With Specified Means (e.g., Lip) To Seal Base To Cap Patents (Class 257/710)
  • Patent number: 8227911
    Abstract: The present invention is related shielding integrated devices using CMOS fabrication techniques to form an encapsulation with cavity. The integrated circuits are completed first using standard IC processes. A wafer-level hermetic encapsulation is applied to form a cavity above the sensitive portion of the circuits using IC-foundry compatible processes. The encapsulation and cavity provide a hermetic inert environment that shields the sensitive circuits from EM interference, noise, moisture, gas, and corrosion from the outside environment.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: July 24, 2012
    Assignee: MCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 8164181
    Abstract: A semiconductor device packaging structure is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 24, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazuhiro Tashiro, Keisuke Fukuda, Naohito Kohashi, Shigeyuki Maruyama
  • Patent number: 8143717
    Abstract: A package for use in encapsulating an electronic device is disclosed. The package includes a dielectric frame having first and second sides with a pair of apertures extending through the dielectric frame. These apertures are separated by a raised shelf span extending inwardly from an internal perimeter of the dielectric frame. The raised shelf span defines a first thickness of the dielectric frame and a raised sidewall extending outwardly from the second side along an external perimeter of said dielectric frame defines a second thickness of said frame, with the second thickness being greater than the first thickness. Also provided is a metallic component having a flange and a pedestal that extends perpendicularly from the flange. The flange is bonded to the first side of the dielectric frame and extends across one of the pair of apertures with the pedestal extending into that aperture. A gap between the pedestal and the dielectric frame having a width of at least 0.015 inch.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 27, 2012
    Assignee: HCC Aegis, Inc.
    Inventor: Manuel Medeiros, III
  • Patent number: 8129838
    Abstract: A microstructured component with microsensors or other active microcomponent is provided. The microstructured component includes a substrate and at least one housing arranged on the substrate with one or more active microstructures situated on it.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: March 6, 2012
    Assignee: Fraunhofer-Gesellschaft Zur
    Inventor: Wolfgang Reinert
  • Patent number: 8120168
    Abstract: Materials, and methods that use such materials, that are useful for forming chip stacks, chip and wafer bonding and wafer thinning are disclosed. Such methods and materials provide strong bonds while also being readily removed with little or no residues.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 21, 2012
    Assignee: Promerus LLC
    Inventors: Chris Apanius, Robert A. Shick, Hendra Ng, Andrew Bell, Wei Zhang, Phil Neal
  • Patent number: 8120170
    Abstract: An integrated circuit package employs a stiffener layer that houses a passive electronic component to maintain mechanical properties when a thinner substrate is used. The use of either a retention wall or a stiffener allows for the manufacture of these integrated circuit package using strip, matrix, or array technology where a larger board with a plurality of integrated circuit packages is produced industrially and then cut to individual units.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: February 21, 2012
    Assignee: ATI Technologies ULC
    Inventors: Neil R. McLellan, Vincent K. Chan, Roden R. Topacio
  • Patent number: 8094454
    Abstract: An immersion cooling apparatus includes a multi-terminal thermally conductive module that supports and encloses a power semiconductor device and a housing defining a flow-through chamber in which the thermally conductive module is mounted and through which liquid coolant is circulated. The thermally conductive module has first and second oppositely disposed connector headers housing terminal pins or blades electrically coupled to the semiconductor device, and the connector headers protrude through openings in oppositely disposed sidewalls of the housing so that the portion of the thermally conductive module between the connector headers is suspended in the chamber and immersed in the circulating coolant. The thermally conductive module is sealed against the housing sidewalls around the openings, and one of the sidewalls is removable to facilitate installation of the thermally conductive module in the housing or its subsequent removal.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: January 10, 2012
    Assignee: Delphi Technologies, Inc.
    Inventor: Michael J. Lowry
  • Patent number: 8089146
    Abstract: A semiconductor device includes a semiconductor element mounted on a substrate; at least one electronic part arranged around the semiconductor element; and a heat radiation member bonded to a backside of the semiconductor element by a bonding material. The heat radiation member has an isolation part extending between an outer circumference of the semiconductor element and the electronic part.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: January 3, 2012
    Assignee: Fujitsu Limited
    Inventor: Kenji Fukuzono
  • Patent number: 8080872
    Abstract: A package for use in encapsulating an electronic device is disclosed. In some embodiments, the package includes the following: a dielectric frame having first and second sides, an aperture, a raised shelf portion defined along an internal perimeter of the dielectric frame and extending outwardly from the second side, the raised shelf portion defining a first thickness of the dielectric frame, and a raised sidewall extending outwardly from the second side along an external perimeter of the dielectric frame, the raised sidewall defining a second thickness of the frame, the second thickness being greater than the first thickness; a metallic component bonded to the dielectric frame and extending across the aperture; and a seam weldable, low-profile metallic seal ring bonded to the raised sidewall of the dielectric frame.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 20, 2011
    Assignee: HCC Aegis, Inc.
    Inventor: Manuel Medeiros, III
  • Patent number: 8076771
    Abstract: In order to reduce a thermal stress applied by a metal cap to a semiconductor chip: a semiconductor chip (2) is bonded to a flat portion (11) of a metal cap (1); side wall portions of the metal cap (1) serve as external connection terminals (13); and a slit (7) is formed in the metal cap (1) so as to cross the semiconductor chip (2), so a bonding region between the semiconductor chip (2) and the metal cap (1) is divided into small bonding regions to reduce thermal stresses applied to the respective bonding regions. Therefore, peeling can be prevented in respective bonding regions, whereby a small-size semiconductor device in which the semiconductor chip is bonded to the metal cap with improved bonding reliability is obtained.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hideko Ando
  • Patent number: 8063482
    Abstract: A technique to fabricate a package. A thin wafer supported by a wafer support substrate (WSS) is formed. The WSS-supported thin wafer layer is diced into a plurality of WSS-supported thin dice. A WSS-supported thin die is bonded to a first heat spreader (HS) to form a HS-reinforced thin die.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventor: Daoqiang Lu
  • Patent number: 8053887
    Abstract: A semiconductor assembly includes a substrate with at least a CMOS region and a seal ring region and an optional micro electro mechanical system (MEMS) region, a shallow trench isolation disposed in the CMOS region of the substrate, an optional micro electro mechanical system device disposed in the micro electro mechanical system region, a plurality of recesses disposed in the seal ring region of the substrate, a first metal-oxide semiconductor disposed in the CMOS region, a dielectric layer disposed on the substrate and on the recesses, and a seal ring disposed in the seal ring region and embedded in the dielectric layer to cover and fill up the recesses, wherein the seal ring region surrounds at least the CMOS region and the optional MEMS region.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 8, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Sheng Yang
  • Patent number: 8043880
    Abstract: One embodiment of a microelectronic component system includes a base adapted for supporting a microelectronic component, a membrane sealed to the base, and a glass lid built-up on the membrane and hermetically sealing the membrane.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: October 25, 2011
    Assignee: Hewlett-Packard Development, L.P.
    Inventors: Charles C Haluzak, John R Sterner, Kirby Sand
  • Patent number: 8026595
    Abstract: A semiconductor device and a fabrication method of the semiconductor device, the semiconductor device including: a gate electrode, a source electrode, and a drain electrode which are placed on a first surface of a substrate, and have a plurality of fingers; a gate terminal electrode, a source terminal electrode, and the drain terminal electrode which governed and formed a plurality of fingers for every the gate electrode, the source electrode, and the drain electrode; an active area placed on an underneath part of the gate electrode, the source electrode, and the drain electrode, on the substrate between the gate electrode and source electrode, and on the substrate between the gate electrode and the drain electrode; a sealing layer which is placed on the active area, the gate electrode, the source electrode, and the drain electrode through a cavity part, and performs a hermetic seal of the active area, the gate electrode, the source electrode, and the drain electrode.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 8021925
    Abstract: A semiconductor module structure and a method of forming the semiconductor module structure are disclosed. The structure incorporates a die mounted on a substrate and covered by a lid. A thermal compound is disposed within a thermal gap between the die and the lid. A barrier around the periphery of the die extends between the lid and the substrate, contains the thermal compound, and flexes in response to expansion and contraction of both the substrate and the lid during cycling of the semiconductor module. More particularly, either the barrier is formed of a flexible material or has a flexible connection to the substrate and/or to the lid. The barrier effectively contains the thermal compound between the die and the lid and, thereby, provides acceptable and controlled coverage of the thermal compound over the die for heat removal.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: David L. Edwards, Sushumna Iruvanti, Hilton T. Toy, Wei Zou
  • Patent number: 8018072
    Abstract: A semiconductor device has a substrate. A die is attached to a first surface of the substrate. A heat sink is provided having an approximately planer member and support members extending from the planer member. The support members are attached to the first surface of the substrate to form a cavity over the die with the planer member positioned above the die. An encapsulant is provided for encapsulating the device, wherein an exterior surface of the planer member is exposed. A non-tapered opening is formed in the planer member. The encapsulant is injected through the opening to encapsulate the cavity and the encapsulant will partially fill the non-tapered opening.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 13, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Jeffrey A. Miks, Jui Min Lim
  • Patent number: 8018052
    Abstract: An integrated circuit package system comprising: providing a package substrate; attaching an integrated circuit over the package substrate; and attaching a side substrate adjacent the integrated circuit over the package substrate.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 13, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: KyungOe Kim, Taewoo Kang, HyunSu Shin
  • Patent number: 7999374
    Abstract: A semiconductor component includes a semiconductor element that has a plurality of signals, a wiring board that is disposed below the semiconductor element and that draws the plurality of signals of the semiconductor element, a heat conduction member that dissipates heat generated by the semiconductor element, a joining member that is disposed between the semiconductor element and the heat conduction member and that joins the heat conduction member to the semiconductor element, a support member formed with an opening so as to surround the semiconductor element that supports the heat conduction member, a first adhesive member that is disposed between the support member and the wiring board to bond the support member with the wiring board and a second adhesive member that is disposed between the support member and the heat conduction member to bond the support member with the heat conduction member.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 16, 2011
    Assignee: Fujitsu Limited
    Inventors: Tsuyoshi So, Hideo Kubo, Seiji Ueno, Osamu Igawa
  • Patent number: 7994636
    Abstract: A flip chip interconnection structure is formed by mechanically interlocking joining surfaces of a first and second element. The first element, which may be a bump on an integrated circuit chip, includes a soft, deformable material with a low yield strength and high elongation to failure. The surface of the second element, which may for example be a substrate pad, is provided with asperities into which the first element deforms plastically under pressure to form the mechanical interlock.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: August 9, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 7989951
    Abstract: An embodiment of a die assembly includes a flange, lip walls, and leads for electrical contact with one or more die mounted on the flange. The flange has first and second opposed flange surfaces and flange sidewalls extending between the surfaces. The lip walls have first and second opposed lip surfaces and lip sidewalls extending between the first and second lip surfaces. The lip sidewalls are positioned adjacent to the flange sidewalls. The leads, which have inboard end portions and outboard end portions, are configured to preserve a seating plane. The seating plane is spaced apart from a plane of the second flange surface. The inboard end portions of the leads are embedded in the lip walls, and extend from the seating plane upward through the lip walls toward the first lip surfaces. The outboard end portions are aligned substantially within the seating plane.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 2, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Betty H. Yeung, David J. Dougherty
  • Patent number: 7968979
    Abstract: An integrated circuit package system includes: providing a substrate with an integrated circuit mounted thereover; mounting a structure, having ground pads, over the integrated circuit; encapsulating the integrated circuit with an encapsulation while leaving the structure partially exposed; and attaching a conformal shielding to the encapsulation and electrically connected to the grounding pads.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: June 28, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Reza Argenty Pagaila, Linda Pei Ee Chua, Byung Tai Do
  • Patent number: 7952189
    Abstract: An embodiment of the present invention provides a method of manufacturing hermetic packaging for devices on a substrate wafer, comprising forming a plurality of adhesive rings on a cap wafer or the substrate wafer, bonding the cap wafer to the substrate wafer with an adhesive layer, forming trenches in the cap wafer and the adhesive rings along outer rim of the adhesive rings, and covering sidewall of the trenches by at least one deposited film to provide a diffusion barrier to moisture or gas.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: May 31, 2011
    Inventor: Chang-Feng Wan
  • Patent number: 7952187
    Abstract: A system and method for forming a wafer level package (WLP) (i.e., wafer level chip size package) is disclosed. The WLP includes a silicon integrated circuit (IC) substrate having a plurality of die pads formed on a top surface thereof and a plurality of polymer laminates positioned thereon. Each of the polymer laminates is comprised of a separate pre-formed laminate sheet and has a plurality of vias formed therein that correspond to a respective die pad. A plurality of metal interconnects are formed on each of the plurality of polymer laminates so as to cover a portion of a top surface of a polymer laminate and extend down through the via and into contact with a metal interconnect on a neighboring polymer laminate positioned below. An input/output (I/O) system interconnect is positioned on a top surface of the wafer level package and is attached to the plurality of metal interconnects.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: May 31, 2011
    Assignee: General Electric Company
    Inventors: Christopher James Kapusta, Donald Cunningham, Richard Joseph Saia, Kevin Durocher, Joseph Iannotti, William Hawkins
  • Patent number: 7939938
    Abstract: A packaging structure for hermetically sealing a functional device by solder connection at a wafer level in which a first Si substrate having a concave portion metallized on its internal surface and a second Si substrate metallized at a position opposed to said concave portion are used, the metallization applied to the internal surface of the concave portion of the first Si substrate and the metallization applied to the second Si substrate at the position opposed to the concave portion are connected by molten solder to hermetically seal the functional device between the first Si substrate and the second Si substrate, whereby the wettability of the solder for the two Si substrates is improved, the bondability between the Si substrates is enhanced, and the yield at which the package is manufactured is improved.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: May 10, 2011
    Assignee: Hitachi Metals, Inc.
    Inventors: Shohei Hata, Naoki Matsushima, Eiji Sakamoto, Ryoji Okada, Takanori Aono, Atsushi Kazama, Toshiki Kida
  • Patent number: 7939932
    Abstract: A low-temperature inorganic dielectric ALD film (e.g., Al2O3 and TiO2) is deposited on a packaged or unpackaged chip device so as to coat the device including any exposed electrical contacts. Such a low-temperature ALD film generally can be deposited without damaging the packaged chip device. The ALD film is typically deposited at a sufficient thickness to provide desired qualities (e.g., hermeticity for the entire packaged chip device, passivation for the electrical contacts, biocompatibility, etc.) but still allow for electrical connections to be made to the electrical contacts (e.g., by soldering or otherwise) directly through the ALD film without having to expose the electrical contacts.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: May 10, 2011
    Assignee: Analog Devices, Inc.
    Inventor: John R. Martin
  • Patent number: 7936056
    Abstract: An airtight sealed package with a device sealed therein in an airtight manner under vacuum, the device being placed in a space defined in the airtight sealed package by a lid and a substrate, includes at least one pressure adjustment unit provided on at least one of the lid and the substrate, and configured to receive energy from an outside of the airtight sealed package, with the device sealed in the airtight manner in the airtight sealed package, to adjust pressure in the space. An energy transmission member transmits the energy to the pressure adjustment unit.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: May 3, 2011
    Assignee: Olympus Corporation
    Inventor: Tomoyuki Hatakeyama
  • Patent number: 7928545
    Abstract: An LED package and a fabrication method thereof are provided. The LED package includes an upper metal plate having an LED-receiving hole therein; a lower metal plate disposed under the upper metal plate; and an insulator which the upper metal plate and the lower metal plate from each other. A portion of the lower metal plate is exposed via the LED-receiving hole and an LED is mounted on the exposed portion of the lower metal plate and is electrically connected to both of the upper and lower metal plates. A protective cover encloses and protects exposed surfaces of the upper and lower metal plates.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-hwan Kwon, Kyu-ho Shin, Soon-cheol Kweon, Chang-youl Moon, Arthur Darbinian, Seung-tae Choi, Su-ho Shin
  • Patent number: 7928562
    Abstract: An apparatus to reduce a thermal penalty of a three-dimensional (3D) die stack for use in a computing environment is provided and includes a substrate installed within the computing environment, a first component to perform operations of the computing environment, which is coupled to the substrate in a stacking direction, a set of second components to perform operations of the computing environment, each of which is coupled to the first component and segmented with respect to one another to form a vacated region, a thermal interface material (TIM) disposed on exposed surfaces of the first and second components, and a lid, including a protrusion, coupled to the substrate to overlay the first and second components such that the protrusion extends into the vacated region and such that surfaces of the lid and the protrusion thermally communicate with the first and second components via the TIM.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Amilcar R. Arvelo, Evan G. Colgan, John H. Magerlein, Kenneth C. Marston, Kathryn C. Rivera, Kamal K. Sikka, Jamil A. Wakil, Xiaojin Wei, Jeffrey A. Zitz
  • Patent number: 7915527
    Abstract: The present invention is directed to low-cost, low-processing temperature, and simple reinforcement, repair, and corrosion protection for hermetically sealed modules and hermetic connectors. A thin layer of glass is applied over the module's seal or the connector' glass frit. The layer of glass comprises an alkali silicate glass. The layer of glass is produced from a material which is a low viscosity liquid at room temperature prior to curing and is cured at low temperatures (typically no more than about 160 degrees Celsius). Subsequent to curing, the layer of glass is intimately bonded to the seal, watertight, and is stable from about negative two-hundred forty-three degrees Celsius to at least about seven-hundred twenty-seven degrees Celsius. The glass layer provides corrosion protection, seals any existing leaks, and possesses good flexibility and adhesion. The resulting bond is hermetic with good aqueous durability and strength similar to that of monolithic structures.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: March 29, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Nathan P. Lower, David M. Brower, Ross K. Wilcoxon
  • Patent number: 7888790
    Abstract: Embodiments of the present invention describe a bare die package and its methods of fabrication. The bare die package comprises a die electrically coupled to a package substrate, and a displacement constraint. In an embodiment of the present invention, the displacement constraint is a plurality of members fixedly attached onto the package substrate and surrounds the die. When the bare die package is secured between a socket and a heat sink, the plurality of members provide structural support to the package substrate and prevent excessive substrate warpage.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: February 15, 2011
    Assignee: Intel Corporation
    Inventor: Robert R Atkinson, Jr.
  • Patent number: 7884467
    Abstract: A kind of microphone package structure includes at least of a substrate, a sound processing unit, an upper cap and other devices. There would be at least one trench set on the substrate, and a separation gap between the trench and the bonding pad of the substrate is maintained. After connective paste is smeared on the surface of the substrate, the trench would be assembled with other devices. This kind of package structure could prevent a short circuit being caused by the overflowing of the connective paste.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 8, 2011
    Assignee: Lingsen Precision Industries, Ltd.
    Inventors: Chin-Ching Huang, Jiung-Yue Tien, Hsi-Chen Yang
  • Patent number: 7880283
    Abstract: A high reliability power module which includes a plurality of hermetically sealed packages each having electrical terminals formed from an alloy of tungsten copper and brazed onto a surface of a ceramic substrate.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: February 1, 2011
    Assignee: International Rectifier Corporation
    Inventor: Weidong Zhuang
  • Patent number: 7859093
    Abstract: A method of protecting a micro-mechanical sensor structure embedded in a micro-mechanical sensor chip, in which the micro-mechanical sensor structure is fabricated with a protective membrane, the micro-mechanical sensor chip is arranged so that a surface of the protective membrane faces toward a second chip, and the micro-mechanical sensor chip is secured to the second chip.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: December 28, 2010
    Assignee: Robert Bosch GmbH
    Inventor: Karsten Funk
  • Patent number: 7852900
    Abstract: A cap 25 having a piece of glass 26 formed at a laser irradiating position and covering a laser irradiating direction and an upper face of a package 24, is mounted onto the package 24 having lateral faces of a frame body 30 formed in three directions other than the laser irradiating direction, so as to reduce the distance between a semiconductor element 22 and the piece of glass 26 and to reduce a radius 32 of the piece of glass 26. The profile of the semiconductor device can be therefore lowered while maintaining the characteristics of a semiconductor laser. In addition, by mounting the semiconductor device, the profile of an optical pickup device can also be lowered.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Isao Hayami, Masaya Tateyanagi
  • Patent number: 7825507
    Abstract: A method for forming a seal ring is disclosed. First, a substrate including a MEMS region, a logic region and a seal ring region is provided. Second, a trench is formed in the MEMS region and multiple recesses are formed in the seal ring region. An oxide fills the trench and the recesses. Later, a MOS is form in the logic region and a dielectric layer is formed on the substrate. Then, an etching procedure is carried out to partially remove the dielectric layer and simultaneously remove the oxide in the multiple recesses completely to form a seal ring space. Afterwards, a metal fills the seal ring space to from the seal ring.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 2, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Sheng Yang
  • Patent number: 7795071
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The package element has a first insulating layer, and a plurality of holes are disposed on the first surface of the first insulating layer. Besides, a plurality of package traces are embedded in the insulating layer and connected to the other end of the holes. The holes function as a positioning setting for connecting the solder balls to the package traces, such that the signal of the semiconductor chip is connected to the package trace via conductor of the chip, and further transmitted externally via solder ball. The elastic modulus of the material of the first insulating layer is preferably larger than 1.0 GPa.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: September 14, 2010
    Assignee: Advanpack Solutions Pte Ltd.
    Inventors: Chew Hwee-Seng Jimmy, Ong Chee Kian, Abd. Razak Bin Chichik
  • Patent number: 7791189
    Abstract: An integrated circuit (IC) device package is presented. A frame body has opposing first and second surfaces and a central opening that is open at the first and second surfaces. The second frame body surface is mounted to a first stiffener surface. An IC die is mounted to the first stiffener surface within the central opening through the frame body. A planar lid has opposing first and second surfaces. The second lid surface is coupled to the first frame body surface. A first substrate surface is coupled to a second stiffener surface. An array of electrically conductive terminals is coupled to a second substrate surface. The stiffener, frame body, and lid form an enclosure structure substantially enclosing the IC die. The die enclosure spreads heat from the IC die, and shields EMI emanating from and radiating toward the IC die. At least one tab protrudes from the second surface of the frame body. At least one receptacle formed in the first surface of the stiffener corresponding to the at least one tab.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: September 7, 2010
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Reza-ur Rahman Khan
  • Patent number: 7768122
    Abstract: A semiconductor package has a substrate having a first heat transfer path for transferring heat from an optical functional element to a back surface of the substrate, a first heat dissipation unit dissipating the transferred heat therefrom, a second heat transfer path for transferring heat generated in an internal cavity and heat from a window lid itself to a back surface and/or a side surface of the substrate, a second heat dissipation unit dissipating the transferred heat therefrom. The heat transfer paths extend through the substrate and have thermal vias.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 3, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Takuya Oda
  • Patent number: 7759171
    Abstract: A method and structure of minimizing mold bleeding on a substrate surface of a semiconductor package is disclosed. In one embodiment, a method includes forming a dam structure on an outer area of a substrate surface of a semiconductor package and blocking a flow of a mold material from a mold cavity of the semiconductor package to the outer area of the substrate surface using the dam structure. In another embodiment, a substrate surface of a semiconductor package includes product forming areas to provide mounting spaces of semiconductor chips and staggered offset mesh block areas surrounding the product forming areas to act as dam structures to minimize mold bleeding from a mold cavity of the semiconductor package to outer areas of the substrate surface.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: July 20, 2010
    Assignee: Spansion LLC
    Inventors: Pakhorudin Hussin, Murugasan Manikam Achari, Tee-Eu Jin, Kwet Nam Wong
  • Patent number: 7728440
    Abstract: A semiconductor device includes: a semiconductor chip mounted on a mounting substrate; a first resin filling a gap between the chip and the substrate; a frame-shaped stiffener surrounding the chip; a first adhesive for bonding the stiffener to the substrate; a lid for covering the stiffener and an area surrounded by the stiffener; and a second resin filling a space between the stiffener and the chip. A thermal expansion coefficient of the second resin is smaller than that of the first resin. The first resin includes an underfill part filling a gap between the chip and the substrate and a fillet part extended from the chip region.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 1, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Hirokazu Honda
  • Patent number: 7728425
    Abstract: One embodiment of an electronic component packaging system includes a base adapted for supporting an electronic component, a lid sealed to the base, the lid including a fillport, and the fillport hermetically sealed by light irradiation.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: June 1, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Cary G. Addington, Shell Elaine Whittington, Peter Mardilovich, William Wren
  • Patent number: 7724526
    Abstract: An electronic module includes a printed circuit board with a heat producing electrical component assembled in an insulating housing. The component is adjacent a thermally conducting heat sink with a thermally conductive material disposed therebetween. Integral with the heat sink is a thermally conductive runner, partially encased in the housing wall, connecting the heat sink to a thermally conductive port. The port is coupled to a base structure when the housing is attached to the base, forming a heat conduction path from the component to the base. This conductive path may also provide an electrical ground path from the printed circuit board to the base.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 25, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Lee R. Hinze, G. Venkata Krishnan, Scott E. Wilson
  • Patent number: 7719108
    Abstract: A method of packaging a semiconductor component with a printed wiring board is disclosed. The method includes determining a first distance, applying a thin film onto a surface of the semiconductor component such that the thin film is spaced apart from a support of the semiconductor, applying a solder pad onto the printed wiring board, placing the semiconductor component with the thin film onto the printed wiring board, and positioning the thin film adjacent the solder pad.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: May 18, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: William E. Murphy, Ryan S. Riegle, Richard Shields, David L. Vos
  • Patent number: 7705442
    Abstract: A contact device for use with a power semiconductor component in a power semiconductor module or a disc-type thyristor, the module or thyristor having a molded body with a first recess disposed above the component. The contact device makes electrical contact with the auxiliary connection of the component, and is disposed within a second recess in the module or thyristor. The contact device includes a spring having a pin-like extension at a first end thereof that faces the component and a metal molded body that is arranged at the opposite end thereof and has a first connecting device formed as a flat section of the metal molded body. The flat section is arranged generally parallel to the component, and has a second connecting device for connection to a connecting cable. The connecting device may also have a multipart insulating housing for holding the contact spring and the metal molded body.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: April 27, 2010
    Assignee: SEMIKRON Elektronik GmbH & Co. KG
    Inventor: André Schlötterer
  • Patent number: 7701048
    Abstract: A power module with low thermal resistance buffers the stress put on a substrate during a package molding operation to virtually always prevent a fault in the substrate of the module. The power module includes a substrate, a conductive adhesive layer formed on the substrate, a device layer comprising a support tab, a power device, and a passive device which are formed on the conductive adhesive layer, and a sealing material hermetically sealing the device layer. The support tab is buffers the stress applied by a support pin to the substrate, thereby virtually always preventing a ceramic layer included in the substrate from cracking or breaking. As a result, a reduction in the isolation breakdown voltage of the substrate is virtually always prevented and the failure of the entire power module is do to a reduction in the breakdown voltage of the substrate is virtually always prevented.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: April 20, 2010
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Keun-hyuk Lee, O-seob Jeon, Seung-won Lim
  • Patent number: 7692288
    Abstract: A MEMS package and methods for its embodiment are described. The MEMS package has at least one MEMS device mounted on a flexible and foldable substrate. A metal cap structure surrounds the at least one MEMS device wherein an edge surface of the metal cap structure is attached to the flexible substrate and wherein a portion of the flexible substrate is folded under itself thereby forming the MEMS package. A meshed metal environmental hole underlying the at least one MEMS device provides enhanced EMI immunity.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: April 6, 2010
    Assignee: Silicon Matrix Pte Ltd.
    Inventors: Wang Zhe, Miao Yubo
  • Patent number: 7692293
    Abstract: A semiconductor switching module includes a power semiconductor element that is embodied in planar technology. In at least one embodiment, the power semiconductor element is provided with a base layer, a copper layer, and at least one power semiconductor chip that is mounted on the copper layer, and another electrically conducting layer which covers at least one load terminal of the power semiconductor chip. According to at least one embodiment of the invention, devices are provided for safely connecting the load terminal to a load circuit. The devices are configured such that a contact area thereof presses in a planar manner onto the electrically conducting layer.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: April 6, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Apfelbacher, Norbert Reichenbach, Johann Seitz
  • Patent number: 7692292
    Abstract: A first container member (9, 109, 212) mounting an electronic device (71, 171, 261) thereon and a second container member (2, 102, 202) are bonded with an adhesive (3, 103) or a metal layer (103, 251). Thus an inner space (90, 190, 211) is formed and the electronic device can be closed in the inner space at a low temperature. In the case the adhesive is used, an exposed surface of the adhesive is coated with a metal film (4) to improve the closeness of the inner space. Further, an electronic device (261, 272) may be mounted on the second container member so as to increase the electronic device arrangement density in a packaged electronic device.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 6, 2010
    Assignee: Panasonic Corporation
    Inventors: Kazushi Higashi, Shinji Ishitani
  • Patent number: 7671432
    Abstract: A dynamic quantity sensor includes a sensor chip having a movable portion at one surface side thereof and a silicon layer at another surface side thereof. The movable portion is displaced under application of a dynamic quantity. The silicon layer is separated from the movable portion through an insulator. The dynamic quantity sensor also includes a circuit chip for transmitting/receiving electrical signals to/from the sensor chip. The circuit chip is disposed to confront the one surface of the sensor chip through a gap portion and cover the movable portion. The sensor chip and the circuit chip are bonded to each other around the gap portion so that a bonding portion is formed to substantially surround the gap portion and thereby seal the gap portion.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: March 2, 2010
    Assignee: DENSO CORPORATION
    Inventor: Tetsuo Fujii
  • Patent number: 7652369
    Abstract: An integrated circuit package is disclosed. The integrated circuit package comprises an integrated circuit die having a plurality of solder bumps; and a substrate comprising a first plurality of contact pads on a first surface and a second plurality of contact pads on a second surface. The plurality of solder bumps on the integrated circuit die is coupled to the first plurality of contact pads on the first surface of the substrate, wherein at least one edge of the substrate is formed after the integrated circuit die is attached to the substrate. According to one embodiment of the invention, the at least one edge of the substrate is formed after excess substrate material is detached at designated areas. According to another aspect of the invention, an assembly fixture is disclosed. An apparatus and method for assembling an integrated circuit package are also disclosed.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: January 26, 2010
    Assignee: XILINX, Inc.
    Inventor: Leilei Zhang