Bent (e.g., J-shaped) Lead Patents (Class 257/696)
  • Patent number: 7939385
    Abstract: Application form of and demand for an IC chip formed with a silicon wafer are expected to increase, and further reduction in cost is required. An object of the invention is to provide a structure of an IC chip and a process capable of producing at a lower cost. A feature of the invention is to use a metal film and a reactant having the metal film as a separation layer. An etching rate of the metal film or the reactant having metal is high, and a physical means in addition to a chemical means of etching the metal film or the reactant having metal can be used in the invention. Thus, the IDF chip can be manufactured more simply and easily in a short time.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: May 10, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshitaka Dozen, Tomoko Tamura, Takuya Tsurume, Koji Dairiki
  • Patent number: 7939933
    Abstract: A semiconductor device includes: a semiconductor element; a die pad with the semiconductor element mounted thereon; a plurality of electrode terminals each having a connecting portion electrically connected with the semiconductor element; and a sealing resin for sealing the semiconductor element, the die pad and the electrode terminals so that a surface of each electrode terminal on an opposite side from a surface having the connecting portion is exposed as an external terminal surface. A recess having a planar shape of a circle is formed on the surface of each electrode terminal with the connecting portion, and the recess is arranged between an end portion of the electrode terminal exposed from an outer edge side face of the sealing resin and the connecting portion. While a function of the configuration for suppressing the peeling between the electrode terminal and the sealing resin can be maintained by mitigating an external force applied to the electrode terminal, the semiconductor device can be downsized.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 10, 2011
    Assignee: Panasonic Corporation
    Inventors: Kenichi Itou, Noboru Takeuchi, Shigetoyo Kawakami, Toshiyuki Fukuda
  • Patent number: 7919358
    Abstract: A multi-chips stacked package method which includes providing a lead frame includes a top surface and a reverse surface formed by a plurality of inner leads and a plurality of outer leads; fixing a first chip on the reverse surface of the lead frame and the active surface of the first chip includes a plurality of first pads closed to the central region; forming a plurality of first metal wires, and the first pads are electrically connected to the first inner leads and the second inner leads by the first metal wires; forming a plurality of metal spacers on the thermal fin of the lead frame; fixing a second chip to electrically connect to the top surface of the first inner leads and the second inner leads; forming a plurality of second metal wires, and the second pads are electrically connected to the top surface of the first inner leads and the second inner leads; and flowing a molding to form an encapsulated material to cover the first chip, the first metal wires, the second chip, the second metal wires, the
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 5, 2011
    Assignee: Chipmos Technologies Inc
    Inventors: Geng-Shin Shen, Yu-Ren Chen
  • Patent number: 7884378
    Abstract: An LED package structure includes a frame, at least a first LED, and at least a second LED. The frame includes a base having a first cavity and a second cavity, where the second cavity is disposed under the first cavity and the second cavity is smaller than the first cavity. The first LED is disposed in the bottom of the first cavity, and the second LED is disposed in the bottom of the second cavity.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: February 8, 2011
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Fu-Cai Lu, Chun-Wei Su, Chien-Lung Tsou, Chi-Neng Mo
  • Patent number: 7880290
    Abstract: A flip-chip package may include: a semiconductor chip having first pads arranged substantially along a first direction; a substrate having second pads, arranged substantially in a zigzag form aligned with the first pads as a center line, and facing the semiconductor chip; and conductive bumps for electrically connecting the first pads to the second pads in a one-to-one relationship. Adjacent conductive bumps may extend in different directions. A method of manufacturing a flip-chip package may include: forming conductive bumps that extend along different directions on first pads of a semiconductor chip; and connecting second pads of a substrate to the conductive bumps in a one-to-one relationship. A method of manufacturing a flip-chip package may include: forming conductive bumps that extend along different directions on second pads of a substrate; and connecting first pads of a semiconductor chip to the conductive bumps in a one-to-one relationship.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chan Park
  • Patent number: 7880309
    Abstract: An arrangement of integrated circuit dice, includes first die including a first electrical coupling site and a second die comprising a second electrical coupling site, wherein the second die is stacked onto the first die such that the first electrical coupling site is at least partially exposed, wherein the first electrical coupling site and the second electrical coupling site are directly electrically connected, and a third die arranged above the first die and the second die such that a recess is formed, wherein one of the first electrical coupling sites is arranged in the recess.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: February 1, 2011
    Assignee: Qimonda AG
    Inventor: Camillo Pilla
  • Patent number: 7880313
    Abstract: A flip chip lead frame package includes a die and a lead frame having a die paddle and leads, and has a spacer to maintain a separation between the die and the die paddle. Also, methods for making the package are disclosed.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: February 1, 2011
    Assignee: Chippac, Inc.
    Inventors: Jae Soo Lee, Geun Sik Kim, Sheila Alvarez, Robinson Quiazon, Hin Hwa Goh, Frederick Dahilig
  • Patent number: 7875968
    Abstract: Leadframe for a semiconductor package and manufacturing from such leadframe including a plurality of connection leads supported in a frame. Die mounting plate is centrally located in the leadframe and is supported by a plurality of support leads which are electrically connected to the die mounting pad and extending in a direction outwardly therefrom towards the frame. Each support lead is formed with a connection pad portion and a down set link portion. Each connection pad portion is spaced from the die mounting plate and is connected to a conductive bonding ground wire from a semiconductor device mounted on the die mounting plate. Each down set link portion is electrically connected to the die mounting pad and supports the die mounting pad in a spaced arrangement from the connection leads. The connection pad portion and the down set link portion overlap, in the direction of extension of the support lead.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: January 25, 2011
    Assignee: Infineon Technologies AG
    Inventors: Wu Hu Li, Mohamad Yazid Wagiman, Min Wee Low
  • Patent number: 7868447
    Abstract: Warpage and twist of a solid-state image sensing apparatus is controlled, thereby preventing displacement occurring to the solid-state image sensing apparatus when it is mounted on a printed circuit board. The solid-state image sensing apparatus comprises a plurality of outer leads, and the outer leads each comprises a horizontal portion protruding in the horizontal direction from a side face of a package body for encasing a solid-state image sensing chip therein, an end portion extending in a direction orthogonal to the horizontal portion, and disposed directly below the horizontal portion, a mid portion positioned between the horizontal portion, and the end portion, a first bend formed between the horizontal portion, and the mid portion, and a second bend formed between the mid portion, and the end portion.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hirochika Narita
  • Patent number: 7847392
    Abstract: In accordance with the present invention, there is provided a semiconductor package (e.g., a QFP package) including a uniquely configured leadframe sized and configured to maximize the available number of exposed leads in the semiconductor package. More particularly, the semiconductor package of the present invention includes a generally planar die pad or die paddle defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads include exposed bottom surface portions which are provided in at least one row or ring which at least partially circumvents the die pad, with other leads including portions which protrude from respective side surfaces of a package body of the semiconductor package. Connected to the top surface of the die pad is at least one semiconductor die which is electrically connected to at least some of the leads.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 7, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Yeon Ho Choi, GiJeong Kim, WanJong Kim
  • Patent number: 7843042
    Abstract: A semiconductor package has a first conductive layer formed on a top surface of a substrate. A conductive via is formed between the first conductive layer and a bottom surface of the substrate. A semiconductor component is mounted to the substrate and electrically connected to the first electrical contact pad. The semiconductor component can be a flip chip semiconductor device, wire bond semiconductor device, or passive component. An encapsulant is deposited over the semiconductor component. The encapsulant extends into a channel formed on a side of the substrate from the top surface to the bottom surface of the substrate. An interconnect structure is formed over the bottom surface of the substrate. A heat spreader structure can be disposed over the semiconductor component. An EMI shield can be disposed over the semiconductor component. A plurality of semiconductor components can be stacked in a package-in-package arrangement.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: November 30, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Heap Hoe Kuan, Seng Guan Chow, Linda Pei Ee Chua
  • Patent number: 7838339
    Abstract: Embodiments of the present invention relate to the use of stamping to form features on a lead frame of a semiconductor device package. In one embodiment, portions of the lead frame such as pins are moved out of the horizontal plane of a diepad by stamping. In certain embodiments, indentations or a complex cross-sectional profile, such as chamfered, may be imparted to portions of the pins and/or diepad by stamping. The complexity offered by such a stamped cross-sectional profile serves to enhance mechanical interlocking of the lead frame within the plastic molding of the package body. Other techniques such as selective electroplating and/or formation of a brown oxide guard band to limit spreading of adhesive material during die attach, may be employed alone or in combination to facilitate fabrication of a package having such stamped features.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 23, 2010
    Assignee: GEM Services, Inc.
    Inventors: Anthony C. Tsui, Mohammad Eslamy, Anthony Chia, Hongbo Yang, Ming Zhou, Jian Xu
  • Patent number: 7834433
    Abstract: In one embodiment the present invention includes a semiconductor power device. The semiconductor power device includes a single gauge lead frame, a semiconductor die, and a heat sink. The semiconductor die is attached to a first level of the lead frame. The heat sink is attached to a second level of the lead frame. A molding compound encapsulates the semiconductor die and a portion of the lead frame, such that a portion of the heat sink is outside of the molding compound. The resulting device may be efficiently manufactured as compared to dual gauge lead frame devices or devices where the semiconductor die is not attached to the lead frame.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: November 16, 2010
    Assignee: Shanghai Kaihong Technology Co., Ltd.
    Inventors: Tan Xiaochun, Li Yunfang
  • Patent number: 7821124
    Abstract: Semiconductor die packages and methods of making them are disclosed. An exemplary package comprises a leadframe having a source lead and a gate lead, and a semiconductor die coupled to the source and gate leads at a first surface of the leadframe. The source lead has a protruding region at a second surface of the leadframe. A molding material is disposed around the semiconductor die, the gate lead, and the source lead such that a surface of the die and a surface of the protruding region are left exposed by the molding material. An exemplary method comprises obtaining the semiconductor die and leadframe, and forming a molding material around at least a portion of the leadframe and die such that a surface of the protruding region is exposed through the molding material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 26, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Rajeev Joshi, Chung-Lin Wu
  • Patent number: 7812431
    Abstract: A leadframe includes a die pad and a plurality of leads corresponding to the die pad. The die pad for supporting a die is formed with a plurality of sides, each of the sides having at least one recess portion and at least one protrusion portion. The leads are substantially coplanar to the die pad. The leads include a plurality of first leads and a plurality of second leads. The first leads extend into the recess portions respectively, and the second leads are aligned with the protrusion portions. The length of the first leads is greater than that of the second leads. The length of wires electrically connecting the die to the leads or the die pad can be adjusted by the sides of the leadframe with the recess portion and the protrusion portion having a dimension corresponding to the leads, so as to save the manufacture cost of the leadframe.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: October 12, 2010
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Su-Tai Yang, Kuang-Chun Chou, Wen-Chi Cheng
  • Patent number: 7808088
    Abstract: A semiconductor device comprises a die having a first surface and a second surface, a first leadframe connected to the first surface and the second surface, and a second leadframe connected to the first surface.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: October 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Bernhard P Lange
  • Patent number: 7808102
    Abstract: A DC-DC boost converter in multi-die package is proposed having an output Schottky diode and a low-side vertical MOSFET controlled by a power regulating controller (PRC). The multi-die package includes a single die pad with the Schottky diode placed there on side by side with the vertical MOSFET. The PRC die is attached atop the single die pad via an insulating die bond. Alternatively, the single die pad is grounded. The vertical MOSFET is a top drain vertical N-channel FET, the substrate of Schottky diode die is its anode. The Schottky diode and the vertical MOSFET are stacked atop the single die pad. The PRC is attached atop the single die pad via a standard conductive die bond. The Schottky diode die can be supplied in a flip-chip configuration with cathode being its substrate. Alternatively, the Schottky diode is supplied with anode being its substrate without the flip-chip configuration.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 5, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: François Hébert, Ming Sun
  • Patent number: 7781898
    Abstract: An IC package primarily comprises a substrate, a die-attaching layer, a chip, at least a bonding wire, and a plurality of electrical connecting components. The substrate has a top surface and a bottom surface where the top surface includes a die-attaching area for disposing the die-attaching layer. The chip is attached to the die-attaching area by the die-attaching layer and is electrically connected to the substrate by the electrical connecting components. Both ends of the bonding wire are bonded to two interconnecting fingers on the top surface of the substrate where at least a portion of the bonding wire is encapsulated in the die-attaching layer to replace some wirings or vias inside a conventional substrate. Therefore, the substrate has simple and reduced wiring layers, i.e., to reduce the substrate cost. A chip carrier of the corresponding IC package is also revealed.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: August 24, 2010
    Assignee: Chipmos Technologies Inc.
    Inventors: Hung-Tsun Lin, Wu-Chang Tu, Cheng-Ting Wu
  • Patent number: 7768105
    Abstract: A method for making a premolded clip structure is disclosed. The method includes obtaining a first clip and a second clip, and forming a molding material around the first clip comprising a first surface and the second clip comprising a second surface. The first surface of the first clip structure and the second surface of the second clip structure are exposed through the molding material, and a premolded clip structure is then formed.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Erwin Victor Cruz, Maria Cristina B. Estacio
  • Patent number: 7755176
    Abstract: A die-mounting substrate and method incorporating dummy traces for improving mounting film planarity makes the use of film attach possible with a simplified manufacturing process and in applications where film-attach was not previously practical. The die-mounting substrate includes dummy traces that are generated along with signal traces extending into the die mounting area of the substrate. The dummy traces are designed according to the same design rules as the signal traces and are disposed in otherwise empty regions between signal traces and vias within the die mounting area. The result is die mounting area without regions empty of signal traces that previously either lack conductor or are filled completely with conductor, either of which will result in surface variation that compromises the film bond.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: July 13, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Roger D. St. Amand, Chang Suk Han, Alexander W. Copia, Wan Wook Ko
  • Patent number: 7745930
    Abstract: A semiconductor device package includes a substrate with one or more pads and at least one semiconductor device that has one or more of its electrodes electrically connected to the substrate pads. The package also includes one or more terminals in electrical connection with the substrate pads and that provide for external connection to the device.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: June 29, 2010
    Assignee: International Rectifier Corporation
    Inventors: Norman Glyn Connah, Mark Pavier, Phillip Adamson, Hazel D Schofield
  • Patent number: 7745919
    Abstract: A semiconductor device comprising a plurality of semiconductor chips and a plurality of through-line groups is disclosed. Each of the through-line groups consists of a unique number of through-lines. The numbers associated with the through-line groups are mutually coprime to each other. When one of the through-lines is selected for the each through-line group, one of the semiconductor chip is designated by a combination of the selected through-lines of the plurality of the through-line groups.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kayoko Shibata, Hiroaki Ikeda
  • Patent number: 7741726
    Abstract: An integrated circuit underfill package system including providing a substrate having a dispense port, attaching a first integrated circuit die on the substrate, and supplying an underfill to the dispense port when the substrate and the first integrated circuit die are inverted.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 22, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Hyung Jun Jeon, Ki Youn Jang, Dae-Wook Yang
  • Patent number: 7737546
    Abstract: A packaged circuit element such as an LED and a method for making the same are disclosed. The packaged circuit element includes a lead frame, a molded body, and a die containing the circuit element. The lead frame has first and second leads, each lead having first and second portions. The molded body surrounds the first portion of each lead, and the die is connected electrically to the first and second leads on the first portions of the first and second leads. The second portion of each of the first and second leads is substantially parallel to opposing side surfaces of the body and include a feature that inhibits molten solder from wetting a portion of the second section of each lead between the feature and the first portion of that lead while allowing the molten solder to wet the remaining surfaces of the second portions.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: June 15, 2010
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Wai Hoong Moy, Chu Kun Tan, Keh Chin Seah, Paul Beng Hui Oh
  • Patent number: 7732912
    Abstract: A microelectronic element package has one or more individual carrier units overlying a region or regions of the front or rear surface of the microelectronic element, leaving other regions of the microelectronic element surface uncovered. The carrier units can be made economically using only a small area of a dielectric film or other circuit panel material.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: June 8, 2010
    Assignee: Tessera, Inc.
    Inventor: Philip Damberg
  • Patent number: 7718472
    Abstract: An integrated circuit package-on-package stacking method includes forming a leadframe interposer including: forming a leadframe having a lead; forming a molded base only supporting the lead; and singulating the leadframe interposer from the leadframe.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: May 18, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Dioscoro A. Merilo, Heap Hoe Kuan, You Yang Ong, Seng Guan Chow, Ma. Shirley Asoy
  • Patent number: 7709861
    Abstract: Various systems and methods for implementing multi-mode semiconductor devices are discussed herein. For example, a multi-mode semiconductor device is disclosed that includes a device package with a number of package pins. In addition, the device includes a semiconductor die or substrate with at least two IO buffers. One of the IO buffers is located a distance from a package pin and another of the IO buffers is located another distance from the package pin. One of the IO buffers includes first bond pad electrically coupled to a circuit implementing a first interface type and a floating bond pad, and the other IO buffer includes a second bond pad electrically coupled to a circuit implementing a second interface type. In some cases, the floating bond pad is electrically coupled to the circuit implementing the second interface type via a conductive interconnect, and the floating bond pad is electrically coupled to the package pin.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Agere Systems Inc.
    Inventors: Parag Madhani, Paul F. Barnes, Donald E. Hawk, Jr., Kandaswamy Prabakaran
  • Patent number: 7705443
    Abstract: An electrical connection inside a semiconductor device is established by lead frames formed of plural conductor plates. The lead frames are disposed three-dimensionally so that the respective weld parts thereof are exposed toward a laser light source used in the laser welding. The laser welding is then performed by irradiating a laser beam. According to the above, welding can be performed readily in a reliable manner. The productivity of the semiconductor device and the manufacturing method of the semiconductor device can be thus enhanced. In addition, because the lead frames have the cooling effect, they have the capability of a heat spreader. It is thus possible to provide a semiconductor device and a manufacturing method of the semiconductor device with high productivity.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: April 27, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Toshiyuki Yokomae, Katsumichi Ueyanagi, Eiji Mochizuki, Yoshinari Ikeda
  • Patent number: 7701045
    Abstract: The point-to-point interconnection system for stacked devices includes a device, a substrate, operational circuitry, at least three electrical contacts and a conductor. The substrate has opposing first and second surfaces. A first electrical contact is mechanically coupled to the first surface of the device and electrically coupled to the operational circuitry. The second electrical contact is mechanically coupled to the first surface. The third electrical contact is mechanically coupled to the second surface opposite the first electrical contact. The conductor electrically couples the second electrical contact to the third electrical contact.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 20, 2010
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Ely K. Tsern, Ian P. Shaeffer
  • Patent number: 7663222
    Abstract: The semiconductor device includes a semiconductor body having a first and an opposite second main surface and side faces connecting the main surfaces, a circuit region in the semiconductor body adjacent to the first main surface, having a circuit contact terminal, a metallization region extending from the circuit contact terminal on the first main surface onto a side face of the semiconductor body to provide an exposed contacting region on the side face of the semiconductor body, and an insulation layer arranged between the metallization region and the semiconductor body, the insulation layer having an opening for electrically connecting the circuit contact terminal to the metallization region.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: February 16, 2010
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Lohninger, Ulrich Krumbein
  • Patent number: 7663221
    Abstract: A package circuit board having a reduced package size. The package circuit board may include a semiconductor substrate in place of a printed circuit board. The package circuit board may further include a microelectronic chip mounted on the semiconductor substrate, the microelectronic chip having at least one of active and passive elements formed on the semiconductor substrate semiconductor substrate.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Lae Jang, Hee-Seok Lee
  • Patent number: 7663223
    Abstract: A coupling substrate for semiconductor components includes a patterned metal layer on a topside of an insulating carrier. Metal tracks project beyond the insulating carrier, the metal tracks being angled away at the lateral edges of the carrier in the direction of the underside of the carrier and projecting beyond the underside of the carrier. The metal tracks have a metal coating, thereby enlarging each cross section such that the metal tracks form dimensionally stable, flat, conductor external contacts of the coupling substrate.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: February 16, 2010
    Assignee: Infineon Technologies AG
    Inventor: Jens Pohl
  • Patent number: 7652367
    Abstract: A semiconductor package on package includes a tower package, an upper package stacked over the lower package, a plug wire combined to any one of an upper portion of the tower package and a lower portion of the upper package, and a socket wire combined to any one of the upper portion of the lower package and the lower portion of the upper package. The plug wire is plugged into the socket wire to electrically connect the upper and lower packages.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Lae Jang, Kwon-Young Roh
  • Patent number: 7649249
    Abstract: An array of electrically conductive members, formed around the edges of a semiconductor device or chip, penetrate from one major surface of the device to the other major surface. In an area located inward of this array, a multiplicity of thermally conductive members also penetrate from one major surface to the other major surface. The semiconductor device can be manufactured from a semiconductor wafer by creating holes that penetrate partway through the wafer, filling the holes with metal to form the electrically conductive members and thermally conductive members, and then grinding the lower surface of the wafer to expose the ends of the electrically conductive members and thermally conductive members before dicing the wafer into chips. The thermally conductive members improve heat dissipation performance when semiconductor chips of this type are combined into a stacked multichip package.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: January 19, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Takashi Noguchi
  • Patent number: 7642551
    Abstract: A wafer-level package includes a semiconductor wafer having at least one semiconductor chip circuit forming region each including a semiconductor chip circuit each provided with test chip terminals and non test chip terminals, at least one external connection terminal, at least one redistribution trace provided on the semiconductor wafer, at least one testing member, and an insulating material. A first end of the redistribution trace is connected to one of the test chip terminals and a second end of said redistribution trace is extended out to a position offset from the chip terminals. The testing member is provided in an outer region of the semiconductor chip circuit forming region, and the second end of the redistribution trace is connected to the testing member.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: January 5, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Shigeyuki Maruyama
  • Patent number: 7635910
    Abstract: A semiconductor package is disclosed. In one embodiment, the semiconductor package includes a leadframe including a chip position and a plurality of leadfingers. Each leadfinger includes a cutout in an inner edge providing a chip recess. The semiconductor package further includes a semiconductor chip located in the chip recess. The semiconductor chip has an active surface with a plurality of chip contact pads on each of which an electrically conductive bump is disposed. The inner portions of the leadfingers protrude into the chip position and are electrically connected to the chip contact pads by electrically conductive bumps.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: December 22, 2009
    Assignee: Infineon Technologies AG
    Inventors: Richard Mangapul Sinaga, Najib Khan Surattee, Mohamad Yazid
  • Patent number: 7635915
    Abstract: Some embodiments provide surface mount devices that include a first electrode comprising a chip carrier part, a second electrode disposed proximate to the chip carrier part, and a casing encasing a portion of the first and second electrodes. The first electrode can extend from the chip carrier part toward a perimeter of the casing, and the second electrode can extend away from the chip carrier part and projects outside of the casing. In extending away from the chip carrier part the first electrode divides into a plurality of leads separated by an aperture that join into a single first joined lead portion with a first width before projecting outside of the casing and maintains the first width outside of the casing. The second electrode can attain a second width prior to projecting outside of the casing and maintains the second width outside the casing.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 22, 2009
    Assignee: Cree Hong Kong Limited
    Inventors: Jian Hui Xie, Siu Cheong Cheng
  • Publication number: 20090283897
    Abstract: A semiconductor package including a substrate with a semiconductor device mounted on the substrate and a resin member sealing the substrate and semiconductor device. The resin member includes a first surface and a second surface located on the other side of the first surface and a plurality of leads electrically connected with the semiconductor device. The leads project from the resin member and extend to the second surface side; wherein the second surface of the resin member includes a first area having a first concave portion and a second area having a second concave portion which is different from the first area, and the second concave portion is deeper than the first concave portion.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Futoshi FUKAYA, Yuichi ASANO, Yoshinori NIWA
  • Patent number: 7619307
    Abstract: A leadframe-based semiconductor package and a leadframe for the package are revealed. The semiconductor package primarily includes parts of the leadframe including one or more first leads, one or more second leads, and a supporting bar disposed between the first leads and the second leads and further includes a chip attached to the first leads, the second leads and the supporting bar, a plurality of bonding wires and an encapsulant. The supporting bar has an extended portion projecting from the first bonding finger and the second bonding finger and connected to a non-lead side of the encapsulant wherein the extended portion has an arched bend to absorb the pulling stresses and to block stress transmission. Cracks caused by delamination of the supporting bar will not be created during trimming the supporting bar along the non-lead side of the encapsulant. Moisture penetration along the cracks of the supporting bar to the die-bonding plane under the chip is desirably prevented.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: November 17, 2009
    Assignee: Powertech Technology Inc.
    Inventors: Chin-Fa Wang, Wan-Jung Hsieh, Yu-Mei Hsu
  • Patent number: 7615851
    Abstract: An integrated circuit package system comprised by providing a leadframe including leads configured to provide electrical contact between an integrated circuit chip and an external electrical source. Configuring the leads to include outer leads, down set transitional leads, and down set inner leads. Connecting the integrated circuit chip electrically to the down set inner leads. Depositing an encapsulating material to prevent exposure of the down set inner leads.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: November 10, 2009
    Assignee: Stats Chippac Ltd.
    Inventors: Taesung Lee, Jae Soo Lee, Geun Sik Kim
  • Patent number: 7615852
    Abstract: The standard housing (27) of a semiconductor component (21), preferably a power semiconductor component features a plurality of external leads (1-5). Between adjacent external leads (2-3 and 4-5) for identical supply potentials or signals, mechanically reinforcing flat conductor webs (28) electrically connecting the external leads (2-3 and 4-5) are located within and/or outside the standard housing (27).
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: November 10, 2009
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 7615859
    Abstract: Provided is a thin semiconductor package comprising a semiconductor chip and a lead frame, the lead frame including a paddle portion configured for mounting the semiconductor chip in a manner that exposes bonding pads within an aperture formed in a center portion of the lead frame and a peripheral terminal pad portion for establishing external contacts. A plurality of bonding wires are used to establish electrical connection between a lower surface of the paddle part and corresponding bonding pads with intermediate leads providing connection to the terminal pad portions. The semiconductor chip, lead frame and bonding wires may then be encapsulated to form a thin semiconductor package having a thickness substantially equal to that of the terminal pad portions. The thin semiconductor packages may, in turn, be used to form multi-chip stack packages using known good semiconductor chips to form a high-density compound semiconductor packages.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: November 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Kim, Sung-Hwan Yoon
  • Patent number: 7612445
    Abstract: The likelihood of exfoliation of a sealing resin layer at a pad electrode part is reduced so that the reliability of a circuit apparatus is improved. A circuit apparatus includes a wiring layer, a gold plating layer, an insulating resin layer, a circuit element, a conductive member and sealing resin layer. The gold plating layer is formed in an wiring layer area for the pad electrode. The surface outside the area is roughened. The insulating resin layer is formed so as to cover the wiring layer and to have an opening in an area in which the pad electrode is formed. The circuit element is mounted on a predetermined area on the insulating resin layer. The sealing resin layer is formed on the insulating resin layer so as to entirely cover the circuit element and the opening for the pad electrode. The sealing resin layer, in the area for the pad electrode, is in contact with the gold plating layer and the wiring layer.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: November 3, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Makoto Murai, Yasuhiro Kohara, Ryosuke Usui
  • Patent number: 7612457
    Abstract: An integrated circuit includes a first surface configured for mounting to a carrier, an active area of the integrated circuit spaced from the first surface, a bond pad disposed over and in electrical communication with the active area, and a ceramic inorganic stress-buffering layer disposed between the active area and the bond pad.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 3, 2009
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Alfred Haimerl, Angela Wieneke Kessler, Michael Bauer
  • Patent number: 7612439
    Abstract: A composite semiconductor package is disclosed. The package includes a lead frame having first and second die bonding pads, the first and second die bonding pads having a large lateral separation therebetween, a first device bonded to the first die bonding pad, a second device bonded to the second die bonding pad, a plurality of first leads coupled to the first die bonding pad, a plurality of second leads coupled to the second die bonding pad, and an encapsulant covering the lead frame, the first and second devices and at least a portion of the first and second pluralities of leads. The package may be a TSSOP-8 composite package having a common drain MOSFET pair and an IC.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 3, 2009
    Assignee: Alpha and Omega Semiconductor Limited
    Inventors: Xiaotian Zhang, Argo Chang, James Lee, Ryan Huang, Kai Liu, Ming Sun
  • Patent number: 7602052
    Abstract: To prevent a semiconductor device which can be made to be small even though a big-sized chip is used and in which a MOSFET having a low on-resistance can be formed, a semiconductor device according to the invention includes a resin package; at least two main leads that are integrated within the resin package so as to constitute a chip mounting portion; a semiconductor chip mounted on the chip mounting portion; and first and second surface leads each electrically connected to an electrode formed on a surface of the semiconductor chip. The main leads and the first and second surface leads protrude outward along a bottom surface of the resin package, respectively.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Satoshi Utsunomiya, Yoshihiro Takano
  • Patent number: 7602630
    Abstract: Embodiments of the present invention relate to configurable inputs and/or outputs for memory and memory stacking applications. More specifically, embodiments of the present invention include memory devices that include a die having a circuit configured for enablement by a particular signal, an input pin configured to receive the particular signal, and a path selector configured to selectively designate a signal path to the circuit from the input pin.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Jeffery W Janzen
  • Patent number: 7582951
    Abstract: Methods and apparatus for improved thermal performance and electromagnetic interference (EMI) shielding in integrated circuit (IC) packages is described. A die-up or die-down package includes a heat spreader cap defining a cavity, an IC die, and a leadframe. The leadframe includes a centrally located die attach pad, a plurality of leads, and a plurality of tie bars that couple the die attach pad to the leads. The IC die is mounted to the die attach pad. A planar rim portion of the cap that surrounds the cavity is coupled to the leadframe. The cap and the leadframe form an enclosure structure that substantially encloses the IC die, and shields EMI emanating from and radiating towards the IC die. The enclosure structure also dissipates heat generated by the IC die during operation.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: September 1, 2009
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Reza-ur Rahman Khan
  • Patent number: 7579680
    Abstract: A package system for integrated circuit (IC) chips and a method for making such a package system. The method uses a solder-ball flip-chip method for connecting the IC chips onto a lead frame that has pre-formed gull-wing leads only on the source/gate side of the chip. A boschman molding technique is used for the encapsulation process, leaving exposed land and die bottoms for a direct connection to a circuit board. The resulting packaged IC chip has the source of the chip directly connected to the lead frame by solder balls. As well, the drain and gate of the chip are directly mounted to the circuit board without the need for leads from the drain side of the chip.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 25, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: David Chong, Hun Kwang Lee
  • Patent number: 7576429
    Abstract: The invention claimed is a packaged semiconductor device with dual exposed surfaces and a method of manufacturing the device. A thermal clip and one or multiple source pads are exposed on opposite ends of the device through a nonconductive molding material used to package the device. The thermal clip and source pad can be either top or bottom-exposed. The gate, source and drain leads are exposed through the molding material, and all leads are coplanar with the bottom-exposed surface. The device can have multiple semiconductor dies or various sized dies while still having a single, constant footprint. The method of manufacturing requires attaching the semiconductor die to a thermal clip, and then attaching the die with the attached thermal clip to a lead frame. The resulting device is then molded, marked, trimmed and singulated, in this order, creating a packaged semiconductor device with dual exposed surfaces.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: August 18, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Ruben P. Madrid, Romel N. Manatad