Anti-fuse Patents (Class 257/530)
  • Patent number: 7910907
    Abstract: A method for manufacturing a memory cell device includes forming a bottom electrode comprising a pipe-shaped member, a top, a bottom and sidewalls having thickness in a dimension orthogonal to the axis of the pipe-shaped member, and having a ring-shaped top surface. A disc shaped member is formed on the bottom of the pipe-shaped member having a thickness in a dimension coaxial with the pipe-shaped member that is not dependent on the thickness of the sidewalls of the pipe-shaped member. A layer of phase change material is deposited in contact with the top surface of the pipe-shaped member. A top electrode in contact with the layer of programmable resistive material. An integrated circuit including an array of such memory cells is described.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 22, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 7902611
    Abstract: An integrated circuit is provided with transistor body regions that may be independently biased. Some of the bodies may be forward body biased to lower threshold voltages and increase transistor switching speed. Some of the bodies may be reverse body biased to increase threshold voltages and decrease leakage current. The integrated circuit may be formed on a silicon substrate. Body bias isolation structures may be formed in the silicon substrate to isolate the bodies from each other. Body bias isolation structures may be formed from shallow trench isolation trenches. Doped regions may be formed at the bottom of the trenches using ion implantation. Oxide may be used to fill the trenches above the doped region. A deep well may be formed under the body regions. The deep well may contact the doped regions that are formed at the bottom of the trenches.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 8, 2011
    Assignee: Altera Corporation
    Inventors: Irfan Rahim, Bradley Jensen, Peter J. McElheny
  • Publication number: 20110031582
    Abstract: A method forms an anti-fuse structure comprises a plurality of parallel conductive fins positioned on a substrate, each of the fins has a first end and a second end. A second electrical conductor is electrically connected to the second end of the fins. An insulator covers the first end of the fins and a first electrical conductor is positioned on the insulator. The first electrical conductor is electrically insulated from the first end of the fins by the insulator. The insulator is formed to a thickness sufficient to break down on the application of a predetermined voltage between the second electrical conductor and the first electrical conductor and thereby form an uninterrupted electrical connection between the second electrical conductor and the first electrical conductor through the fins.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Chandrasekharan Kothandaraman
  • Patent number: 7880211
    Abstract: An anti-fuse includes a gate dielectric layer formed over a substrate, a gate electrode including a body portion and a plurality of protruding portions extending from the body portion, wherein the body portion and the protruding portions are formed to contact on the gate dielectric layer, and a junction region formed in a portion of the substrate exposed by sidewalls of the protruding portions.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: February 1, 2011
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Chang-Hee Shin, Ki-Seok Cho, Seong-Do Jeon
  • Patent number: 7880266
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekharan Kothandaraman
  • Publication number: 20110019494
    Abstract: In a method of manufacturing a semiconductor device, element properties of an element property extraction pattern formed on a semiconductor wafer is extracted as element properties of a current control element corresponding to the element property extraction pattern. A supply energy to the current control element is set which is formed between nodes on the semiconductor wafer, based on the extracted element properties. The set supply energy is supplied to the current control element to irreversible control an electrical connection between the nodes through the device breakdown by the current control element.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 27, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroshi TSUDA, Yoshitaka KUBOTA, Hiromichi TAKAOKA
  • Publication number: 20110018066
    Abstract: A semiconductor device includes an antifuse element. The semiconductor device includes a first well of a first conductivity type disposed in a semiconductor substrate; a first insulating film on the first well; a first conductive film of the first conductivity type on the first insulating film; and an impurity-introduced region of the first conductivity type. The impurity-introduced region of the first conductivity type in the first well is higher in impurity concentration than the first well. The impurity-introduced region includes a first portion that faces toward the first conductive film through the first insulating film.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 27, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Shinichi Horiba, Nobuyuki Nakamura, Eiji Kitamura
  • Publication number: 20110018093
    Abstract: In one embodiment an anti-fuse structure is provided that includes a first dielectric material having at least a first anti-fuse region and a second anti-fuse region, wherein at least one of the anti-fuse regions includes a conductive region embedded within the first dielectric material. The anti-fuse structure further includes a first diamond like carbon layer having a first conductivity located on at least the first dielectric material in the first anti-fuse region and a second diamond like carbon layer having a second conductivity located on at least the first dielectric material in the second anti-fuse region. In this embodiment, the second conductivity is different from the first conductivity and the first diamond like carbon layer and the second diamond like carbon layer have the same thickness. The anti-fuse structure also includes a second dielectric material located atop the first and second diamond like carbon layers.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, David V. Horak, Takeshi Nogami, Shom Ponoth
  • Patent number: 7863173
    Abstract: Methods of fabricating integrated circuit memory cells and integrated circuit memory cells are disclosed. An integrated circuit memory cell can be fabricated by forming a cup-shaped electrode on sidewalls of an opening in an insulation layer and through the opening on an ohmic layer that is stacked on a conductive structure. An insulation filling member is formed that at least partially fills an interior of the electrode. The insulation filling member is formed within a range of temperatures that is sufficiently low to not substantially change resistance of the ohmic layer. A variable resistivity material is formed on the insulation filling member and is electrically connected to the electrode.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin-Jae Kang, Gyuhwan Oh, Insun Park, Hyunseok Lim, Nak-Hyun Lim
  • Patent number: 7863598
    Abstract: A nonvolatile memory device comprises memory cells, each including a variable resistor element for storing data in accordance with a change in electrical resistance due to application of electrical stress, and a thermal diffusion barrier on a thermal diffusion path, wherein the thermal diffusion barrier is capable of suppressing a change in resistance of the variable resistor element due to heat diffusion from one of two adjacent memory cells separated by an electrical insulator from each other where heat is generated by applying the electrical stress for changing the electrical resistance of the variable resistor element to the other memory cell via the thermal diffusion path including an electrically conductive wiring material higher in thermal conductivity than that of the electrical insulator.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: January 4, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasuhiro Sugita, Yukio Tamai
  • Publication number: 20100327403
    Abstract: One exemplary embodiment includes a semiconductor chip that has a rectangle principal surface including a first and a second side that oppose each other. A first and a second semiconductor element, and a first and a second wire are formed on the principal surface. The first wire is formed from the first side to reach the second side, and coupled to the first semiconductor element. The second wire is formed to contact at least the first wire, and coupled to the second semiconductor element. Further, an edge part of the first wire on the second side and an edge part of the second wire on the first side are placed to substantially position on a common straight line which is vertical to the first and the second sides.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 30, 2010
    Applicant: NEC Electronics Corporation
    Inventor: Masafumi Yamaji
  • Publication number: 20100320565
    Abstract: A wafer and a method for improving the yield rate of the wafer are provided. The wafer includes a first and a second circuit units, a first and a second through silicon vias (TSVs), and a first spare TSV. The first and the second circuit units are disposed inside the wafer. The first TSV vertically runs through the wafer and is coupled to the first circuit unit through the front metal of the wafer. The second TSV vertically passes through the wafer and is coupled to the second circuit unit through the front metal of the wafer. When the first or the second TSV has failed, the first spare TSV vertically passes through the wafer to replace the failed first or second TSV.
    Type: Application
    Filed: September 24, 2009
    Publication date: December 23, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ting-Sheng Chen, Yung-Fa Chou, Ding-Ming Kwai
  • Patent number: 7851885
    Abstract: An electrically programmable fuse comprising a cathode member, an anode member, and a link member, wherein the cathode member, the anode member, and the link member each comprise one of a plurality of materials operative to localize induced electromigration in the programmable fuse.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Patent number: 7846782
    Abstract: A method of making a non-volatile memory device includes providing a substrate having a substrate surface, and forming a non-volatile memory array over the substrate surface. The non-volatile memory array includes an array of semiconductor diodes, and each semiconductor diode of the array of semiconductor diodes is disposed substantially parallel to the substrate surface.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 7, 2010
    Assignee: SanDisk 3D LLC
    Inventors: Steven Maxwell, Michael Konevecki, Mark H. Clark, Usha Raghuram
  • Publication number: 20100289524
    Abstract: Re-programmable antifuses and structures utilizing re-programmable antifuses are presented herein. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Additionally, the re-programmable antifuses may be configured to a permanently conductive state by applying an even higher voltage across it.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 18, 2010
    Applicant: William Marsh Rice University
    Inventors: Zvi Or-Bach, James M. Tour, Jun Yao, Brian Cronquist
  • Patent number: 7834417
    Abstract: An antifuse element (102, 152, 252, 302, 352, 402, 602, 652, 702) includes a substrate material (101) having an active area (106) formed in an upper surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a gate oxide layer (110) disposed between the gate electrode (104) and the active area (106). The gate oxide layer (110) includes one of a gate oxide dip (128) or a gate oxide undercut (614). During operation a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the gate oxide layer (110) and a rupture of the gate oxide layer (110) in a rupture region (130). The rupture region (130) is defined by the oxide structure and the gate oxide dip (128) or the gate oxide undercut (614).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, Robert W. Baird, Gordon P. Lee, Jiang-Kai Zuo
  • Patent number: 7833843
    Abstract: A method of forming a memory cell involves forming a semiconductor junction diode in series with an antifuse. The cell is programmed by rupture of the antifuse. The semiconductor junction diode comprises silicon, the silicon crystallized in contact with a silicide. The silicide apparently provides a template for crystallization, improving crystallinity and conductivity of the diode, and reducing the programming voltage required to program the cell. It is advantageous to reduce a dielectric layer (such as an oxide, nitride, or oxynitride) intervening between the silicon and the silicon-forming metal during the step of forming the silicide.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 16, 2010
    Assignee: SanDisk 3D LLC
    Inventor: Scott Brad Herner
  • Publication number: 20100283053
    Abstract: In embodiments of the invention, a method of forming a monolithic three-dimensional memory array is provided, the method including forming a first memory level that includes a plurality of memory cells, each memory cell comprising a plurality of conductors comprising aluminum or copper, and forming a silicon diode in each memory cell, wherein the silicon diode is formed at temperatures compatible with the conductors. The silicon diode may be formed using a hot wire chemical vapor deposition technique, for example. Other aspects are also described.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 11, 2010
    Applicant: SANDISK 3D LLC
    Inventors: Mark H. Clark, S. Brad Herner
  • Publication number: 20100283504
    Abstract: Re-programmable antifuses and structures utilizing re-programmable antifuses are presented. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Other embodiments of antifuses include an initializing step prior to programming.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 11, 2010
    Applicant: William Marsh Rice University
    Inventors: Zvi Or-Bach, James M. Tour, Alexander Sinitskiy, Jun Yao, Elvira Beitler
  • Patent number: 7829875
    Abstract: A memory cell is described, the memory cell comprising a dielectric rupture antifuse and a layer of a resistivity-switching material arranged electrically in series, wherein the resistivity-switching material is a metal oxide or nitride compound, the compound including exactly one metal. The dielectric rupture antifuse is ruptured in a preconditioning step, forming a rupture region through the antifuse. The rupture region provides a narrow conductive path, serving to limit current to the resistivity-switching material, and improving control when the resistivity-switching layer is switched between higher- and lower-resistivity states.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 9, 2010
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 7825471
    Abstract: A semiconductor memory device includes a first well region of a first conductivity type, first and second SRAM cells adjacently arranged to each other, the first and second SRAM cells each including at least a first transfer transistor and a drive transistor formed on the first well, the first transfer transistor and the drive transistor being coupled in series between a bit line and a power source line, and a first diffusion region of the first conductivity type arranged between the drive transistor of the first SRAM cell and the drive transistor of the second SRAM cell, to apply a first well potential to the first well.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: November 2, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Shinobu Asayama
  • Patent number: 7825491
    Abstract: A voltage switchable dielectric material (VSD) material as part of a light-emitting component, including LEDs and OLEDs.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: November 2, 2010
    Assignee: Shocking Technologies, Inc.
    Inventor: Lex Kosowsky
  • Patent number: 7820492
    Abstract: An electrical fuse (eFuse) has a gate prepared from a conductive or partially conductive material such as polysilicon, a semiconductor substrate having a pipe region in proximity to the gate, and first and second electrode regions adjacent the pipe region. A metal silicide layer is provided on the semiconductor substrate adjacent the pipe region. When a programming voltage is applied, the metal silicide undergoes a thermally induced phase transition in the pipe region. The eFuse has improved reliability and can be programmed with relatively low voltages.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsura Miyashita, Yoshiaki Toyoshima
  • Patent number: 7821053
    Abstract: Disclosed are embodiments of a transistor that operates as a capacitor and an associated method of tuning capacitance within such a capacitor. The embodiments of the capacitor comprise a field effect transistor with front and back gates above and below a semiconductor layer, respectively. The capacitance value exhibited by the capacitor can be selectively varied between two different values by changing the voltage condition in a source/drain region of the transistor, e.g., using a switch or resistor between the source/drain region and a voltage supply. Alternatively, the capacitance value exhibited by the capacitor can be selectively varied between multiple different values by changing voltage conditions in one or more of multiple channel regions that are flanked by multiple source/drain regions within the transistor. The capacitor will exhibit different capacitance values depending upon the conductivity in each of the channel regions.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Corey K. Barrows, Joseph A. Iadanza, Edward J. Nowak, Douglas W. Stout, Mark S. Styduhar
  • Publication number: 20100244115
    Abstract: An anti-fuse memory cell having a variable thickness gate oxide. The variable thickness gate oxide has a thick gate oxide portion and a thin gate oxide portion, where the thing gate oxide portion has at least one dimension less than a minimum feature size of a process technology. The thin gate oxide can be rectangular in shape or triangular in shape. The anti-fuse transistor can be used in a two-transistor memory cell having an access transistor with a gate oxide substantially identical in thickness to the thick gate oxide of the variable thickness gate oxide of the anti-fuse transistor.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Applicant: SIDENSE CORPORATION
    Inventors: Wlodek KURJANOWICZ, Steven SMITH
  • Publication number: 20100244186
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of stacked component units stacked in a first direction, each of the stacked component units including a first conducting film made of a semiconductor of a first conductivity type provided perpendicular to the first direction and a first insulating film stacked in the first direction with the first conducting film; a semiconductor pillar piercing the stacked structural unit in the first direction and including a conducting region of a second conductivity type, the semiconductor pillar including a first region opposing each of the first conducting films, and a second region provided between the first regions with respect to the first direction, the second region having a resistance different from a resistance of the first region; and a second insulating film provided between the semiconductor pillar and the first conducting film.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 30, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Ryota KATSUMATA, Masaru KITO, Yoshiaki FUKUZUMI, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Hideaki AOCHI, Ryouhei KIRISAWA, Junya MATSUNAMI, Tomoko FUJIWARA
  • Patent number: 7804153
    Abstract: A semiconductor device having a fuse structure that can prevent a bridge between a fuse pattern and a guard ring, and a method of fabricating the same are provided. The fuse pattern formed on a multiple-layered metal interconnect layer is stepped shape increasing a vertical distance between the fuse pattern and the guard ring.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-kyu Bang, Jun-ho Jang, Yoo-mi Lee
  • Publication number: 20100230781
    Abstract: Trench anti-fuse structures, design structures embodied in a machine readable medium for designing, manufacturing, or testing a programmable integrated circuit. The anti-fuse structure includes a trench having a plurality of sidewalls that extend into a substrate, a doped region in the semiconductor material of the substrate proximate to the sidewalls of the trench, a conductive plug in the trench, and a dielectric layer on the sidewalls of the trench. The dielectric layer is disposed between the conductive plug and the doped region. The dielectric layer is configured so that a programming voltage applied between the doped region and the conductive plug causes a breakdown of the dielectric layer within a region of the trench. The trench sidewalls are arranged with a cross-sectional geometrical shape that is independent of position between a bottom wall of the deep trench and a top surface of the substrate.
    Type: Application
    Filed: August 7, 2009
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Publication number: 20100226195
    Abstract: A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of conductive lines arranged as word lines which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. The conductive lines conform to the surface of the stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the conductive strips on the stacks and the conductive lines. The memory elements are programmable, like the anti-fuses or charge trapping structures. The 3D memory is made using only two critical masks for multiple layers.
    Type: Application
    Filed: January 25, 2010
    Publication date: September 9, 2010
    Applicant: Macronix International Co., Ltd.
    Inventor: Hang-Ting Lue
  • Patent number: 7790517
    Abstract: A method of manufacturing a semiconductor device forms an N? diffusion layer to be a source/drain region of a grooved transistor simultaneously with an N? diffusion layer of a channel region directly under a gate electrode of an antifuse element. The formation of the N? diffusion layer directly under the gate electrode of the antifuse element stabilizes electrical connection between the gate electrode and the source/drain diffusion region even during writing with a low write voltage.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 7, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kazutaka Manabe, Eiji Kitamura
  • Patent number: 7791111
    Abstract: A semiconductor device has a plurality of fuse element portions each of which including a first fuse interconnect having a fuse to be portion, a second fuse interconnect connected to an internal circuit, a first impurity diffusion layer for electrically connecting the first fuse interconnect and the second fuse interconnect, and a second impurity diffusion layers. The first fuse interconnect, the second fuse interconnect, and the first impurity diffusion layer of each of the plurality of fuse element portions are arranged approximately parallel to one another at a predetermined pitch distance.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kazumasa Kuroyanagi, Shoji Koyama
  • Patent number: 7786000
    Abstract: An anti-fuse one-time-programmable (OTP) nonvolatile memory cell has a P well substrate with two P.sup.? doped regions. Another N.sup.+ doped region, functioning as a bit line, is positioned adjacent and between the two P.sup.? doped regions on the substrate. An anti-fuse is defined over the N.sup.+ doped region. Two insulator regions are deposited over the two P.sup.? doped regions. An impurity doped polysilicon layer is defined over the two insulator regions and the anti-fuse. A polycide layer is defined over the impurity doped polysilicon layer. The polycide layer and the polysilicon layer function as a word line. A programmed region, i.e., a link, functioning as a diode, is formed on the anti-fuse after the anti-fuse OTP nonvolatile memory cell is programmed. The array structure of anti-fuse OTP nonvolatile memory cells and methods for programming, reading, and fabricating such a cell are also disclosed.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: August 31, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 7786549
    Abstract: A structure and method for providing an antifuse which is closed by laser energy with an electrostatic assist. Two or more metal segments are formed over a semiconductor structure with an air gap or a porous dielectric between the metal segments. Pulsed laser energy is applied to one or more of the metal segments while a voltage potential is applied between the metal segments to create an electrostatic field. The pulsed laser energy softens the metal segment, and the electrostatic field causes the metal segments to move into contact with each other. The electrostatic field reduces the amount of laser energy which must be applied to the semiconductor structure to close the antifuse.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: William T. Motsiff, William R. Tonti, Richard Q. Williams
  • Publication number: 20100213570
    Abstract: An antifuse (40, 80, 90?) comprises, first (22?, 24?) and second (26?) conductive regions having spaced-apart curved portions (55, 56), with a first dielectric region (44) therebetween, forming in combination with the curved portions (55, 56) a curved breakdown region (47) adapted to switch from a substantially non-conductive initial state to a substantially conductive final state in response to a predetermined programming voltage. A sense voltage less than the programming voltage is used to determine the state of the antifuse as either OFF (high impedance) or ON (low impedance). A shallow trench isolation (STI) region (42) is desirably provided adjacent the breakdown region (47) to inhibit heat loss from the breakdown region (47) during programming. Lower programming voltages and currents are observed compared to antifuses (30) using substantially planar dielectric regions (32).
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Won Gi Min, Geoffrey W. Perkins, Kyle D. Zukowski, Jiang-Kai Zuo
  • Patent number: 7781805
    Abstract: A memory array having memory cells comprising a diode and an antifuse can be made smaller and programmed at lower voltage by using an antifuse material having a higher dielectric constant and a higher acceleration factor than those of silicon dioxide, and by using a diode having a lower band gap than that of silicon. Such memory arrays can be made to have long operating lifetimes by using the high acceleration factor and lower band gap materials. Antifuse materials having dielectric constants between 5 and 27, for example, hafnium silicon oxynitride or hafnium silicon oxide, are particularly effective. Diode materials with band gaps lower than that of silicon, such as germanium or a silicon-germanium alloy, are particularly effective.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 24, 2010
    Assignee: SanDisk 3D LLC
    Inventors: Xiaoyu Yang, Roy E. Scheurelein, Feng Li, Albert T. Meeks
  • Patent number: 7781862
    Abstract: A two terminal switching device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes a stimulus circuit in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Ruckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Patent number: 7777298
    Abstract: A semiconductor device includes a semiconductor substrate, and an electrical fuse provided on the semiconductor substrates. The electrical fuse includes a first fuse link and a second fuse link mutually connected in series, a first current inlet/outlet terminal (first terminal) and a second current inlet/outlet terminal (second terminal) respectively provided at an end and the other end of the first fuse link, and a third current inlet/outlet terminal (second terminal) and a fourth current inlet/outlet terminal (third terminal) provided at an end and the other end of the second fuse link.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: August 17, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Hiroaki Ohkubo, Yasutaka Nakashiba
  • Patent number: 7773493
    Abstract: In one embodiment, the present invention includes an apparatus having a conductive storage medium to store information in the form of electrostatic charge. The conductive storage medium can be disposed in a non-conductive layer that is formed over a charge blocking layer, which in turn may be disposed over an electrode layer. In one embodiment, a barrier layer may be disposed over the non-conductive layer. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 10, 2010
    Assignee: Intel Corporation
    Inventors: Kyu Min, Qing Ma, Nathan R. Franklin
  • Patent number: 7772047
    Abstract: A semiconductor device having a redistribution layer, and methods of forming same, are disclosed. After fabrication of semiconductor die on a wafer, a tape assembly is applied onto a surface of the wafer, in contact with the surfaces of each semiconductor die on the wafer. The tape assembly includes a backgrind tape as a base layer, and a film assembly adhered to the backgrind tape. The film assembly in turn includes an adhesive film on which is deposited a thin layer of conductive material. The redistribution layer pattern is traced into the tape assembly, using for example a laser. Thereafter, the unheated portions of the tape assembly may be removed, leaving the heated redistribution layer pattern on each semiconductor die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Chien-Ko Liao, Chin-Tien Chiu, Jack Chang Chien, Cheemen Yu, Hem Takiar
  • Patent number: 7772591
    Abstract: Integrated circuit antifuse circuitry is provided. A metal-oxide-semiconductor (MOS) transistor serves as an electrically-programmable antifuse. The antifuse transistor has source, drain, gate, and substrate terminals. The gate has an associated gate oxide. In its unprogrammed state, the gate oxide is intact and the antifuse has a relatively high resistance. During programming, the gate oxide breaks down, so in its programmed state the antifuse transistor has a relatively low resistance. The antifuse transistor can be programmed by injecting hot carriers into the substrate of the device in the vicinity of the drain. Because there are more hot carriers at the drain than at the substrate, the gate oxide is stressed asymmetrically, which enhances programming efficiency. Feedback can be used to assist in turning the antifuse transistor on to inject the hot carriers.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: August 10, 2010
    Assignee: Altera Corporation
    Inventors: Chih-Ching Shih, Cheng H. Huang, Hugh Sung-Ki O, Yow-Juang (Bill) Liu
  • Publication number: 20100187653
    Abstract: A conventional semiconductor device has a problem that an on-current of a parasitic transistor flows through a surface portion of a semiconductor layer and thus a semiconductor element undergoes thermal breakdown. In a semiconductor device according to the present invention, a protection element is formed with use of an isolation region and N type buried layers. A PN junction region in the protection element is formed on a P type buried layer of the isolation region. The PN junction region has a junction breakdown voltage lower than that of a PN junction region of a semiconductor element to be protected. This structure allows an on-current of a parasitic transistor to flow into the protection element, and thereby the semiconductor element is protected. In addition, the on-current of the parasitic transistor flows through a deep portion of the epitaxial layer, and thereby the protection element is prevented from thermal breakdown.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 29, 2010
    Applicants: SANYO Electric Co., Ltd., SANYO Semiconductor Co., Ltd.
    Inventor: Seiji OTAKE
  • Publication number: 20100187638
    Abstract: An anti-fuse cell includes a standard MOS transistor of an integrated circuit, with source (7) and drain (8) regions covered with a metal silicide layer (12, 13), and at least one track (24) of a resistive layer at least partially surrounding said MOS transistor, and adapted to pass a heating current such that the metal of said metal silicide diffuses across drain and/or source junctions.
    Type: Application
    Filed: December 23, 2005
    Publication date: July 29, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Bertrand Borot, Roberto Maurizio Gonella, Sebastien Fabre
  • Patent number: 7763879
    Abstract: A three-dimensional phase-change memory array. In one embodiment of the invention, the memory array includes a first plurality of diodes, a second plurality of diodes disposed above the first plurality of diodes, a first plurality phase-change memory elements disposed above the first and second plurality of diodes and a second plurality of memory elements disposed above the first plurality of memory elements.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: July 27, 2010
    Assignee: Ovonyx, Inc.
    Inventor: Tyler Lowrey
  • Publication number: 20100182040
    Abstract: Through silicon vias (TSVs) in silicon chips are both programmable and non-programmable. The programmable TSVs may employ metal/insulator/metal structures to switch from an open to shorted condition with programming carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kai Di Feng, Louis Lu-Chen Hsu, Ping-Chuan Wang, Zhijian Yang
  • Publication number: 20100181643
    Abstract: A fuse includes a fuse link region, a first region and a second region. The fuse link region electrically connects the first region to the second region. A SiGe layer is disposed only in the fuse link region and the first region.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chandrasekharan Kothandaraman, Deok-kee Kim, Dureseti Chidambarrao, William K. Henson
  • Patent number: 7755162
    Abstract: An anti-fuse memory cell having a variable thickness gate oxide. The variable thickness gate oxide has a thick gate oxide portion and a thin gate oxide portion, where the thing gate oxide portion has at least one dimension less than a minimum feature size of a process technology. The thin gate oxide can be rectangular in shape or triangular in shape. The anti-fuse transistor can be used in a two-transistor memory cell having an access transistor with a gate oxide substantially identical in thickness to the thick gate oxide of the variable thickness gate oxide of the anti-fuse transistor.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 13, 2010
    Assignee: Sidense Corp.
    Inventors: Wlodek Kurjanowicz, Steven Smith
  • Patent number: 7755163
    Abstract: To provide an antifuse element comprising a gate electrode, a depletion channel region, a gate insulating film between the gate electrode and the channel region, and a diffusion layer region forming a junction with the channel region. An end of the gate electrode coincides substantially with a boundary between the channel region and the diffusion layer region as seen from a planar view, and is formed in a zigzag configuration. The end of the gate electrode is longer than the end with linear configuration and the end of the gate insulating film is likely to be subjected to breakdown.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: July 13, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Sumio Ogawa
  • Patent number: 7750433
    Abstract: Apparatuses, a method, and a system for a non-volatile, probe-based memory device are disclosed herein. In various embodiments, probe-based memory may be one-time programmable or rewritable nonvolatile probe-based memory.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: July 6, 2010
    Assignee: Intel Corporation
    Inventors: Kyu S. Min, Nathan R. Franklin
  • Patent number: RE41684
    Abstract: A set of integrated capacitor arrangements is presented, each of which has a circuitry-effective main capacitor and a connectable correction capacitor. Each capacitor arrangement has an electrically conductive antifuse connection and antifuse interruption between the correction capacitor and the main capacitor, which are produced after the main capacitor has been formed. The connection and interruption enable the capacitance of the capacitor arrangement to be corrected.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: September 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Armin Fischer, Franz Ungar
  • Patent number: RE42035
    Abstract: A reconfigurable processor module comprising hybrid stacked integrated circuit (“IC”) die elements. In a particular embodiment disclosed herein, a processor module with reconfigurable capability may be constructed by stacking one or more thinned microprocessor, memory and/or field programmable gate array (“FPGA”) die elements and interconnecting the same utilizing contacts that traverse the thickness of the die. The processor module disclosed allows for a significant acceleration in the sharing of data between the microprocessor and the FPGA element while advantageously increasing final assembly yield and concomitantly reducing final assembly cost.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 18, 2011
    Assignee: Arbor Company LLP
    Inventors: Jon M. Huppenthal, D. James Guzy