Group Iii-v Compound (e.g., Inp) Patents (Class 257/615)
  • Publication number: 20130292801
    Abstract: A semiconductor structure is provided that includes a base substrate, and a multilayered stack located on the base substrate. The multilayered stack includes, from bottom to top, a first sacrificial material layer having a first thickness, a first semiconductor device layer, a second sacrificial material layer having a second thickness, and a second semiconductor device layer, wherein the first thickness is less than the second thickness.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Inventors: Cheng-Wei Cheng, Ning Li, Kuen-Ting Shiu
  • Publication number: 20130292802
    Abstract: A nitride crystal is characterized in that, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the nitride crystal obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a surface of the crystal while X-ray diffraction conditions of the specific parallel crystal lattice planes are satisfied, a uniform distortion at a surface layer of the crystal represented by a value of |d1?d2|/d2 obtained from the plane spacing d1 at the X-ray penetration depth of 0.3 ?m and the plane spacing d2 at the X-ray penetration depth of 5 ?m is equal to or lower than 2.1×10?3.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Inventors: Keiji ISHIBASHI, Tokiko KAJI, Seiji NAKAHATA, Takayuki NISHIURA
  • Publication number: 20130292696
    Abstract: Technology of making freestanding gallium nitride (GaN) wafers has been matured at length. Gallium nitride is rigid but fragile. Chamfering of a periphery of a GaN wafer is difficult. At present edges are chamfered by a rotary whetstone of gross granules with weak pressure. Minimum roughness of the chamfered edges is still about Ra 10 ?m to Ra 6 ?m. The large edge roughness causes scratches, cracks, splits or breaks in transferring process or wafer process. A wafer of the present invention is bevelled by fixing the wafer to a chuck of a rotor, bringing an edge of the wafer into contact with an elastic whetting material having a soft matrix and granules implanted on the soft matrix, rotating the wafer and feeding the whetting material. Favorably, several times of chamfering edges by changing the whetting materials of smaller granules are given to the wafer. The chamfering can realize small roughness of Ra10 nm and Ra5 ?m at edges of wafers.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: MASAHIRO NAKAYAMA, MASATO IRIKURA
  • Patent number: 8569796
    Abstract: A semiconductor wafer includes a multilayered film having a structure in which nondoped first nitride semiconductor layers and nondoped second nitride semiconductor layers with a larger lattice constant than the first nitride semiconductor layer are laminated alternately, and a nondoped third nitride semiconductor layer which is located on the multilayered film and has a larger lattice constant than the first nitride semiconductor layer, wherein the semiconductor wafer has conductivity in a film-thickness direction.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 29, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Tetsuji Matsuo
  • Publication number: 20130264606
    Abstract: The problems addressed by the present invention lies in providing a Group III nitride semiconductor substrate having a principal plane on which high-quality crystals can be grown and also providing a method for producing a Group III nitride semiconductor substrate capable of obtaining a crystal which has few stacking faults and in which stacking faults in directions parallel to the polar plane in particular have been greatly suppressed. The problem is solved by means of a Group III nitride semiconductor substrate having a plane other than a C plane as a principal plane, wherein a ratio (W1/W2) of a tilt angle distribution W1 of the principal plane in the direction of a line of intersection between the principal plane and the C plane to a tilt angle distribution W2 of the principal plane in a direction orthogonal to the line of intersection is less than 1.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 10, 2013
    Inventors: Shuichi KUBO, Hirotaka Ikeda, Hirohisa Itoh, Shinjiro Kadono
  • Patent number: 8552531
    Abstract: A nitride-based compound semiconductor includes an atom of at least one group-III element selected from the group consisting of Al, Ga, In, and B, a nitrogen atom, and a metal atom that forms a compound by bonding with an interstitial atom of the at least one group-III element. The metal atom is preferably iron or nickel. A doping concentration of the metal atom is preferably equal to a concentration of the interstitial atom of the at least one group-III element.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: October 8, 2013
    Assignee: Advanced Power Device Research Association
    Inventor: Masayuki Iwami
  • Patent number: 8552464
    Abstract: The present invention addresses the aims and issues of making multi layer microstructures including “metal-shell-oxide-core” structures and “oxide-shell-metal-core” structures, and mechanically constrained structures and the constraining structures using CMOS (complimentary metal-oxide-semiconductor transistors) materials and layers processed during the standard CMOS process and later released into constrained and constraining structures by etching away those CMOS materials used as sacrificial materials. The combinations of possible constrained structures and methods of fabrication are described.
    Type: Grant
    Filed: April 12, 2009
    Date of Patent: October 8, 2013
    Inventor: Long-Sheng Fan
  • Publication number: 20130248932
    Abstract: A method of manufacturing a semiconductor device includes grinding a back side of a substrate; and forming a nitride semiconductor layer on a front side of the substrate after the grinding. Compressive stress is generated in the nitride semiconductor layer that is formed.
    Type: Application
    Filed: December 21, 2012
    Publication date: September 26, 2013
    Inventor: Shuichi TOMABECHI
  • Publication number: 20130249060
    Abstract: A group III nitride substrate in one embodiment has a surface layer. The surface layer contains 3 at. % to 25 at. % of carbon and 5×1010 atoms/cm2 to 200×1010 atoms/cm2 of a p-type metal element. The group III nitride substrate has a stable surface.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Keiji ISHIBASHI
  • Publication number: 20130240876
    Abstract: The present invention relates to a method for growing a novel non-polar (13 40) plane epitaxy layer of wurtzite structure, which comprises the following steps: providing a single crystal oxide with perovskite structure; using a plane of the single crystal oxide as a substrate; and forming a non-polar (13 40) plane epitaxy layer of wurtzite semiconductors on the plane of the single crystal oxide by a vapor deposition process. The present invention also provides an epitaxy layer having non-polar (13 40) plane obtained according to the aforementioned method.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Li CHANG, Yen-Teng HO
  • Publication number: 20130240902
    Abstract: A first semiconductor zone of a first conduction type is formed from a semiconductor base material doped with first and second dopants. The first and second dopants are different substances and also different from the semiconductor base material. The first dopant is electrically active and causes a doping of the first conduction type in the semiconductor base material, and causes either a decrease or an increase of a lattice constant of the pure, undoped first semiconductor zone. The second dopant may be electrically active, and may be of the same doping type as the first dopant, causes one or both of: a hardening of the first semiconductor zone; an increase of the lattice constant of the pure, undoped first semiconductor zone if the first dopant causes a decrease, and a decrease of the lattice constant of the pure, undoped first semiconductor zone if the first dopant causes an increase, respectively.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Manfred Kotek, Johannes Baumgartl, Markus Harfmann, Christian Krenn, Thomas Neidhart
  • Patent number: 8536621
    Abstract: Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: September 17, 2013
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Marko Radosavljevic, Ravi Pillarisetty, Robert S. Chau, Matthew V. Metz
  • Patent number: 8536030
    Abstract: A method of manufacturing a semipolar semiconductor crystal comprising a group-III-nitride (III-N), the method comprising: providing a substrate comprising sapphire (Al2O3) having a first surface that intersects c-planes of the sapphire; forming a plurality of trenches in the first surface, each trench having a wall whose surface is substantially parallel to a c-plane of the substrate; epitaxially growing a group-III-nitride (III-N) material in the trenches on the c-plane surfaces of their walls until the material overgrows the trenches to form a second planar surface, substantially parallel to a (20-2l) crystallographic plane of the group-III-nitride, wherein l is an integer.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 17, 2013
    Assignee: Freiberger Compund Materials GmbH
    Inventors: Thomas Wunderer, Stephan Schwaiger, Ilona Argut, Rudolph Rosch, Frank Lipski, Ferdinand Scholz
  • Patent number: 8536622
    Abstract: A semiconductor device includes a first transistor including a GaN-based semiconductor stacked structure formed over a substrate, a first gate electrode having a plurality of first fingers over the semiconductor stacked structure, a plurality of first drain electrodes provided along the first fingers, and a plurality of first source electrodes provided along the first fingers; a second transistor including the semiconductor stacked structure, a second gate electrode having a plurality of second fingers over the semiconductor stacked structure, the second drain electrodes provided along the second fingers, and a plurality of second source electrodes provided along the second fingers; a drain pad provided over or under the first drain electrodes, and coupled to the first drain electrodes; a source pad provided over or under the second source electrodes, and coupled to the second source electrodes; and a common pad coupled to the first source electrodes and the second drain electrodes.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 17, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoshihiro Takemae, Tsutomu Hosoda
  • Patent number: 8536674
    Abstract: A method includes providing a substrate with at least one semiconducting layer. The method also includes forming a plurality of isolation barriers within the at least one semiconducting layer, thereby forming a plurality of device islands. The method further includes inserting a plurality of electronic devices into a portion of the at least one semiconducting layer such that each electronic device is substantially isolated from each other electronic device by the device islands.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Cheng-Po Chen, Emad Andarawis Andarawis, Vinayak Tilak, Zachary Stum
  • Patent number: 8525303
    Abstract: A photovoltaic device includes a semiconductor nanocrystal and a charge transporting layer that includes an inorganic material. The charge transporting layer can be a hole or electron transporting layer. The inorganic material can be an inorganic semiconductor.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 3, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexi Arango, Vladimir Bulovic, Vanessa Wood, Moungi G. Bawendi
  • Patent number: 8524581
    Abstract: Methods and apparatus for depositing thin films incorporating the use of a surfactant are described. Methods and apparatuses include a deposition process and system comprising multiple isolated processing regions which enables rapid repetition of sub-monolayer deposition of thin films. The use of surfactants allows the deposition of high quality epitaxial films at lower temperatures having low values of surface roughness. The deposition of Group III-V thin films such as GaN is used as an example.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 3, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Philip A. Kraus, Boris Borisov, Thai Cheng Chua, Sandeep Nijhawan, Yoga Saripalli
  • Patent number: 8524575
    Abstract: A method for producing a group III nitride crystal in the present invention includes the steps of cutting a plurality of group III nitride crystal substrates 10p and 10q having a main plane from a group III nitride bulk crystal 1, the main planes 10pm and 10qm having a plane orientation with an off-angle of five degrees or less with respect to a crystal-geometrically equivalent plane orientation selected from the group consisting of {20-21}, {20-2-1}, {22-41}, and {22-4-1}, transversely arranging the substrates 10p and 10q adjacent to each other such that the main planes 10pm and 10qm of the substrates 10p and 10q are parallel to each other and each [0001] direction of the substrates 10p and 10q coincides with each other, and growing a group III nitride crystal 20 on the main planes 10pm and 10qm of the substrates 10p and 10q.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 3, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Koji Uematsu, Hideki Osada, Seiji Nakahata, Shinsuke Fujiwara
  • Publication number: 20130221490
    Abstract: To grow a gallium nitride crystal, a seed-crystal substrate is first immersed in a melt mixture containing gallium and sodium. Then, a gallium nitride crystal is grown on the seed-crystal substrate under heating the melt mixture in a pressurized atmosphere containing nitrogen gas and not containing oxygen. At this time, the gallium nitride crystal is grown on the seed-crystal substrate under a first stirring condition of stirring the melt mixture, the first stirring condition being set for providing a rough growth surface, and the gallium nitride crystal is subsequently grown on the seed-crystal substrate under a second stirring condition of stirring the melt mixture, the second stirring condition being set for providing a smooth growth surface.
    Type: Application
    Filed: April 12, 2013
    Publication date: August 29, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventor: NGK INSULATORS, LTD.
  • Publication number: 20130214331
    Abstract: A method for treating a compound semiconductor substrate, in which method in vacuum conditions a surface of an In-containing III-As, III-Sb or III-P substrate is cleaned from amorphous native oxides and after that the cleaned substrate is heated to a temperature of about 250-550° C. and oxidized by introducing oxygen gas onto the surface of the substrate. The invention relates also to a compound semiconductor substrate, and the use of the substrate in a structure of a transistor such as MOSFET.
    Type: Application
    Filed: November 8, 2011
    Publication date: August 22, 2013
    Applicant: TURUN YLIOPISTO
    Inventors: Pekka Laukkanen, Jouko Lang, Marko Punkkinen, Marjukka Tuominen, Veikko Tuominen, Johnny Dahl, Juhani Vayrynen
  • Publication number: 20130207237
    Abstract: A method for separating a III-nitride layer from a substrate. This is done by fabricating a detachment porous region between the III-nitride layer and the substrate through etching. The porous region allows for easy detachment of the III-nitride layer from the substrate. Active layers for electronic and optoelectronic devices can then be grown on the III-nitride layer.
    Type: Application
    Filed: October 17, 2011
    Publication date: August 15, 2013
    Applicant: The Regents of The University of California
    Inventors: Claude C.A. Weisbuch, James S. Speck
  • Patent number: 8507919
    Abstract: A field-effect transistor (FET) in which a gate electrode is located between a source electrode formed on one side of the gate electrode and a drain electrode formed on the other side, a source ohmic contact is formed under the source electrode and a drain ohmic contact is formed under the drain electrode. In the FET, the rise in the channel temperature is suppressed, the parasitic capacitance with a substrate is decreased, and the temperature dependence of drain efficiency is reduced, so that highly efficient operation can be achieved at high temperatures. The drain electrode is divided into a plurality of drain sub-electrodes spaced from each other and an insulating region is formed between the drain ohmic contacts formed under the drain sub-electrodes.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kohji Ishikura
  • Patent number: 8507950
    Abstract: A method of producing a semiconductor wafer includes placing a base wafer within a reaction chamber, and epitaxially growing a p-type Group 3-5 compound semiconductor on the base wafer by supplying, into the reaction chamber, a Group 3 source gas consisting of an organometallic compound of a Group 3 element, a Group 5 source gas consisting of a compound of a Group 5 element, and an impurity gas including an impurity that is to be incorporated as a dopant into a semiconductor to serve as a donor. Here, during the epitaxial growth of the p-type Group 3-5 compound semiconductor, the flow rate of the impurity gas and the flow rate ratio of the Group 5 source gas to the Group 3 source gas are set so that the product N×d (cm?2) of the residual carrier concentration N (cm?3) and the thickness d (cm) of the p-type Group 3-5 compound semiconductor may be 8.0×1011 or less.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 13, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Junya Hada, Tsuyoshi Nakano
  • Publication number: 20130200495
    Abstract: Embodiments of the present disclosure include a buffer structure suited for III-N device having a foreign substrate. The buffer structure can include a first buffer layer having a first aluminum composition and a second buffer layer formed on the first buffer layer, the second buffer layer having a second aluminum composition. The buffer structure further includes a third buffer layer formed on the second buffer layer at a second interface, the third buffer layer having a third aluminum composition. The first aluminum composition decreases in the first buffer layer towards the interface and the second aluminum composition throughout the second buffer layer is greater than the first aluminum composition at the interface.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: TRANSPHORM INC.
    Inventors: Stacia Keller, Brian L. Swenson, Nicholas Fichtenbaum
  • Patent number: 8502350
    Abstract: According to one embodiment, stacked layers of a nitride semiconductor include a substrate, a single crystal layer and a nitride semiconductor layer. The substrate does not include a nitride semiconductor and has a protrusion on a major surface. The single crystal layer is provided directly on the major surface of the substrate to cover the protrusion, and includes a crack therein. The nitride semiconductor layer is provided on the single crystal layer.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideto Sugawara, Masaaki Onomura
  • Patent number: 8502385
    Abstract: A power semiconductor device has the power semiconductor elements having back surfaces bonded to wiring patterns and surface electrodes, cylindrical communication parts having bottom surfaces bonded on the surface electrodes of the power semiconductor elements and/or on the wiring patterns, a transfer mold resin having concave parts which expose the upper surfaces of the communication parts and cover the insulating layer, the wiring patterns, and the power semiconductor elements. External terminals have one ends inserted in the upper surfaces of the communication parts and the other ends guided upward, and at least one external terminal has, between both end parts, a bent area which is bent in an L shape and is embedded in the concave part of the transfer mold resin.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Seiji Oka, Tetsuya Ueda
  • Publication number: 20130193558
    Abstract: The non-polar or semi-polar group III nitride layer disclosed in a specific example of the present invention can be used for substrates for various electronic devices, wherein problems of conventional polar group III nitride substrates are mitigated or solved by using the nitride substrate of the invention, and further the nitride substrate can be manufactured by a chemical lift-off process.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 1, 2013
    Applicant: Korea Photonics Technology Institute
    Inventors: Jin Woo Ju, Jong Hyeob Baek, Hyung Jo Park, Sang Hern Lee, Tak Jung, Ja Yeon Kim, Hwa Seop Oh, Tae Hoon Chung, Yoon Seok Kim, Dae Woo Jeon
  • Publication number: 20130193445
    Abstract: Boron nitride is used as a buried dielectric of an SOI structure including an SOI layer and a handle substrate. The boron nitride is located between an SOI layer and a handle substrate. Boron nitride has a dielectric constant and a thermal expansion coefficient close to silicon dioxide. Yet, boron nitride has a wet as well as a dry etch resistance that is much better than silicon dioxide. In the SOI structure, there is a reduced material loss of boron nitride during multiple wet and dry etches so that the topography and/or bridging are not an obstacle for device integration. Boron nitride has a low dielectric constant so that devices built in SOI active regions do not suffer from a charging effect.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Alfred Grill, Effendi Leobandung, Deborah A. Neumayer, Dea-Gyu Park, Ghavam G. Shahidi, Leathen Shi
  • Publication number: 20130187169
    Abstract: Embodiments of the present invention provide systems and methods for depositing materials on either side of a freestanding film using selectively thermally-assisted chemical vapor deposition (STA-CVD), and structures formed using same. A freestanding film, which is suspended over a cavity defined in a substrate, is exposed to a fluidic CVD precursor that reacts to form a solid material when exposed to heat. The freestanding film is then selectively heated in the presence of the precursor. The CVD precursor preferentially deposits on the surface(s) of the freestanding film.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Inventor: The Aerospace Corporation
  • Publication number: 20130181327
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of dislocations in which a silicon substrate is used as a base substrate. An epitaxial substrate includes a substrate made of (111) single crystal silicon and a base layer group in which a plurality of base layers are laminated. Each of the plurality of base layers includes a first group-III nitride layer made of AlN and a second group-III nitride layer made of AlyyGazzN formed on the first group-III nitride layer. The first group-III nitride layer has many crystal defects. An interface between the first and second group-III nitride layers is a three-dimensional concavo-convex surface. In the base layer other than the base layer formed immediately above the base substrate, the first group-III nitride layer has a thickness of 50 nm or more and 100 nm or less and the second group-III nitride layer satisfies 0?yy?0.2.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 18, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventor: NGK INSULATORS, LTD.
  • Patent number: 8487409
    Abstract: Affords methods of manufacturing InP substrates, methods of manufacturing epitaxial wafers, InP substrates, and eptiaxial wafers whereby deterioration of the electrical characteristics can be kept under control, and at the same time, deterioration of the PL characteristics can be kept under control. An InP substrate manufacturing method of the present invention is provided with the following steps. An InP substrate is prepared (Steps S1 through S3). The InP substrate is washed with sulfuric acid/hydrogen peroxide (Step S5). After the step of washing with sulfuric acid/hydrogen peroxide (Step S5), the InP substrate is washed with phosphoric acid (Step S6).
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: July 16, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kyoko Okita
  • Publication number: 20130175671
    Abstract: A semiconductor wafer, comprising multiple active areas suitable for providing semiconductor devices or circuits. Inactive areas separate the active areas from each other. The wafer has a stressed layer with a first surface, and another layer which is in contact with the stressed layer along a second surface of the stressed layer, opposite to the first surface. Multiple trench lines, extend in parallel to the first surface of the stressed layer in an inactive area and have a depth less than the thickness of the semiconductor wafer.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 11, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philippe Renaud, Roland Serrano
  • Patent number: 8482103
    Abstract: A nitride semiconductor template including a substrate, a mask layer, a first nitride semiconductor layer and a second nitride semiconductor is provided. The substrate has a plurality of trenches, each of the trenches has a bottom surface, a first inclined sidewall and a second inclined sidewall. The mask layer covers the second inclined sidewall and exposes the first inclined sidewall. The first nitride semiconductor layer is disposed over the substrate and the mask layer. The first nitride semiconductor layer fills the trenches and in contact with the first inclined sidewall. The first nitride semiconductor layer has voids located outside the trenches and parts of the mask layer are exposed by the voids. The first nitride semiconductor layer has a plurality of nano-rods. The second nitride semiconductor layer covers the nano-rods. The spaces between the nano-rods are not entirely filled by the second nitride semiconductor layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 9, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Hsun-Chih Liu, Chen-Zi Liao, Yen-Hsiang Fang, Rong Xuan, Chu-Li Chao
  • Patent number: 8482104
    Abstract: A method for growth of indium-containing nitride films is described, particularly a method for fabricating a gallium, indium, and nitrogen containing material. On a substrate having a surface region a material having a first indium-rich concentration is formed, followed by a second thickness of material having a first indium-poor concentration. Then a third thickness of material having a second indium-rich concentration is added to form a sandwiched structure which is thermally processed to cause formation of well-crystallized, relaxed material within a vicinity of a surface region of the sandwich structure.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 9, 2013
    Assignee: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, Christiane Poblenz, Michael R. Krames
  • Publication number: 20130161794
    Abstract: Provided are an internally reformed substrate for epitaxial growth having an arbitrary warpage shape and/or an arbitrary warpage amount, an internally reformed substrate with a multilayer film using the internally reformed substrate for epitaxial growth, a semiconductor device, a bulk semiconductor substrate, and manufacturing methods therefor. The internally reformed substrate for epitaxial growth includes: a single crystal substrate; and a heat-denatured layer formed in an internal portion of the single crystal substrate by laser irradiation to the single crystal substrate.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 27, 2013
    Applicants: DISCO CORPORATION, NAMIKI SEIMITSU HOUSEKI KABUSHIKI KAISHA
    Inventors: Hideo Aida, Natsuko Aota, Hitoshi Hoshino, Kenji Furuta, Tomosaburo Hamamoto, Keiji Honjo
  • Patent number: 8471366
    Abstract: A nitride semiconductor device includes a main surface and an indicator portion. The main surface is a plane inclined by at least 71° and at most 79° in a [1-100] direction from a (0001) plane or a plane inclined by at least 71° and at most 79° in a [?1100] direction from a (000-1) plane. The indicator portion indicates a (?1017) plane, a (10-1-7) plane, or a plane inclined by at least ?4° and at most 4° in the [1-100] direction from these planes and inclined by at least ?0.5° and at most 0.5° in a direction orthogonal to the [1-100] direction.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hidenori Mikami, Naoki Matsumoto, Hideki Osada, Yusuke Yoshizumi, Sayuri Yamaguchi
  • Patent number: 8471365
    Abstract: A nitride semiconductor substrate having a main surface serving as a semipolar plane and provided with a chamfered portion capable of effectively preventing cracking and chipping, a semiconductor device fabricated using the nitride semiconductor substrate, and a method for manufacturing the nitride semiconductor substrate and the semiconductor device are provided. The nitride semiconductor substrate includes a main surface inclined at an angle of 71° or more and 79° or less with respect to the (0001) plane toward the [1-100] direction or inclined at an angle of 71° or more and 79° or less with respect to the (000-1) plane toward the [?1100] direction; and a chamfered portion located at an edge of an outer periphery of the main surface. The chamfered portion is inclined at an angle ?1 or ?2 of 5° or more and 45° or less with respect to adjacent one of the main surface and a backside surface on a side opposite to the main surface.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Sayuri Yamaguchi, Naoki Matsumoto, Hidenori Mikami
  • Patent number: 8471307
    Abstract: An integrated circuit containing a PMOS transistor with p-channel source/drain (PSD) regions which include a three layer PSD stack containing Si—Ge, carbon and boron. The first PSD layer is Si—Ge and includes carbon at a density between 5×1019 and 2×1020 atoms/cm3. The second PSD layer is Si—Ge and includes carbon at a density between 5×1019 atoms/cm3 and 2×1020 atoms/cm3 and boron at a density above 5×1019 atoms/cm3. The third PSD layer is silicon or Si—Ge, includes boron at a density above 5×1019 atoms/cm3 and is substantially free of carbon. After formation of the three layer epitaxial stack, the first PSD layer has a boron density less than 10 percent of the boron density in the second PSD layer. A process for forming an integrated circuit containing a PMOS transistor with a three layer PSD stack in PSD recesses.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Rajesh B. Khamankar, Haowen Bu, Douglas Tad Grider
  • Patent number: 8470697
    Abstract: A method of forming a p-type compound semiconductor layer includes increasing a temperature of a substrate loaded into a reaction chamber to a first temperature. A source gas of a Group III element, a source gas of a p-type impurity, and a source gas of nitrogen containing hydrogen are supplied into the reaction chamber to grow the p-type compound semiconductor layer. Then, the supply of the source gas of the Group III element and the source gas of the p-type impurity is stopped and the temperature of the substrate is lowered to a second temperature. The supply of the source gas of nitrogen containing hydrogen is stopped and drawn out at the second temperature, and the temperature of the substrate is lowered to room temperature using a cooling gas. Accordingly, hydrogen is prevented from bonding to the p-type impurity in the p-type compound semiconductor layer.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 25, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Ki Bum Nam, Hwa Mok Kim, James S. Speck
  • Patent number: 8465997
    Abstract: A manufacturing method of a group III nitride semiconductor comprising: preparing a substrate including a buffer layer; forming a first layer on the buffer layer from a group III nitride semiconductor by MOCVD while doping an anti-surfactant, wherein a thickness of the first layer is equal to or thinner than 2 ?m; forming a second layer on the first layer from a group III nitride semiconductor by MOCVD while doping at least one of surfactant and an anti-surfactant; and controlling a crystalline quality and a surface flatness of the second layer by adjusting an amount of the anti-surfactant and the surfactant doped during the formation of the second layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 18, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Koji Okuno
  • Patent number: 8461664
    Abstract: A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: June 11, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian R. Bennett, John Bradley Boos, Mario Ancona, James G. Champlain, Nicolas A Papanicolaou
  • Patent number: 8455881
    Abstract: A virtual substrate structure includes a crystalline silicon substrate with a first layer of III-N grown on the silicon substrate. Ge clusters or quantum dots are grown on the first layer of III-N and a second layer of III-N is grown on the Ge clusters or quantum dots and any portions of the first layer of III-N exposed between the Ge clusters or quantum dots. Additional alternating Ge clusters or quantum dots and layers of III-N are grown on the second layer of III-N forming an upper surface of III-N. Generally, the additional alternating layers of Ge clusters or quantum dots and layers of III-N are continued until dislocations in the III-N adjacent the upper surface are substantially eliminated.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 4, 2013
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Andrew Clark
  • Patent number: 8456010
    Abstract: A semiconductor device of an embodiment includes: a semiconductor layer made of p-type nitride semiconductor; an oxide layer formed on the semiconductor layer, the oxide layer being made of a polycrystalline nickel oxide, and the oxide layer having a thickness of 3 nm or less; and a metal layer formed on the oxide layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 4, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Saito, Maki Sugai, Eiji Muramoto, Shinya Nunoue
  • Patent number: 8455929
    Abstract: A device includes a semiconductor substrate, and insulation regions in the semiconductor substrate. Opposite sidewalls of the insulation regions have a spacing between about 70 nm and about 300 nm. A III-V compound semiconductor region is formed between the opposite sidewalls of the insulation regions.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 4, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8450774
    Abstract: In one example, we describe a new high performance AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistor (MISHFET), which was fabricated using HfO2 as the surface passivation and gate insulator. The gate and drain leakage currents are drastically reduced to tens of nA, before breakdown. Without field plates, for 10 ?m of gate-drain spacing, the off-state breakdown voltage is 1035V with a specific on-resistance of 0.9 m?-cm2. In addition, there is no current slump observed from the pulse measurements. This is the best performance reported on GaN-based, fast power-switching devices on sapphire, up to now, which efficiently combines excellent device forward, reverse, and switching characteristics. Other variations, features, and examples are also mentioned here.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 28, 2013
    Assignee: Cornell University
    Inventors: Junxia Shi, Lester Fuess Eastman
  • Patent number: 8449672
    Abstract: This disclosure pertains to a process for making single crystal Group III nitride, particularly gallium nitride, at low pressure and temperature, in the region of the phase diagram of Group III nitride where Group III nitride is thermodynamically stable comprises a charge in the reaction vessel of (a) Group III nitride material as a source, (b) a barrier of solvent interposed between said source of Group III nitride and the deposition site, the solvent being prepared from the lithium nitride (Li3N) combined with barium fluoride (BaF2), or lithium nitride combined with barium fluoride and lithium fluoride (LiF) composition, heating the solvent to render it molten, dissolution of the source of GaN material in the molten solvent and following precipitation of GaN single crystals either self seeded or on the seed, maintaining conditions and then precipitating out.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: May 28, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Richard L. Henry
  • Patent number: 8450192
    Abstract: Growth methods for planar, non-polar, Group-III nitride films are described. The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 28, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Center
    Inventors: Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20130119401
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Applicant: SORAA, INC.
    Inventors: Mark P. D'EVELYN, James S. SPECK, Derrick S. KAMBER, Douglas W. POCIUS
  • Publication number: 20130119399
    Abstract: The present invention discloses a new testing method of group III-nitride wafers. By utilizing the ammonothermal method, GaN or other Group III-nitride wafers can be obtained by slicing the bulk GaN ingots. Since these wafers originate from the same ingot, these wafers have similar properties/qualities. Therefore, properties of wafers sliced from an ingot can be estimated from measurement data obtained from selected number of wafers sliced from the same ingot or an ingot before slicing. These estimated properties can be used for product certificate of untested wafers. This scheme can reduce a significant amount of time, labor and cost related to quality control.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 16, 2013
    Applicant: SixPoint Materials, Inc.
    Inventor: SixPoint Materials, Inc.
  • Patent number: RE44538
    Abstract: A gallium nitride-based HEMT device, comprising a channel layer formed of an InGaN alloy. Such device may comprise an AlGaN/InGaN heterostructure, e.g., in a structure including a GaN layer, an InGaN layer over the GaN layer, and a (doped or undoped) AlGaN layer over the InGaN layer. Alternatively, the HEMT device of the invention may be fabricated as a device which does not comprise any aluminum-containing layer, e.g., a GaN/InGaN HEMT device or an InGaN/InGaN HEMT device.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 15, 2013
    Assignee: Cree, Inc.
    Inventors: Joan M. Redwing, Edwin L. Piner