For Integrated Circuit Patents (Class 257/713)
  • Publication number: 20130214406
    Abstract: A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: International Business Machines Corporation
    Inventor: Mark D. Schultz
  • Patent number: 8513816
    Abstract: The present invention relates to a film for flip chip type semiconductor back surface, which is to be disposed on the back surface of a semiconductor element to be flip chip-connected onto an adherend, the film containing a resin and a thermoconductive filler, in which the content of the thermoconductive filler is at least 50% by volume of the film, and the thermoconductive filler has an average particle size relative to the thickness of the film of at most 30% and has a maximum particle size relative to the thickness of the film of at most 80%.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 20, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Naohide Takamoto, Goji Shiga, Fumiteru Asai
  • Publication number: 20130207257
    Abstract: At least a part of a heat radiation member (9) connected to a DRAM (11) for radiating heat of the DRAM (11) is exposed from a protection member (4) arranged to surround the DRAM and the heat radiation member (9) so as to protect the DRAM (11). Thus, it is possible to provide a semiconductor device having a preferable heat radiation performance.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: Nikon Corporation
    Inventor: Nikon Corporation
  • Patent number: 8508041
    Abstract: The present invention discloses a bonding method for a three-dimensional integrated circuit and the three-dimensional integrated circuit thereof. The bonding method comprises the steps of: providing a substrate; depositing a film layer on the substrate; providing a light source to light onto the film layer to form a graphic structure; forming a metal co-deposition layer by a first metal and a second metal that are co-deposited on the film layer; providing a first integrated circuit having the substrate, the film layer and the metal co-deposition layer sequentially; providing a second integrated circuit that having the metal co-deposition layer, the film layer and the substrate sequentially; and the first integrated circuit is bonded with the second integrated circuit at a predetermined temperature to form a three-dimensional integrated circuit.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 13, 2013
    Assignee: National Chiao Tung University
    Inventors: Kuan-Neng Chen, Sheng-Yao Hsu
  • Patent number: 8502385
    Abstract: A power semiconductor device has the power semiconductor elements having back surfaces bonded to wiring patterns and surface electrodes, cylindrical communication parts having bottom surfaces bonded on the surface electrodes of the power semiconductor elements and/or on the wiring patterns, a transfer mold resin having concave parts which expose the upper surfaces of the communication parts and cover the insulating layer, the wiring patterns, and the power semiconductor elements. External terminals have one ends inserted in the upper surfaces of the communication parts and the other ends guided upward, and at least one external terminal has, between both end parts, a bent area which is bent in an L shape and is embedded in the concave part of the transfer mold resin.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Seiji Oka, Tetsuya Ueda
  • Patent number: 8503172
    Abstract: A supplementary cooling system is provided for cooling a computing system. An apparatus may comprise a computing system and a docking system. The computing system has a cooling area and a fan area which is partionable from the cooling area. The docking system has a fan and an airflow outlet which is operably connected to the fan.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: August 6, 2013
    Assignee: Lenovo Pte. Ltd.
    Inventors: Fusanobu Nakamura, Hiroaki Agata
  • Patent number: 8502362
    Abstract: Thermal transfer from a silicon-on-insulator (SOI) die is improved by mounting the die in a bump-on-leadframe manner in a semiconductor package, with solder or other metal bumps connecting the active layer of the SOI die to metal leads used to mount the package on a printed circuit board or other support structure.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 6, 2013
    Assignee: Advanced Analogic Technologies, Incorporated
    Inventor: Richard K. Williams
  • Publication number: 20130187262
    Abstract: Embodiments of the present disclosure include devices or systems that include a composite thermal capacitor disposed in thermal communication with a hot spot of the device, methods of dissipating thermal energy in a device or system, and the like.
    Type: Application
    Filed: December 19, 2012
    Publication date: July 25, 2013
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventor: GEORGIA TECH RESEARCH CORPORATION
  • Patent number: 8487426
    Abstract: A semiconductor package includes a conductive base, a die disposed adjacent to an upper surface of the conductive base, a patterned conductive layer, and a dielectric layer encapsulating the die. The dielectric layer defines an opening through which the patterned conductive layer is electrically connected to the upper surface of the conductive base. The conductive base has a lateral surface including a first portion adjacent to the upper surface of the conductive base and a second portion adjacent to a lower surface of the conductive base, where the second portion is sloped inwardly with respect to the lower surface of the conductive base.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 16, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Kay Stephan Essig, Bernd Karl Appelt, Ming Chiang Lee
  • Patent number: 8486765
    Abstract: A method for making a structure for thermal management of circuit devices. The method provides a first substrate and a second substrate where at least one of the first and second substrates includes a circuit element. The method forms in at least one of the first substrate and the second substrate an entrance through-hole extending through a thickness of the first substrate or the second substrate, forms in at least one of the first substrate and the second substrate an exit through-hole extending through a thickness of the first substrate or the second substrate, forms respective bonding elements on at least one of the first and second substrates, and bonds the first and second substrates at the respective bonding elements to form a seal between the first and second substrates and to form a first coolant channel in between the first and second substrates.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: July 16, 2013
    Assignee: Research Triangle Institute
    Inventors: Philip Garrou, Charles Kenneth Williams, Christopher A. Bower
  • Patent number: 8488324
    Abstract: An electrical control unit has a printed circuit board substrate, on which an electronic circuit is situated, which circuit includes multiple electrical components which are interconnected via printed conductors of the printed circuit board substrate, as well as housing parts for covering the electrical components on the printed circuit board substrate, and at least one device plug connector part situated on the printed circuit board substrate outside the section of the printed circuit board substrate covered by the housing parts. Outside the section covered by the at least one housing part and outside the section of the printed circuit board substrate provided with the device plug connector part, at least one contact point for an additional electrical component is situated on the printed circuit board substrate.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: July 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Rolf Becker, Christian Lammers, Juergen Jerg, Joachim Wolff, Volker Hochholzer, Ulrich Trescher, Helmut Bubeck, Klaus Voigtlaender, Jan Benzler, Thomas Raica, Willi Kuehn, Thomas Wiesa, Michael Krapp
  • Patent number: 8487427
    Abstract: An assembly includes a chip including an integrated circuit, a casing including an integrated circuit and having an upper portion formed on a side of the chip and lower portion formed on another side of the chip, plural through-wafer vias (TWVs) for electrically connecting the integrated circuit of the chip and the integrated circuit of the casing, and a card connected to the casing for electrically connecting the casing to a system board.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Thomas Brunschwiler, Bruno Michel
  • Patent number: 8488320
    Abstract: A semiconductor package includes: a substrate having a first surface and a second surface opposing the first surface, the first surface having a fan placement zone, a hole and a ventilation hole penetrating the substrate formed at the fan placement zone of the substrate; an electronic component disposed on the first surface surrounding the fan placement zone, the electronic component electrically connected to the substrate; an encapsulant formed on the electronic component and the first surface of the substrate, the encapsulant having an encapsulant opening exposing the fan placement zone; and a fan unit disposed in the encapsulant opening and electrically connected to the substrate. Since the electronic component is disposed on the substrate outside the fan placement zone, heat generated by the electronic component can efficiently dissipate while damage problems of over heat will not occur, and the overall height of the fan unit can thus be decreased.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 16, 2013
    Assignee: Amtek Semiconductors Co., Ltd.
    Inventor: Hsiang-Wei Tseng
  • Patent number: 8482120
    Abstract: A Multi-configuration Processor-Memory device for coupling to a PCB (printed circuit board) interface. The device comprises a substrate that supports multiple configurations of memory components and a processor while having a single, common interface with a PCB interface of a printed circuit board. In a first configuration, the substrate supports a processor and a first number of memory components. In a second configuration, the substrate supports a processor and an additional number of memory components. The memory components can be pre-tested, packaged memory components mounted on the substrate. The processor can be a surface mounted processor die. Additionally, the processor can be mounted in a flip chip configuration, side-opposite the memory components. In the first configuration, a heat spreader can be mounted on the memory components and the processor to dissipate heat.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 9, 2013
    Assignee: Nvidia Corporation
    Inventors: Behdad Jafari, George Sorensen
  • Patent number: 8482118
    Abstract: One aspect of the present invention relates to an integrated circuit package that includes multiple layers of a planarizing, photo-imageable epoxy that are formed over a substrate. In some designs, the substrate is a silicon wafer. An integrated circuit is embedded in the epoxy. An antenna, which is electrically coupled to the active face of the integrated circuit through an interconnect layer, is formed over one of the epoxy layers. In various embodiments, at least some of the epoxy layers are positioned between the substrate and the antenna such that there is a distance of at least approximately 100 microns between the substrate and the antenna.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 9, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Anuraag Mohan, Peter Smeys
  • Publication number: 20130168846
    Abstract: A method of making a microelectronic package, and a microelectronic package made according to the method. The method includes: bonding and thermally coupling a plurality of IC dies to an IHS panel to yield a die-carrying IHS panel, and mounting the die-carrying IHS panel onto a substrate panel including a plurality of package substrates by mounting perimeter ribs of the IHS panel to a corresponding pattern of sealant on the substrate panel and by mounting each of the plurality of dies to a corresponding one of the plurality of package substrates to yield a combination including the die-carrying IHS panel mounted to the substrate panel. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 4, 2013
    Inventors: Sabina J. Houle, James P. Mellody
  • Patent number: 8476090
    Abstract: A circuit board for a light emitting diode package improved in heat radiation efficiency and a manufacturing method thereof. In a simple manufacturing process, insulating layers are formed by anodizing on a portion of a thermally conductive board body and plated with a conductive material. In the light emitting diode package, a board body is made of a thermally conductive metal. Insulating oxidation layers are formed at a pair of opposing edges of the board body. First conductive patterns are formed on the insulating oxidation layers, respectively. Also, second conductive patterns are formed in contact with the board body at a predetermined distance from the first conductive patterns, respectively. The light emitting diode package ensures heat generated from the light emitting diode to radiate faster and more effectively. Additionally, the insulating layers are formed integral with the board body by anodizing, thus enhancing productivity and durance.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Hyun Shin, Seog Moon Choi, Young Ki Lee
  • Patent number: 8472197
    Abstract: Provided is a small and low-cost resin-sealed electronic control device including a first electronic board and a second electronic board respectively bonded onto an upper surface and a lower surface of a support plate, each of the first electronic board and the second electronic board having an increased mounting area on which circuit components are mounted. A first electronic board (30A) and a second electronic board (40A) respectively bonded onto an upper surface and a lower surface of a support plate (20A) include outer circuit components (31, 41) and inner circuit components (33, 43) respectively mounted on outer surfaces and inner surfaces thereof. The inner circuit components (33, 43) are fitted into a window hole portion (21) of the support plate (20A) and are sealed with a filler (25).
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: June 25, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinji Higashibata, Shozo Kanzaki, Hiroyoshi Nishizaki, Fumiaki Arimai, Mikihiko Suzuki
  • Publication number: 20130154082
    Abstract: A semiconductor device includes an insulation layer, a first semiconductor element and a second semiconductor element which are disposed within the insulation layer, a frame which has higher thermal conductivity than the insulation layer and surrounds the first semiconductor element and the second semiconductor element via the insulation layer, and a wiring layer which is disposed over the insulation layer and includes an electrode which electrically connects the first semiconductor element and the second semiconductor element.
    Type: Application
    Filed: October 10, 2012
    Publication date: June 20, 2013
    Applicant: FUJITSU LIMITED
    Inventor: FUJITSU LIMITED
  • Patent number: 8467187
    Abstract: A flat-panel display apparatus comprises a display panel, a circuit board, and a cover. The circuit board includes a first and second circuit boards. The first circuit board is arranged above the second circuit board so that, on the back side of the display panel, a mounting surfaces of the first and second circuit boards are approximately in parallel with a display surface of the display panel and do not overlap each other. Each of the first and second circuit boards have a primary mounting surface on which a large number of electrical components are mounted, and a secondary mounting surface that is opposite the primary mounting surface. The primary mounting surface of the first circuit board is arranged in an inverted orientation to the primary mounting surface of the second circuit board. A radiator with fins is provided on the secondary mounting surface side of the first circuit board.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 18, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshiaki Itazawa, Kunio Sakurai, Kiyoshi Kumagai
  • Patent number: 8455931
    Abstract: An electronic component includes a high voltage switching transistor encased in a package. The high voltage switching transistor comprises a source electrode, a gate electrode, and a drain electrode all on a first side of the high voltage switching transistor. The source electrode is electrically connected to a conducting structural portion of the package. Assemblies using the abovementioned transistor with another transistor can be formed, where the source of one transistor can be electrically connected to a conducting structural portion of a package containing the transistor and a drain of the second transistor is electrically connected to the second conductive structural portion of a package that houses the second transistor. Alternatively, the source of the second transistor is electrically isolated from its conductive structural portion, and the drain of the second transistor is electrically isolated from its conductive structural portion.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 4, 2013
    Assignee: Transphorm Inc.
    Inventor: Yifeng Wu
  • Patent number: 8455998
    Abstract: A method and a package for circuit chip package having a bent structure. The circuit chip package includes: a substrate having a first coefficient of thermal expansion (CTE); a circuit chip, having a second CTE, mounted onto the substrate; a metal foil disposed on the circuit chip in thermal contact with the chip; a metal lid having (i) a third CTE that is different from the first CTE and (ii) a bottom edge region, where the metal lid is disposed on the metal foil in thermal contact with the metal foil; and an adhesive layer along the bottom edge of the metal lid, cured at a first temperature, bonding the lid to the substrate, producing an assembly which, at a second temperature, is transformed to a bent circuit chip package.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sushumna Iruvanti, Yves Martin, Theodore van Kessel, Xiaojin Wei
  • Patent number: 8450837
    Abstract: In a hybrid integrated circuit device, a circuit board on which an island portion of a lead is fixedly attached and a control board on which a control element and the like are mounted are disposed in an overlapping manner. The circuit board and the control board are integrally encapsulated with an encapsulating resin. A transistor disposed on an upper surface of the circuit board and a control element mounted on an upper surface of the control board are also covered by the encapsulating resin. Thus, a module in which an inverter circuit and a control circuit are integrally encapsulated with resin is provided.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 28, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Shigeki Mashimo, Fumio Horiuchi, Kiyoaki Kudo, Akira Sakurai, Yuhki Inagaki
  • Patent number: 8441121
    Abstract: A manufacturing method of a package carrier is provided. A first opening communicating an upper surface and a lower surface of a substrate is formed. A heat-conducting element having a top surface and a bottom surface is configured in the first opening and fixed into the first opening via an insulation material. A first insulation layer and a first metal layer are laminated onto the upper surface. A second insulation layer and a second metal layer are laminated onto the lower surface. A second opening and a third opening respectively exposing portions of the top and the bottom surfaces are formed. At least one through via passing through the first metal layer, the first insulation layer, the substrate, the second insulation layer and the second metal layer is formed. A third metal layer covering the first and second metal layers and an inner wall of the through via is formed.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 14, 2013
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Shih-Hao Sun
  • Patent number: 8436465
    Abstract: At least a part of a heat radiation member (9) connected to a DRAM (11) for radiating heat of the DRAM (11) is exposed from a protection member (4) arranged to surround the DRAM and the heat radiation member (9) so as to protect the DRAM (11). Thus, it is possible to provide a semiconductor device having a preferable heat radiation performance.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: May 7, 2013
    Assignee: Nikon Corporation
    Inventor: Isao Sugaya
  • Publication number: 20130099368
    Abstract: Chip carriers are provided. The chip carrier includes a carrier body having a cavity therein and at least one conductive through silicon via (TSV) penetrating the carrier body under the cavity. The cavity includes an uneven sidewall surface profile. The at least one conductive through silicon via (TSV) is exposed at a bottom surface of the carrier body opposite to the cavity. Related methods are also provided.
    Type: Application
    Filed: August 9, 2012
    Publication date: April 25, 2013
    Applicant: SK HYNIX INC.
    Inventor: Kwon Whan HAN
  • Patent number: 8427833
    Abstract: A mechanism is provided for a thermal power plane that delivers power and constitutes minimal thermal resistance. The mechanism comprises a processor layer coupled, via a first set of coupling devices, to a signaling and input/output (I/O) layer and a power delivery layer coupled, via a second set of coupling devices, to the processor layer. In the mechanism, the power delivery layer is dedicated to only delivering power and does not provide data communication signals to the elements of the mechanism. In the mechanism, the power delivery layer comprises a plurality of conductors, a plurality of insulating materials, one or more ground planes, and a plurality of through laminate vias. In the mechanism, the signaling and input/output (I/O) layer is dedicated to only transmitting the data communication signals to and receiving the data communications signals from the processor layer and does not provide power to the elements of the processor layer.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Harry Barowski, Thomas Brunschwiler, Hubert Harrer, Andreas Huber, Bruno Michel, Tim Niggemeier, Stephan Paredes, Jochen Supper
  • Publication number: 20130093074
    Abstract: An integrated circuit structure can include a first die including a first surface and a second surface and a second die including a first surface and a second surface. The first surface of the first die can be coupled to the second surface of the second die. The integrated circuit structure also can include a heat sink coupled to the first surface of the first die and the first surface of the second die.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: Xilinx, Inc.
    Inventor: Douglas M. Grant
  • Patent number: 8421219
    Abstract: A semiconductor component includes a semiconductor element that has a plurality of signals, a wiring board that is disposed below the semiconductor element and that draws the plurality of signals of the semiconductor element, a heat conduction member that dissipates heat generated by the semiconductor element, a joining member that is disposed between the semiconductor element and the heat conduction member and that joins the heat conduction member to the semiconductor element, a support member formed with an opening so as to surround the semiconductor element that supports the heat conduction member, a first adhesive member that is disposed between the support member and the wiring board to bond the support member with the wiring board and a second adhesive member that is disposed between the support member and the heat conduction member to bond the support member with the heat conduction member.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 16, 2013
    Assignee: Fujitsu Limited
    Inventors: Tsuyoshi So, Hideo Kubo, Seiji Ueno, Osamu Igawa
  • Patent number: 8421235
    Abstract: The semiconductor device has a unit stack body including a plurality of units stacked on one another. Each unit includes a power terminal constituted of a lead part and a connection part. The connection part is formed with a projection and a recess. When the units are stacked on one another, the projection of one unit is fitted to the recess of the adjacent unit, so that the power terminals of the respective unit are connected to one another.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: April 16, 2013
    Assignee: Denso Corporation
    Inventors: Shigeo Ide, Akihiro Niimi
  • Patent number: 8421220
    Abstract: A chip package includes: a substrate; a plurality of conductive connections in contact with the silicon carrier; a silicon carrier in a prefabricated shape disposed above the substrate, the silicon carrier including: a plurality of through silicon vias for providing interconnections through the silicon carrier to the chip; liquid microchannels for cooling; a liquid coolant flowing through the microchannels; and an interconnect to one or more chips or chip stacks.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: John Ulrich Knickerbocker, John H. Magerlein
  • Patent number: 8421217
    Abstract: A system and method system for achieving mechanical and thermal stability in a multi-chip package. The system utilizes a lid and multiple thermal interface materials. The method includes utilizing a lid on a multi-chip package and utilizing multiple thermal interface materials on the multi-chip package.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, John S. Corbin, Jr., David Danovitch, Isabelle Depatie, Virendra R. Jadhav, Roger A. Liptak, Kenneth C. Marston, Jennifer V. Muncy, Sylvain Ouimet, Eric Salvas
  • Patent number: 8415787
    Abstract: The present invention relates to a heat dissipator that includes a conductive substrate and a plurality of nanostructures supported by the conductive substrate. The nanostructures are at least partly embedded in an insulator. Each of the nanostructures includes a plurality of intermediate layers on the conductive substrate. At least two of the plurality of intermediate layers are interdiffused, and material of the at least two of the plurality of intermediate layers that are interdiffused is present in the nanostructure.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: April 9, 2013
    Assignee: Smoltek AB
    Inventor: Mohammad Shafiqul Kabir
  • Patent number: 8415204
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a package substrate; mounting an integrated circuit die on the package substrate; and attaching a heat spreader assembly, having a thermal adhesive layer formed therein, to the package substrate and the integrated circuit die.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 9, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JaEun Yun, Jong Wook Ju, WonJun Ko, Hye Ran Lee
  • Patent number: 8409920
    Abstract: An integrated circuit package system and method of manufacture therefor includes: forming an area array substrate; mounting surface conductors on the area array substrate; forming a molded package body on the area array substrate and the surface conductors; providing a step in the molded package body; and exposing a surface conductor by the step.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: April 2, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Rajendra D. Pendse, Flynn Carson, Il Kwon Shim, Seng Guan Chow
  • Publication number: 20130075889
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting a device mounting structure over a bottom substrate; mounting a heat spreader having an opening formed by a single integral structure with a dam and a flange, the dam having a dam height greater than a flange height of the flange; and forming a package encapsulation over the device mounting structure and the bottom substrate with the device mounting structure exposed within the opening.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Inventors: Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 8405214
    Abstract: A semiconductor package structure includes: a substrate comprising a plurality of power supply balls on a first surface of the substrate, a first metal conductor on a second surface of the substrate and at least one via coupling a power supply ball to the first metal conductor of the substrate; a die, comprising a plurality of bond pads on a first surface of the die, a first metal conductor on a second surface of the die and at least one via coupling a bond pad to the first metal conductor of the die; and a plurality of first wire bonds for coupling the first metal conductor of the substrate to the first metal conductor of the die.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 26, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Aaron Willey, Yantao Ma
  • Patent number: 8399985
    Abstract: A chip package includes a carrier having a first and a second major surface. The first major surface includes an active region surrounded by an inactive region. The chip package includes contact pads in the active region for mating with chip contacts of a chip. A support structure is disposed on the inactive region of the first major surface. The support structure forms a dam that surrounds the active region. When a chip or chip stack is mounted in the active region, spacing exists between the dam and the chip or chip stack. The spacing creates convention paths for heat dissipation.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: March 19, 2013
    Assignee: United Test And Assembly Center Ltd.
    Inventors: Ravi Kanth Kolan, Hao Liu, Chin Hock Toh
  • Patent number: 8395254
    Abstract: An integrated circuit package system includes providing a substrate having an integrated circuit, attaching a heatspreader having a force control protrusion on the substrate, and forming an encapsulant over the heatspreader and the integrated circuit.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: March 12, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: Emmanuel Espiritu, Dario S. Filoteo, Jr., Leo A. Merilo, Philip Lyndon Cablao, Rachel Layda Abinan, Allan Ilagan
  • Patent number: 8395255
    Abstract: A semiconductor device includes: a cooling function component including an active region made of an impurity region and formed on a surface of a semiconductor layer, an N-type gate made of a semiconductor including an N-type impurity, a P-type gate made of a semiconductor including a P-type impurity, a first metal wiring connected to the N-type gate, the P-type gate and the active region, a second metal wiring connected to the P-type gate and the N-type gate, and a heat releasing portion connected to the second metal wiring for releasing heat to the outside.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: March 12, 2013
    Assignee: Sony Corporation
    Inventor: Rui Morimoto
  • Publication number: 20130056864
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting a bottom integrated circuit on a bottom substrate having a peripheral thermal via connected to a peripheral thermal interconnect; mounting an inner heat shield, having a top planar portion, over the bottom integrated circuit with the inner heat shield connected to the peripheral thermal via; mounting a top integrated circuit over the inner heat shield; and forming a package encapsulation over the bottom integrated circuit, the inner heat shield, and the top integrated circuit with the top planar portion exposed only at each corners of a package topside of the package encapsulation.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Inventors: NamJu Cho, HeeJo Chi, HanGil Shin
  • Patent number: 8391008
    Abstract: A power electronics module includes a frame, a jet impingement cooler assembly, and a power electronics assembly. The frame includes a first surface, a second surface, a power electronics cavity within the first surface of the frame, a fluid inlet reservoir, and a fluid outlet reservoir. The fluid inlet and outlet reservoirs extend between the first surface of the frame and the second surface of the frame. The fluid inlet reservoir and the fluid outlet reservoir are configured to be fluidly coupled to one or more additional modular power electronics devices. The jet impingement assembly is sealed within the frame and fluidly coupled to the fluid inlet reservoir and the fluid outlet reservoir. The power electronics assembly includes at least one power electronics component, is positioned within the power electronics cavity, and is thermally coupled to the jet impingement cooler assembly. Power electronic module assemblies are also disclosed.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 5, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Ercan Mehmet Dede
  • Patent number: 8391011
    Abstract: A cooling device includes a heat sink having a top plate, a bottom plate spaced from the top plate and fins between the top and bottom plates, a first metal member laminated to the side of the top plate that is opposite from the fins, and a first insulator laminated to the first metal member. The top plate, the bottom plate and the first metal member are each made of a clad metal that is composed of a base metal and a brazing metal, so that the fins are brazed to the top and bottom plates, the first metal member is brazed to the top plate, and the first insulator is brazed to the first metal member.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 5, 2013
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Shogo Mori, Eiji Kono
  • Patent number: 8390112
    Abstract: A method of making a microelectronic package, and a microelectronic package made according to the method. The method includes: bonding and thermally coupling a plurality of IC dies to an IHS panel to yield a die-carrying IHS panel, and mounting the die-carrying IHS panel onto a substrate panel including a plurality of package substrates by mounting perimeter ribs of the IHS panel to a corresponding pattern of sealant on the substrate panel and by mounting each of the plurality of dies to a corresponding one of the plurality of package substrates to yield a combination including the die-carrying IHS panel mounted to the substrate panel. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 5, 2013
    Assignee: Intel Corporation
    Inventors: Sabina J. Houle, James P. Mellody
  • Patent number: 8384212
    Abstract: To provide a semiconductor equipment having high heat-transfer effect and breakdown voltage, and a method of manufacturing the same. The semiconductor equipment includes: a sealed container; a stem connected to the sealed container via a stem peripheral portion; and a semiconductor chip mounted on a top surface of the stem, inside the sealed container. The semiconductor chip is electrically connected to a lead provided to the stem, the stem peripheral portion, which is of a material that is different from the material of stem and the same as the material of the sealed container, is bonded along a periphery of the stem, and the sealed container is filled with a working fluid including at least one of ethanol, a perfluorocarbon, and a fluoroether.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Nobuyuki Otsuka, Manabu Yanagihara, Shuichi Nagai, Daisuke Ueda
  • Patent number: 8379389
    Abstract: A display panel includes an airtight casing and a thermally conductive member. A thermal conductivity of the thermally conductive member in a longitudinal direction of spacers is higher than a thermal conductivity of the thermally conductive member in a direction in which the spacers are provided side by side, and the thermal conductivity of the thermally conductive member in the direction in which the spacers are provided side by side is higher than a thermal conductivity of the thermally conductive member in a thickness direction.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kinya Kamiguchi
  • Patent number: 8373267
    Abstract: A structure includes first and second silicon controlled rectifiers (SCRs) formed in a substrate. The first and the second SCRs each include at least one component commonly shared between the first and the second SCRs.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Ankit Srivastava
  • Patent number: 8368208
    Abstract: In some embodiments, a semiconductor cooling apparatus includes a monolithic array of cooling elements. Each cooling element of the monolithic array of cooling elements is configured to thermally couple to a respective semiconductor element of an array of semiconductor elements. At least two of the semiconductor elements have a different height and each cooling element independently flexes to conform to the height of the respective semiconductor element.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: February 5, 2013
    Assignee: Raytheon Company
    Inventors: Scott T. Johnson, Shadi S. Merhi
  • Patent number: 8367478
    Abstract: The exemplary embodiments of the present invention provide a method and apparatus for enhancing the cooling of a chip stack of semiconductor chips. The method includes creating a first chip with circuitry on a first side and creating a second chip electrically and mechanically coupled to the first chip by a grid of connectors. The method further includes creating a cavity in a second side of the first chip between the connectors and filling the cavity with a thermal material. The chip stack of semiconductor chips with enhanced cooling apparatus includes a first chip with circuitry on a first side and a second chip electrically and mechanically coupled to the first chip by a grid of connectors. The apparatus further includes wherein portions of a second side of the first chip between the connectors is removed to provide a cavity in which a thermal material is placed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: February 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, Charles L. Johnson, John E. Kelly, III, David R. Motschman
  • Patent number: 8368206
    Abstract: A heat radiation package of the present invention includes a substrate in an upper surface side of which recess portion is provided, embedded wiring portion which is filled in the recess portion of the substrate and on which semiconductor element which generates a heat is mounted, and a heat sink connected to a lower surface side of the substrate. The substrate is made of silicon, ceramics, or insulating resin.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: February 5, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Akinori Shiraishi, Kei Murayama, Yuichi Taguchi, Masahiro Sunohara, Mitsutoshi Higashi