Bent (e.g., J-shaped) Lead Patents (Class 257/696)
  • Patent number: 8610138
    Abstract: Disclosed is a light emitting diode (LED) package having an array of light emitting cells coupled in series. The LED package comprises a package body and an LED chip mounted on the package body. The LED chip has an array of light emitting cells coupled in series. Since the LED chip having the array of light emitting cells coupled in series is mounted on the LED package, it can be driven directly using an AC power source.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 17, 2013
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Chung Hoon Lee, Keon Young Lee, Hong San Kim, Dae Won Kim, Hyuok Jung Choi
  • Patent number: 8598709
    Abstract: A method and a system for routing electrical connections are disclosed. A semiconductor device includes a first semiconductor chip and a routing plane having a plurality of routing lines. A first connecting line is electrically coupled to the first semiconductor chip and one of the plurality of routing lines and a second connecting line is electrically coupled to the one of the plurality of routing lines and to one of a second semiconductor chip or a first external contact element.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 3, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Gottfried Beer, Christian Geissler, Thomas Ort, Klaus Pressel, Bernd Waidhas, Andreas Wolter
  • Patent number: 8592967
    Abstract: A semiconductor apparatus comprising an integrated semiconductor circuit device having pluralities of electrode pads, pluralities of first external terminals connected to the electrode pads of the integrated semiconductor circuit device, an inductor disposed in a region surrounded by the first external terminals, and a resin portion sealing them, the integrated semiconductor circuit device being arranged on an upper surface of the inductor, and the inductor being exposed from a lower surface of the resin portion together with the first external terminals.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 26, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventor: Tohru Umeno
  • Patent number: 8586857
    Abstract: A combined diode, lead assembly incorporating two expansion joints. The combined diode, lead assembly incorporating two expansion joints includes a diode having a first diode terminal and a second diode terminal, a first conductor and a second conductor. The first conductor includes a first terminal that is electrically coupled to the diode at the first diode terminal and a second terminal that is configured as a first expansion joint, which is configured to electrically couple to a first interconnecting-conductor and is configured to reduce a stress applied to the diode by the first conductor. The second conductor includes a first terminal that is electrically coupled to the diode at the second diode terminal and a second terminal that is configured as a second expansion joint, which is configured to electrically couple to a second interconnecting-conductor and is configured to reduce a stress applied to the diode by the second conductor.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 19, 2013
    Assignee: Miasole
    Inventors: Shawn Everson, Steven T. Croft, Whitfield G. Halstead, Jason S. Corneille
  • Patent number: 8586417
    Abstract: An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Hughes, Christy A. Hagerty, Santos Nazario-Camacho, Keith K. Sturcken
  • Patent number: 8575742
    Abstract: A semiconductor device or semiconductor package (e.g., a QFP package) including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package, and further to provide one or more power bars in the semiconductor package. More particularly, the semiconductor package of the present invention includes a generally planar die paddle or die pad defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads include exposed bottom surface portions which are provided in at least two concentric rows or rings which at least partially circumvent the die pad, with other leads including portions which protrude from respective side surfaces of a package body of the semiconductor package. Connected to the top surface of the die pad is at least one semiconductor die which is electrically connected to at least some of the leads.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 5, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Wan Jong Kim, Young Tak Do, Byong Woo Cho
  • Publication number: 20130285232
    Abstract: Disclosed herein is a semiconductor package module, including: a circuit board having connection pads formed on one surface thereof; a semiconductor package including lead terminals protruded out of a housing; and an interposer positioned between the circuit board and the semiconductor package, the interposer including a body allowing the circuit board and the semiconductor package to be spaced apart from each other and elastic members contacted with the connection pads and the lead terminals.
    Type: Application
    Filed: July 11, 2012
    Publication date: October 31, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Job Ha
  • Patent number: 8559238
    Abstract: Embodiments of the present invention relate to configurable inputs and/or outputs for memory and memory stacking applications in processor-based systems. More specifically, embodiments of the present invention include processor-based systems with volatile-memory having memory devices that include a die having a circuit configured for enablement by a particular signal, an input pin configured to receive the particular signal, and a path selector configured to selectively designate a signal path to the circuit from the input pin.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 15, 2013
    Assignee: Round Rock Research, LLC
    Inventor: Jeffrey W. Janzen
  • Patent number: 8558359
    Abstract: Disclosed herein is a semiconductor package, including: a substrate having a first surface and a second surface; at least one semiconductor device formed on the first surface of the substrate; first lead frames respectively formed at both sides of the first surface of the substrate; and second lead frames respectively formed at both sides of the second surface of the substrate, wherein the first lead frame and the second lead frame are spaced apart from each other by an isolation distance base.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 15, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Hyun Lim, Chang Jae Heo, Young Ki Lee, Sung Keun Park
  • Publication number: 20130264699
    Abstract: A contact element (1) for providing an electrical contact between a first electrical device (7) and a second electrical device, wherein the contact element (1) comprises a first contact portion (2) to be electrically connected to the first electrical device (7) and a second contact portion (4) to be connected to the second electrical device. The first contact portion (2) is arranged at a distance (D) to the second contact portion (4), whereby the contact element (1) comprises further an adjustment portion (3) connecting said first and second contact portion (2, 4), wherein with said adjustment portion (3) said distance (D) between the first contact portion (2) and the second contact portion (4) is adjustable.
    Type: Application
    Filed: December 9, 2011
    Publication date: October 10, 2013
    Applicant: MULTI-HOLDING AG
    Inventors: Brian Wade Mills, Lee Michael Wade, Dustin Delmar Reede Carver, Ian McKay Pratt
  • Patent number: 8546943
    Abstract: Provided is a ball grid array substrate, a semiconductor chip package, and a method of manufacturing the same. The ball grid array substrate includes an insulating layer having a first surface providing a mounting region for a semiconductor chip, a second surface opposing the first surface, and an opening connecting the second surface with the mounting region of the semiconductor chip, and a circuit pattern buried in the second surface. Since the ball grid array substrate is manufactured by a method of stacking two insulating layers, existing devices can be used, and the ball grid array substrate can be manufactured as an ultra thin plate. In addition, since the circuit pattern is buried in the insulating layer, a high-density circuit pattern can be formed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: October 1, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Hyun Park, Nam Keun Oh, Sang Duck Kim, Jong Gyu Choi, Young Ji Kim, Ji Eun Kim, Myung Sam Kang
  • Patent number: 8546849
    Abstract: Some exemplary embodiments of high voltage cascoded III-nitride semiconductor package utilizing clips on a package support surface have been disclosed. One exemplary embodiment comprises a III-nitride transistor attached to a package support surface and having an anode of a diode stacked over a source of the III-nitride transistor, a first conductive clip coupled to a gate of the III-nitride transistor and the anode of the diode, and a second conductive clip coupled to a drain of the III-nitride transistor. The conductive clips are connected to the package support surface and expose respective flat portions that are surface mountable. In this manner, reduced package footprint, improved surge current capability, and higher performance may be achieved compared to conventional wire bonded packages. Furthermore, since a low cost printed circuit board (PCB) may be utilized for the package support surface, expensive leadless fabrication processes may be avoided for cost effective manufacturing.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: October 1, 2013
    Assignee: International Rectifier Corporation
    Inventors: Chuan Cheah, Dae Keun Park
  • Patent number: 8519546
    Abstract: An electronic device includes a first semi-conductor die, a second semi-conductor die and an electrically conductive element. The electrically conductive element includes a first electrically conductive part interposed at least partially between the first semi-conductor die and the second semi-conductor die, wherein said first part is electrically coupled to the first semi-conductor die. The electrically conductive element further includes a second electrically conductive part electrically coupled to the first part, wherein said second part extends from at least part of the first part. The first part is an electrically conductive strap between the dice, and the second part is clip extending from at least part of the strap.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: August 27, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Davide Giuseppe Patti, Agatino Minotti
  • Patent number: 8519527
    Abstract: An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 27, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Hughes, Christy A. Hagerty, Santos Nazario-Camacho, Keith K. Sturcken
  • Patent number: 8502371
    Abstract: An integrated circuit package system including: forming a die pad, wherein the die pad has a tiebar at a corner; forming a lead wherein the lead is connected to the tiebar; connecting an integrated circuit die to the die pad; and forming an encapsulation, having an edge, over the integrated circuit die with the lead extending from and beyond the edge.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: August 6, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Jairus Legaspi Pisigan, Henry Descalzo Bathan
  • Patent number: 8486757
    Abstract: A method and apparatus of packaging a semiconductor device with a clip is disclosed. The clip defines a first contact region and a second contact region on a same face of the at least one clip. The chip defines a first face, and a second face opposite to the first face, the first contact region being attached to the first face of the chip and the second contact region being located within a same plane with the second face of the clip.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 16, 2013
    Assignee: Infineon Technologies AG
    Inventors: Boon Huat Lim, Chee Chian Lim, Yoke Chin Goh
  • Patent number: 8482109
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead having a peripheral contact layer surrounding the peripheral lead with a non-horizontal side exposed from the peripheral contact layer; forming an inner lead and a paddle non-planar with the peripheral lead; mounting an integrated circuit to the paddle; and forming an encapsulation covering the integrated circuit and exposing the inner lead, the paddle, and the non-horizontal side.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 9, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Patent number: 8466546
    Abstract: A semiconductor package including a conductive clip preferably in the shape of a can, a semiconductor die, and a conductive stack interposed between the die and the interior of the can which includes a conductive platform and a conductive adhesive body.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 18, 2013
    Assignee: International Rectifier Corporation
    Inventors: Andy Farlow, Mark Pavier, Andrew N. Sawle, George Pearson, Martin Standing
  • Patent number: 8455915
    Abstract: The light emitting device according to the present invention includes a resin molded body having a recess, a first electrically conductive member and a second electrically conductive member each having terminal portions respectively exposed from a first outer side surface and second outer side surface which are opposite outer side surfaces among the outer side surfaces of the resin molded body, and a light emitting element mounted on the first electrically conductive member exposed at a bottom surface of the recess. The recess has a first bottom surface on which the light emitting element is mounted and a second bottom surface arranged at a higher position of the outer periphery of the first bottom surface.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 4, 2013
    Assignee: Nichia Corporation
    Inventor: Masaki Hayashi
  • Patent number: 8455988
    Abstract: An integrated circuit package system includes: forming an external interconnect; forming a terminal having a cavity adjacent to and downset from a portion the external interconnect; connecting a first integrated circuit with the external interconnect; and forming an encapsulation over the first integrated circuit with cavity filled with the encapsulation, the terminal extending from the encapsulation, and the external interconnect partially exposed from the encapsulation.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: June 4, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jose Alvin Caparas, Zigmund Ramirez Camacho
  • Patent number: 8426978
    Abstract: A first wiring (1) has a bending portion (2), a first wiring region (1a) extending from the bending portion (2) in the X direction, and a second wiring region (1b) extending from the bending portion (2) in the Y direction. A via (3) is formed under the wiring (1). The via (3) is formed so as not to overlap with a region of the bending portion (2) in the first wiring region (1a). The length of the via (3) in the X direction (x) is longer than the length thereof in the Y direction (y) and both ends of the via (3) in the Y direction overlap with both ends of the first wiring region (1a) in the Y direction.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Miwa Ichiryu, Hiroyuki Uehara, Hidetoshi Nishimura
  • Patent number: 8421210
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a first terminal; connecting an integrated circuit to the first terminal; forming a second terminal connected over the first terminal and the integrated circuit by a vertical conductive post integral with the first terminal or the second terminal; and encapsulating the integrated circuit and the vertical conductive post leaving portions of the first terminal and the second terminal exposed.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 16, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: HeeJo Chi, Soo Jung Park, Junwoo Myung
  • Patent number: 8415803
    Abstract: A method and a system for routing electrical connections are disclosed. A semiconductor device includes a first semiconductor chip and a routing plane having a plurality of routing lines. A first connecting line is electrically coupled to the first semiconductor chip and one of the plurality of routing lines and a second connecting line is electrically coupled to the one of the plurality of routing lines and to one of a second semiconductor chip or a first external contact element.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 9, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Gottfried Beer, Christian Geissler, Thomas Ort, Klaus Pressel, Bernd Waidhas, Andreas Wolter
  • Patent number: 8410601
    Abstract: An RF package includes a substrate mountable on a base plate, a non-conductive cover overlying the substrate, and quasi-serpentine stepped source leads attached to an upper surface of the substrate and extending from at least one of a pair of opposite sides of the upper surface of the substrate to tapered lower surfaces of the cover. The cover includes a recess to receive the substrate. The recess includes stress distribution surface areas to engage and press outer edge portions of opposite sides of the substrate against a base plate or heat sink. The tapered lower surfaces of the cover engage with and press against the stepped source leads when securing the RF package to the base plate or heat sink using one or more fasteners or bolts. The cover includes structural features to improve preferential deformation when a mounting force is applied.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: April 2, 2013
    Assignee: Microsemi Corporation
    Inventor: Benjamin A. Samples
  • Patent number: 8405230
    Abstract: A flip chip lead frame package includes a die and a lead frame having a die paddle and leads, and has a spacer to maintain a separation between the die and the die paddle. Also, methods for making the package are disclosed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: March 26, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jae Soo Lee, Geun Sik Kim, Sheila Marie L. Alvarez, Robinson Quiazon, Hin Hwa Goh, Frederick Rodriguez Dahilig
  • Patent number: 8404520
    Abstract: A microelectronic package can include wire bonds having bases bonded to respective ones of conductive elements exposed at a surface of a substrate. The wire bonds may have exterior edge surfaces disposed at an angle between 25° and 92° relative to the bases, and ends remote, e.g., opposite, from the bases, and remote from the ends which are connected to the bases. A dielectric encapsulation layer extends from the substrate and covers portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, wherein unencapsulated portions of the wire bonds are defined by portions of the wire bonds that are uncovered by the encapsulation layer, the unencapsulated portions including the ends of the wire bonds.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 26, 2013
    Assignee: Invensas Corporation
    Inventors: Ellis Chau, Reynaldo Co, Roseann Alatorre, Philip Damberg, Wei-Shun Wang, Se Young Yang
  • Publication number: 20130069217
    Abstract: According to one embodiment, a semiconductor device includes a substrate, a semiconductor chip mounted on the substrate, an electrode electrically connected to the semiconductor chip, an electrode terminal having a first terminal at one end portion and a second terminal at the other end portion, and a case covering the substrate, the electrode, the first terminal and the second terminal, wherein the first terminal and the second terminal are bended to direct to a center portion and to be opposed each other in the case, and the first terminal and the second terminal are close to each other to be soldered with the electrode.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Junichi NAKAO
  • Patent number: 8399992
    Abstract: Provided are a semiconductor package and a method for fabricating the same. The semiconductor package includes a lower package comprising a lower substrate, a lower semiconductor chip mounted on the lower substrate and comprising a redistribution, and a molding layer molding the lower semiconductor chip, an upper package comprising an upper substrate and an upper semiconductor chip mounted on the upper substrate, with the upper package being stacked on the lower package. The semiconductor package further includes an electrical interconnector extending from the upper substrate into the molding layer and connected to the redistribution to electrically connect the upper and lower packages to each other, and a dummy interconnector extending from the upper substrate into the molding layer to physically couple the upper and lower packages to each other.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Kyu Park, Tae-Sung Park, Kyung-Man Kim, Hye-Jin Kim
  • Patent number: 8395246
    Abstract: A method of fabricating a leadframe-based semiconductor package, and a semiconductor package formed thereby, are disclosed. In embodiments, a semiconductor die having die bond pads along two adjacent edges may be electrically coupled to four sides of a four-sided leadframe. Embodiments relate to lead and no-lead type leadframe.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: March 12, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Cheemen Yu, Vani Verma, Hem Takiar
  • Patent number: 8381393
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include attaching a patch to an interposer, forming at least one interconnect structure above and on a top surface of the interposer; and attaching a flex connector to the at least one interconnect structure.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: February 26, 2013
    Assignee: Intel Corporation
    Inventors: Brent M. Roberts, Mihir K. Roy, Sriram Srinivasan, Sridhar Narasimhan
  • Publication number: 20130020695
    Abstract: Various aspects provide for bending a bending a lead frame of a semiconductor device package into a shape of an “L” and mounting the package on a substrate. A horizontal portion of the bent lead-frame is about parallel with a surface of the package. A vertical portion of the bent lead frame is configured to extend the horizontal portion beyond the surface of the package. A device may be mounted between the substrate and the package.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Inventors: Hanjoo Na, Santosh Kumar
  • Patent number: 8358017
    Abstract: Embodiments in accordance with the present invention relate to flip-chip packages for semiconductor devices, which feature a die sandwiched between metal layers. One metal layer comprises portions of the lead frame configured to be in electrical and thermal communication with various pads on a first surface of the die (e.g. IC pads or MOSFET gate or source pads) through a solder ball contact. The other metal layer is configured to be in at least thermal communication with the opposite side of the die. Embodiments of packages in accordance with the present invention exhibit superior heat dissipation qualities, while avoiding the expense of wire bonding. Embodiments of the present invention are particularly suited for packaging of power devices.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: January 22, 2013
    Assignee: GEM Services, Inc.
    Inventor: Anthony C. Tsui
  • Patent number: 8339800
    Abstract: A circuit module includes a substrate, a component land provided on the substrate, an electronic component bonded to the component land, a case land provided on the substrate, and a case bonded to the case land so as to cover the electronic component. The case includes a top plate, and a leg that extends from a peripheral edge of the top plate in a direction substantially perpendicular to the top plate and that includes a groove in an end surface thereof that is bonded to the case land.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 25, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshihiro Yamaguchi, Tomonori Ito
  • Patent number: 8334589
    Abstract: A power block includes an insulating substrate, a conductive pattern formed on the insulating substrate, a power semiconductor chip bonded onto the conductive pattern by lead-free solder, a plurality of electrodes electrically connected to the power semiconductor chip and extending upwardly away from the insulating substrate, and a transfer molding resin covering the conductive pattern, the lead-free solder, the power semiconductor chip, and the plurality of electrodes, wherein surfaces of the plurality of electrodes are exposed at an outer surface of the transfer molding resin and lie in the same plane as the outer surface, the outer surface being located directly above the conductive pattern.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: December 18, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Yamaguchi, Seiji Oka, Osamu Usui, Takeshi Oi
  • Patent number: 8330270
    Abstract: An integrated circuit package having a selectively etched leadframe strip defining a die attach pad and a plurality of contact pads, at least one side of the die attach pad having a plurality of spaced apart pad portions; a semiconductor die mounted to the die attach pad and wires bonding the semiconductor die to respective ones of the contact pads; a first surface of the leadframe strip, including the semiconductor die and wire bonds, encapsulated in a molding material such that at least one surface of the leadframe strip is exposed, and wherein solder paste is disposed on said contact pads and said at least one side of said die attach pad.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: December 11, 2012
    Assignee: UTAC Hong Kong Limited
    Inventors: Geraldine Tsui Yee Lin, Walter de Munnik, Kin Pui Kwan, Wing Him Lau, Kwok Cheung Tsang, Chun Ho Fan, Neil McLellan
  • Patent number: 8329579
    Abstract: Through substrate vias (TSVs) are provided after substantially all high temperature operations needed to form a device region of a first thickness proximate the front surface of a substrate wafer by: (i) from the front surface, forming comparatively shallow vias of a first aspect ratio containing first conductors extending preferably through the first thickness but not through the initial wafer thickness, (ii) removing material from the rear surface to form a modified wafer of smaller final thickness with a new rear surface, and (iii) forming from the new rear surface, much deeper vias of second aspect ratios beneath the device region with second conductors therein contacting the first conductors, thereby providing front-to-back interconnections without substantially impacting wafer robustness during manufacturing and device region area. Both aspect ratios are desirably about ?40, usefully ?10 and preferably ?5.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul W. Sanders, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 8319323
    Abstract: In one embodiment, a leadless package includes down-set conductive leads having base portions. The base portions include stand-offs that attach to electrodes on an electronic chip using, for example, a solder die attach material. An optional encapsulating layer covers portions of the down-set conductive leads and portions of the electronic chip while leaving pad portions of the down-set conductive leads and a surface of the electronic chip exposed. The pad portions and the surface of the electronic chip are oriented to attach to a next level of assembly.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: James P. Letterman, Jr., Joseph K. Fauty, Jay A. Yoder, William F. Burghout
  • Patent number: 8310041
    Abstract: A stacked semiconductor package technique applicable to semiconductor chips having pins short enough that the semiconductor chips cannot be directly bonded together is provided. A printed circuit board (PCB) is inserted into a space between pins of an upper semiconductor chip and the exterior of bodies of stacked semiconductor chips. The PCB includes a plurality of conductive patterns at locations corresponding to the respective pins. The respective conductive patterns and the corresponding respective pins of the upper and lower semiconductor chips are bonded together. The PCB includes a plurality of recess patterns on one side, the recess patterns having the same pitch as the pins of the semiconductor chips. The PCB is disposed across the pins of the lower semiconductor chip, and thereby easily arranged with the stacked semiconductor chips.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: November 13, 2012
    Assignee: Polystak, Inc.
    Inventor: Tae Seung Chung
  • Patent number: 8299602
    Abstract: In accordance with the present invention, there is provided a semiconductor package (e.g., a QFP package) including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. More particularly, the semiconductor package of the present invention includes a generally planar die pad or die paddle defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads include exposed bottom surface portions which are provided in at least one row or ring which at least partially circumvents the die pad, with other leads including portions which protrude from respective side surfaces of a package body of the semiconductor package. Connected to the top surface of the die pad is at least one semiconductor die which is electrically connected to at least some of the leads.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 30, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Yeon Ho Choi, GiJeong Kim, WanJong Kim
  • Patent number: 8294257
    Abstract: A power block includes an insulating substrate, a conductive pattern formed on the insulating substrate, a power semiconductor chip bonded onto the conductive pattern by lead-free solder, a plurality of electrodes electrically connected to the power semiconductor chip and extending upwardly away from the insulating substrate, and a transfer molding resin covering the conductive pattern, the lead-free solder, the power semiconductor chip, and the plurality of electrodes, wherein surfaces of the plurality of electrodes are exposed at an outer surface of the transfer molding resin and lie in the same plane as the outer surface, the outer surface being located directly above the conductive pattern.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: October 23, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Yamaguchi, Seiji Oka, Osamu Usui, Takeshi Oi
  • Patent number: 8294258
    Abstract: In a power semiconductor module, a semiconductor device including electrode surfaces for connection on its front side and back side is connected on its back side to a first extraction electrode through soldering; a metal surface of one side of a laminated conductor having a laminated structure in which at least two types of metals are laminated is directly, intermetallically connected to the front side of the semiconductor device; a second extraction electrode is connected to a metal surface of another side of the laminated conductor through soldering; and the laminated conductor includes a plurality of arch-like protrusions and a straight section connecting the arch-like protrusions, the straight section is connected with the front side of the semiconductor device, and the protrusions are connected with the second extraction electrode.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 23, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Katsunori Azuma
  • Patent number: 8283760
    Abstract: An integrated circuit package configured to incorporate a lead frame and methods for its making are is described. The package comprising an IC with aluminum bond pads in communication with circuitry of the die with lead frame with silver bond pads. The package having gold bumps bonded between the aluminum bond pad of the die and the silver bond pad of the lead frame. The package including an encapsulant envelope and including various materials and bond pad structures and constructed in a manner formed by thermosonically or thermocompressionally bonding the gold balls to the bond pads. Also, disclosed are methods of making the package.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 9, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Ken Pham, Anindya Poddar, Ashok S. Prabhu
  • Patent number: 8278752
    Abstract: A microelectronic package includes first substrate (120) having first surface area (125) and second substrate (130) having second surface area (135). The first substrate includes first set of interconnects (126) having first pitch (127) at first surface (121) and second set of interconnects (128) having second pitch (129) at second surface (222). The second substrate is coupled to the first substrate using the second set of interconnects and includes third set of interconnects (236) having third pitch (237) and internal electrically conductive layers (233, 234) connected to each other with microvia (240). The first pitch is smaller than the second pitch, the second pitch is smaller than the third pitch, and the first surface area is smaller than the second surface area.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Intel Corporation
    Inventors: Brent M. Roberts, Mihir K. Roy, Sriram Srinivasan, Sridhar Narasimhan
  • Patent number: 8253238
    Abstract: In a resin-sealed semiconductor device, an inner lead including a bend portion formed by lifting has a protruding shape located on one side and an inclined vertical surface shape located on the other side (inside) in an external connection terminal direction. A cutaway portion is provided along the bend portion and an external connection terminal. A height of an upper surface portion of the inner lead is higher than a height of an upper surface of a semiconductor element. The inner lead is provided in a substantially central portion of a die pad so that the inclined vertical surface shape is parallel to a side of a die pad which includes a thin portion located in a side surface portion and an exposure portion located on a bottom surface.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 28, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Masayuki Satoh, Koshi Maemura
  • Patent number: 8253237
    Abstract: A power semiconductor arrangement and method is disclosed. One embodiment provides a power semiconductor module. An insulator is arranged between the module and a cooling element, increasing clearances between the power semiconductor module and the cooling element.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 28, 2012
    Assignee: Infineon Technologies AG
    Inventors: Peter Kanschat, Thilo Stolze
  • Patent number: 8253239
    Abstract: In one exemplary embodiment, a multi-chip connector is formed to have a first conductive strip that is suitable for attaching to a first semiconductor die and a second conductive strip that is attached suitable for attaching to a second semiconductor die.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 28, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Francis J. Carney, Phillip Celaya, Joseph K. Fauty, James P. Letterman, Stephen St. Germain, Jay A. Yoder
  • Patent number: 8247899
    Abstract: A power semiconductor module comprises at least one power semiconductor component and a connection device which makes contact with the power semiconductor component. The connection device is composed of a layer assembly having at least one first electrically conductive layer facing the power semiconductor component and forming at least one first conductor track, and an insulating layer following in the layer assembly, and a second layer following further in the layer assembly and forming at least one second conductor track, the second layer being remote from the power semiconductor component. The power semiconductor module has at least one internal connection element, wherein the internal connection element is embodied as a contact spring having a first and a second contact section and a resilient section. The first contact section has a common contact area with a first or a second conductor track of the connection device.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: August 21, 2012
    Assignee: Semikron Elektronik GmbH & Co. KG
    Inventors: Markus Knebel, Peter Beckedahl
  • Patent number: 8236629
    Abstract: Application form of and demand for an IC chip formed with a silicon wafer are expected to increase, and further reduction in cost is required. An object of the invention is to provide a structure of an IC chip and a process capable of producing at a lower cost. A feature of the invention is to use a metal film and a reactant having the metal film as a separation layer. An etching rate of the metal film or the reactant having metal is high, and a physical means in addition to a chemical means of etching the metal film or the reactant having metal can be used in the invention. Thus, the IDF chip can be manufactured more simply and easily in a short time.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: August 7, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshitaka Dozen, Tomoko Tamura, Takuya Tsurume, Koji Dairiki
  • Patent number: 8235551
    Abstract: A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 7, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Jian-Shian Lin, Chieh-Lung Lai, Hsiu-Jen Lin, Weng-Jung Lu, Yi-Ping Huang, Ya-Chun Tu
  • Patent number: 8232658
    Abstract: A stackable integrated circuit package system includes: forming a first integrated circuit die having a small interconnect and a large interconnect provided thereon; forming an external interconnect, having an upper tip and a lower tip, from a lead frame; mounting the first integrated circuit die on the external interconnect with the small interconnect on the lower tip and below the upper tip; and encapsulating around the small interconnect and around the large interconnect with an exposed surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 31, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Heap Hoe Kuan, Dioscoro A. Merilo, Antonio B. Dimaano, Jr.