherein the trough remains filled with the bismaleimide. A diffusion layer is formed over the substrate. The substrate is heated to activate a pyrolysis of the bismaleimide. An air gap is formed in the trough in the space vacated by the bismaleimide.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 1, 2004
    Inventors: Tian-An Chen, Kevin P. O'Brien
  • Patent number: 6756653
    Abstract: Techniques of shallow trench isolation and devices produced therefrom. The techniques of shallow trench isolation utilize foamed polymers, cured aerogels or air gaps as the insulation medium. Such techniques facilitate lower dielectric constants than the standard silicon dioxide due to the cells of gaseous components inherent in foamed polymers, cured aerogels or air gaps. Lower dielectric constants reduce capacitive coupling concerns and thus permit higher device density in an integrated circuit device.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: June 29, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Publication number: 20040094821
    Abstract: An air gap structure and formation method for substantially reducing capacitance in a dual damascene based interconnect structure is disclosed. The air gap extends above, and may also additionally extend below, the damascene interconnects desired to be isolated thus minimizing fringing fields between the lines. Multiple levels of the integrated air gap structure can be fabricated to accommodate multiple metal levels.
    Type: Application
    Filed: November 15, 2002
    Publication date: May 20, 2004
    Inventors: Water Lur, David Lee, Kuang-Chih Wang, Ming-Sheng Yang
  • Patent number: 6737725
    Abstract: A method for forming a multilayer interconnect structure on a substrate that include interconnected conductive wiring and vias spaced apart by a combination of solid or gaseous dielectrics.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: May 18, 2004
    Assignee: International Business Machines Corporation
    Inventors: Alfred Grill, Jeffrey Curtis Hedrick, Christopher Vincent Jahnes, Satyanarayana Venkata Nitta, Kevin S. Petrarca, Sampath Purushothaman, Katherine Lynn Saenger, Stanley Joseph Whitehair
  • Patent number: 6737723
    Abstract: Techniques of shallow trench isolation and devices produced therefrom. The techniques of shallow trench isolation utilize foamed polymers, cured aerogels or air gaps as the insulation medium. Such techniques facilitate lower dielectric constants than the standard silicon dioxide due to the cells of gaseous components inherent in foamed polymers, cured aerogels or air gaps. Lower dielectric constants reduce capacitive coupling concerns and thus permit higher device density in an integrated circuit device.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: May 18, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Publication number: 20040084749
    Abstract: A pattern of voids in an integrated circuit having a first layer, a first layer surface and adjacent lands on the first layer surface, the adjacent lands enclosing spaces and including a second layer of a first isolation material and a third layer of a second isolation material arranged on the second layer. The pattern of voids has a fourth layer of a third isolation material which closes off at least some of the spaces and cannot be deposited on the first isolation material. The fourth layer is arranged on the third layer and has a second layer surface. Spaces that are not closed off by means of the fourth layer are filled with electrically conductive material. In the method for producing a pattern of voids in an integrated circuit, a second layer of a first isolation material is applied to a first layer surface of a first layer. A third layer of a second isolation material is applied to the second layer, the third layer acquiring a second layer surface which is arranged parallel to the first layer surface.
    Type: Application
    Filed: November 17, 2003
    Publication date: May 6, 2004
    Inventors: Werner Pamler, Siegfried Schwarzl, Zvonimir Gabric
  • Patent number: 6730571
    Abstract: In accordance with the objectives of the invention a new method is provided for creating air gaps in a layer of IMD. First and second layers of dielectric are successively deposited over a surface; the surface contains metal lines running in an Y-direction. Trenches are etched in the first and second layer of dielectric in an X and Y-direction respectively. The trenches are filled with a layer of nitride and polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. Openings are created through the thin layer of oxide that align with the points of intersect of the nitride in the trenches in the layers of dielectric. The nitride is removed from the trenches by a wet etch, thereby opening trenches in the layers of dielectric with both sets of trenches being interconnected. The openings in the thin layer of oxide are closed, leaving a network of trenches containing air in the two layers of dielectric.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: May 4, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Cher Liang Cha, Kheng Chok Tee
  • Patent number: 6727535
    Abstract: A voltage tunable dielectric varactor includes a tunable ferroelectric layer and first and second non-tunable dielectric layers. First and second electrodes positioned adjacent to the tunable ferroelectric layer form a tunable capacitor. A third electrode is positioned adjacent to the first non-tunable dielectric layer such that the third and first electrodes and the first non-tunable dielectric layer form a first blocking capacitor. A fourth electrode is positioned adjacent to the second non-tunable dielectric layer such that the fourth and second electrodes and the second non-tunable dielectric layer form a second blocking capacitor. The first and second electrodes can be positioned on a surface of the tunable ferroelectric layer opposite the generally planar surface of the substrate, with the first and second electrodes being separated to form a gap. The first and second non-tunable dielectric layers can also be positioned on the generally planar surface of the substrate.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: April 27, 2004
    Assignee: Paratek Microwave, Inc.
    Inventors: Louise C. Sengupta, Steven C. Stowell, Yongfei Zhu, Somnath Sengupta
  • Patent number: 6724055
    Abstract: The semiconductor structure has an interconnect that is isolated by a cavity from an underlying insulating layer on a support. The fabrication method provides for the interconnect firstly to be patterned on a double layer and to be provided with an insulating covering. Then, an opening is etched into the insulating covering, and the lower conductive layer is selectively removed. As a result, one the one hand, low-capacitance wiring can be fabricated and, on the other hand, this enables MOS transistors to be programmed in a simple manner.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: April 20, 2004
    Assignee: Infineon Technologies AG
    Inventor: Gerd Lichter
  • Patent number: 6717191
    Abstract: A typical air bridge is an aluminum conductor suspended across an air-filled cavity to connect two components of an integrated circuit, two transistors for example. The air-filled cavity has a low dielectric constant which reduces cross-talk between neighboring conductors and improves speed and efficiency of the integrated circuit. However, current air bridges must be kept short because typical aluminum conductors sag too much. Accordingly, one embodiment of the invention forms air-bridge conductors from an aluminum-beryllium alloy, which enhances stiffness and ultimately provides a 40-percent improvement in air-bridge lengths.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 6713798
    Abstract: There are provided steps of forming sequentially a first conductive film, a dielectric film, and a second conductive film, that constitute a capacitor, on an insulating film, forming an upper electrode of the capacitor by etching the second conductive film while using a first resist pattern as a mask, removing the first resist pattern, forming second resist patterns, that have a width equal to or smaller than a pattern width of the upper electrode of the capacitor, on the upper electrode of the capacitor, and etching at least a part of the dielectric film and the first conductive film by using the second resist patterns as a mask, while exposing an upper surface of the upper electrode of the capacitor close to side portions by retreating side portions of the second resist patterns.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 30, 2004
    Assignee: Fujitsu Limited
    Inventor: Yoichi Okita
  • Patent number: 6713235
    Abstract: Supports (3) are formed to be arrayed on a support base (1), a sacrifice layer (15) is formed of a resin material, and the sacrifice layer (15) is planarized so as to expose the top of the respective supports (3), thereby forming a thin-film substrate (5) on top of the sacrifice layer (15) as planarized, and the supports (3). The sacrifice layer (15) is removed by plasma selective etching thereof through the intermediary of the thin-film substrate, and thereby a large-area thin-film substrate (5) floatingly spaced by a space (7) away from the support base (1) can be fabricated.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: March 30, 2004
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Masafumi Ide, Toshiyuki Sameshima
  • Patent number: 6713835
    Abstract: A method for forming interlevel dielectric layers in multilevel interconnect structures using air as the constituent low-k dielectric material that is compatible with damascene processes without introducing additional process steps. The conductive features characteristic of the damascene process are formed by standard lithographic and etch processes in the mandrel material for each level of the interconnect structure. The conductive features in each level are surrounded by the mandrel material. After all levels of the interconnect structure are formed, a passageway is provided to the mandrel material. An isotropic etchant is introduced through the passageway that selectively etches and removes the mandrel material. The spaces formerly occupied by the mandrel material in the levels of the interconnect structure are filled by air, which operates as a low-k dielectric material.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: March 30, 2004
    Assignee: International Business Machines Corporation
    Inventors: David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Publication number: 20040056323
    Abstract: A method used during the manufacture of a semiconductor device comprises providing at least first, second, and third spaced conductive structures, where the second conductive structure is interposed between the first and third conductive structures. A first dielectric is formed over these conductive structures, then a portion of the first dielectric layer is removed which forms a hole in the dielectric layer to expose the second conductive structure. Subsequently, the second conductive structure is removed to leave a void or tunnel in the dielectric layer where the second conductive structure had previously existed. Finally, a second dielectric layer is provided to fill the hole but to leave the void or tunnel in the dielectric layer subsequent to the formation of the second dielectric layer. An inventive structure resulting from the inventive method is also described.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 25, 2004
    Inventor: Philip J. Ireland
  • Publication number: 20040058277
    Abstract: In an embodiment, a trench is formed above a via from a photo resist (PR) trench pattern in a dielectric layer. The trench is defined by two sidewall portions and base portions. The base portions of the sidewalls are locally treated by a post treatment using the PR trench pattern as mask to enhance mechanical strength of portions of the dielectric layer underneath the base portions. Seed and barrier layers are deposited on the trench and the via. The trench and via are filled with a metal layer. In another embodiment, a trench is formed from a PR trench pattern in a dielectric layer. A pillar PR is deposited and etched to define a pillar opening having a pillar surface. The pillar opening is locally treated on the pillar surface by a post treatment to enhance mechanical strength of portion of the dielectric layer underneath the pillar surface.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 25, 2004
    Inventors: Jun He, Jihperng Leu
  • Patent number: 6710449
    Abstract: A wiring pattern has been enlarged by mutually different values, thereby forming two enlarged wiring patterns are formed. Then, regions where the two enlarged wiring patterns overlap each other are removed, thereby forming a dummy pattern. Alternatively, a simple-figure pattern made of simple figures is formed and a dummy pattern is formed using the simple-figure pattern. A gap that is not wider than a predetermined value is located in a final wiring pattern made of the wiring pattern and the dummy pattern is defined as an air gap region. Thus, an interconnection structure incorporating air gaps between wiring patterns is formed.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: March 23, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Chihiro Hyoto, Kiyoshi Mukai, Hidenori Shibata, Hiroyuki Tsujikawa
  • Patent number: 6693335
    Abstract: A semiconductor structure which includes a raised source and a raised drain. The structure also includes a gate located between the source and drains. The gate defines a first gap between the gate and the source and a second gap between the gate and the drain.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Chandra Mouli
  • Patent number: 6693342
    Abstract: A microelectronic substrate and method for manufacture. In one embodiment, the microelectronic substrate includes a body having a first surface, a second surface facing a direction opposite from the first surface, and a plurality of voids in the body between the first and second surfaces. The voids can extend from the first surface to a separation region beneath the first surface. At least one operable microelectronic device is formed at and/or proximate to the first surface of the substrate material, and then a first stratum of the microelectronic substrate above the separation region is separated from a second stratum of the microelectronic substrate below the separation region. The first stratum of the microelectronic substrate can be further separated into discrete microelectronic dies before the first stratum is separated from the second stratum. In one aspect of this embodiment, the substrate can support a film and microelectronic devices can be formed in the film and/or in the substrate.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Charles E. Larson, Timothy E. Murphy, Bryan L. Taylor, Jon M. Long, Mark W. Ellis, Vincent L. Riley
  • Patent number: 6690081
    Abstract: Devices and method of fabrication thereof are disclosed. A representative device includes one or more lead packages. The lead packages include a substrate including a plurality of die pads, an overcoat polymer layer, a plurality of sacrificial polymer layers disposed between the substrate and the overcoat polymer layer, and a plurality of leads. Each lead is disposed upon the overcoat polymer layer having a first portion disposed upon a die pad. The sacrificial polymer layer can be removed to form one or more air-gaps.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: February 10, 2004
    Assignee: Georgia Tech Research Corporation
    Inventors: Muhannad S. Bakir, Hollie Reed, Paul Kohl, Chirag S. Patel, Kevin P. Martin, James Meindl
  • Patent number: 6686636
    Abstract: A system comprising a memory device that includes at least one semiconductor structure wherein the semiconductor structure includes a raised source, a raised drain, a gate located between the source and the drain, a first capping layer in communication with at least a portion of the gate and the source, a second capping layer in communication with at least a portion of the gate and the drain, a first portion of a gate oxide region in communication with at least a portion of the gate and the source, a second portion of a gate oxide region in communication with at least a portion of the gate and the drain. The source, the gate, the first capping layer, and the first portion of a gate oxide region define a first gap. The drain, the gate, the second capping layer, and the second portion of a gate oxide region define a second gap.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 3, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Chandra Mouli
  • Patent number: 6686643
    Abstract: Metal structures that can be produced by a damascene process are disposed in a first insulating layer and a second insulating layer is disposed above the latter. There is in each case at least one cavity which is disposed between the metal structures, is disposed in the first insulating layer and is covered by the second insulating layer. The cavities and the metal structures are produced next to one another by self-aligned process steps.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: February 3, 2004
    Assignee: Infineon Technologies AG
    Inventors: Siegfried Schwarzl, Werner Pamler, Zvonimir Gabric
  • Patent number: 6683355
    Abstract: A system comprising a memory device that includes at least one semiconductor structure wherein the semiconductor structure includes a raised source, a raised drain, a gate located between the source and the drain, a first capping layer in communication with at least a portion of the gate and the source, a second capping layer in communication with at least a portion of the gate and the drain, a first portion of a gate oxide region in communication with at least a portion of the gate and the source, a second portion of a gate oxide region in communication with at least a portion of the gate and the drain. The source, the gate, the first capping layer, and the first portion of a gate oxide region define a first gap. The drain, the gate, the second capping layer, and the second portion of a gate oxide region define a second gap.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Chandra Mouli
  • Publication number: 20040007758
    Abstract: The present invention includes a chemical monolayer construction that comprises: a substrate having a contact surface, and a monolayer of a plurality of substantially parallel molecular units attached to the contact surface of the substrate. The molecular units are strongly coupled electronically to the substrate. The contact surface of the substrate has a roughness value less than or equal to the average length of the molecular units. The molecular units comprise a chemical structure that is capable of being changed from a relatively non-conductive state to a relatively conductive state by the application of a stimulus. The present invention also includes electronic circuit components and devices including chemical monolayer constructions.
    Type: Application
    Filed: February 28, 2003
    Publication date: January 15, 2004
    Applicant: The Ohio State University Research Foundation
    Inventor: Richard L. McCreery
  • Patent number: 6661068
    Abstract: A semiconductor structure (1), comprising a isolation region (5) formed on a semiconductor material (10). A pillar (15) is formed in the semiconductor material under the isolation region, where the pillar is capped with a first dielectric material (20) to form a void (16).
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: December 9, 2003
    Assignee: Semiconductor Components Industries LLC
    Inventors: James A. Durham, Keith Kamekona, Brian Schoonover
  • Patent number: 6653737
    Abstract: An interconnection structure preferably including one or more conductors that have a central region filled with an insulator, and a method of fabricating such an interconnection structure for preferably making an electrical connection to the conductor(s). The method preferably includes the steps of depositing and patterning a first insulator over a substrate to form an aperture opening to the substrate; depositing and polishing a first conductor to leave the first conductor in the aperture; depositing and patterning a second insulator to form an opening through the second insulator and a recess in the aperture; depositing one or more second conductors to line the opening and the recess, and to form a central region of the interconnection structure; depositing a third insulator to at least partially fill the central region; and making an electrical connection to the second conductor(s).
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: November 25, 2003
    Assignee: International Business Machines Corporation
    Inventors: David V. Horak, William A. Klaasen, Thomas L. McDevitt, Mark P. Murray, Anthony K. Stamper
  • Patent number: 6642615
    Abstract: A method of manufacturing a semiconductor device comprising the steps of: forming a bump projecting from a first surface of a semiconductor chip; and forming a conductive layer so that part of the conductive layer is exposed at a position depressed from a second surface of the semiconductor chip opposite to the first surface, wherein the exposed part of the conductive layer and the bump become electrical connecting sections.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: November 4, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Nobuaki Hashimoto, Terunao Hanaoka