At Least One Layer Of Molybdenum, Titanium, Or Tungsten Patents (Class 257/763)
-
Patent number: 9105730Abstract: A thin film transistor and a fabrication method thereof are provided. A metal patterning layer is formed on the metal oxide semiconductor layer of a thin film transistor to shield the metal oxide semiconductor layer from the water, oxygen and light in the environment.Type: GrantFiled: November 21, 2013Date of Patent: August 11, 2015Assignee: E Ink Holdings Inc.Inventors: Wei-Tsung Chen, Ted-Hong Shinn, Chuang-Chuang Tsai, Chih-Hsiang Yang, Chia-Chun Yeh, Wen-Chung Tang
-
Patent number: 9093385Abstract: A method for processing a semiconductor workpiece is provided, which may include: providing a semiconductor workpiece including a metallization layer stack disposed at a side of the semiconductor workpiece, the metallization layer stack including at least a first layer and a second layer disposed over the first layer, wherein the first layer contains a first material and the second layer contains a second material that is different from the first material; patterning the metallization layer stack, wherein patterning the metallization layer stack includes wet etching the first layer and the second layer by means of an etching solution that has at least substantially the same etching rate for the first material and the second material.Type: GrantFiled: May 28, 2013Date of Patent: July 28, 2015Assignee: INFINEON TECHNOLOGIES AGInventors: Anja Gissibl, Hermann Wendt, Thomas Fischer, Bernhard Weidgans, Gudrun Stranzl, Tobias Schmidt, Dietrich Bonart
-
Publication number: 20150137259Abstract: A semiconductor device includes a substrate including a conductive region, an insulating layer disposed on the substrate and including an opening exposing the conductive region, and a conductive layer buried within the opening and including a first region disposed on inner side walls of the opening and a second region disposed within the first region. The first region includes a plurality of first crystal grains and the second region includes a plurality of second crystal grains. The pluralities of first and second crystal grains are separated from each other at a boundary formed between the first and second regions.Type: ApplicationFiled: August 7, 2014Publication date: May 21, 2015Inventors: Hauk HAN, Yu Min KIM, Ki Hyun YOON, Myoung Bum LEE, Chang Won LEE, Joo Yeon HA
-
Patent number: 9030018Abstract: Provided are test vehicles for evaluating various semiconductor materials. These materials may be used for various integrated circuit components, such as embedded resistors of resistive random access memory cells. Also provided are methods of fabricating and operating these test vehicles. A test vehicle may include two stacks protruding through an insulating body. Bottom ends of these stacks may include n-doped poly-silicon and may be interconnected by a connector. Each stack may include a titanium nitride layer provided over the poly-silicon end, followed by a titanium layer over the titanium nitride layer and a noble metal layer over the titanium layer. The noble metal layer extends to the top surface of the insulating body and forms a contact surface. The titanium layer may be formed in-situ with the noble metal layer to minimize oxidation of the titanium layer, which is used as an adhesion and oxygen getter.Type: GrantFiled: September 21, 2012Date of Patent: May 12, 2015Assignee: Intermolecular, Inc.Inventors: Mihir Tendulkar, David Chi
-
Publication number: 20150123279Abstract: A method for forming a semiconductor structure includes providing a semiconductor substrate and forming a dielectric layer over the semiconductor substrate. An opening is formed in the dielectric layer. A conductive line is formed in the opening, wherein the conductive line has an open void formed therein. A sealing metal layer is formed overlying the conductive line, the dielectric layer, and the open void, wherein the sealing metal layer substantially fills the open void. The sealing metal layer is planarized so that a top surface thereof is substantially level with a top surface of the conductive line. An interconnect feature is formed above the semiconductor substrate, wherein the interconnect feature is electrically coupled with the conductive line and the sealing metal layer-filled open void.Type: ApplicationFiled: January 9, 2015Publication date: May 7, 2015Inventors: Chih-Chien Chi, Huang-Yi Huang, Szu-Ping Tung, Ching-Hua Hsieh
-
Patent number: 9018750Abstract: Disclosed is a package that includes a wafer substrate and a metal stack seed layer. The metal stack seed layer includes a titanium thin film outer layer. A resist layer is provided in contact with the titanium thin film outer layer of the metal stack seed layer, the resist layer forming circuitry. A method for manufacturing a package is further disclosed. A metal stack seed layer having a titanium thin film outer layer is formed. A resist layer is formed so as to be in contact with the titanium thin film outer layer of the metal stack seed layer, and circuitry is formed from the resist layer.Type: GrantFiled: August 10, 2012Date of Patent: April 28, 2015Assignee: Flipchip International, LLCInventors: Robert Forcier, Douglas Scott
-
Patent number: 9006900Abstract: A connective structure for bonding semiconductor devices and methods for forming the same are provided. The bonding structure includes an alpad structure, i.e., a thick aluminum-containing connective pad, and a substructure beneath the aluminum-containing pad that includes at least a pre-metal layer and a barrier layer. The pre-metal layer is a dense material layer and includes a density greater than the barrier layer and is a low surface roughness film. The high density pre-metal layer prevents plasma damage from producing charges in underlying dielectric materials or destroying subjacent semiconductor devices.Type: GrantFiled: March 11, 2013Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Chih Wang, Yao-Hsiang Liang
-
Patent number: 9006899Abstract: In one embodiment method, a first Ti based layer is deposited on the substrate. An intermediate Al based layer is deposited on the first layer, a second NiV based layer is deposited on the intermediate layer, and a third Ag based layer is deposited on the second layer. The layer stack is tempered in such a way that at least one inter-metallic phase is formed between at least two metals of the group containing Ti, Al, Ni and V.Type: GrantFiled: December 14, 2012Date of Patent: April 14, 2015Assignee: Infineon Technologies AGInventors: Paul Ganitzer, Kurt Matoy, Martin Sporn, Mark Harrison
-
Patent number: 9000596Abstract: A MOS transistor having a gate insulator including a dielectric of high permittivity and a conductive layer including a TiN layer, wherein the nitrogen composition in the TiN layer is sub-stoichiometric in its lower portion and progressively increases to a stoichiometric composition in its upper portion.Type: GrantFiled: June 22, 2012Date of Patent: April 7, 2015Assignee: STMicroelectronics (Crolles 2) SASInventors: Pierre Caubet, Sylvain Baudot
-
Patent number: 8975670Abstract: A semiconductor device, including: a semiconductor substrate with a first layer including first transistors; a shield layer overlaying the first layer; a second layer overlaying the shield layer, the second layer including second transistors; wherein the shield layer is a mostly continuous layer with a plurality of regions for connections between the first transistors and the second transistors, and where the second transistors include monocrystalline regions.Type: GrantFiled: July 22, 2012Date of Patent: March 10, 2015Assignee: Monolithic 3D Inc.Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
-
Publication number: 20150061138Abstract: A front-end method of fabricating nickel plated caps over copper bond pads used in a memory device. The method provides protection of the bond pads from an oxidizing atmosphere without exposing sensitive structures in the memory device to the copper during fabrication.Type: ApplicationFiled: November 6, 2014Publication date: March 5, 2015Inventors: John Moore, Joseph F. Brooks
-
Patent number: 8970043Abstract: A wafer structure includes a first wafer stack and a first bonding layer disposed on the first wafer stack. The wafer structure further includes a second wafer stack that includes a first surface and a second surface opposing the first surface. A second bonding layer is disposed on the second surface and is in contact with the first bonding layer. The second wafer stack comprises through-silicon-vias (TSVs) that extend from the first surface to the second bonding layer. A seed layer is disposed on the first surface and is in contact with the TSVs.Type: GrantFiled: February 1, 2011Date of Patent: March 3, 2015Assignee: Maxim Integrated Products, Inc.Inventors: Quanbo Zou, Uppili Sridhar, Amit S. Kelkar, Xuejun Ying
-
Publication number: 20150048511Abstract: Methods of forming conductive structures and the conductive structures are disclosed. A method includes forming an opening in a dielectric layer over a substrate, performing a cleaning process on the dielectric layer with the opening, forming a nucleation layer in the opening, etching the nucleation layer in the opening, and forming a conductive material in the opening and on the nucleation layer after the etching. An upper portion of the opening is distal from the substrate, and a lower portion of the opening is proximate the substrate. After the etching, a thickness of an upper portion of the nucleation layer in the upper portion of the opening is less than a thickness of a lower portion of the nucleation layer in the lower portion of the opening.Type: ApplicationFiled: August 19, 2013Publication date: February 19, 2015Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-I Tsai, Chi-Yuan Chen, Wei-Jung Lin, Chia-Han Lai
-
Publication number: 20150048510Abstract: A semiconductor device includes a semiconductor substrate and a metal film formed on the semiconductor substrate. The metal film includes a Ni base and a material having condensation energy higher than that of Ni. In a method of manufacturing a semiconductor device, a semiconductor substrate and a target, which is formed by melting P in Ni, are prepared, and sputtering is performed with the target while a portion of the semiconductor substrate where the metal film is to be formed is heated to a temperature of from 280° C. inclusive to 870° C. inclusive.Type: ApplicationFiled: April 22, 2013Publication date: February 19, 2015Inventors: Manabu Tomisaka, Yoshifumi Okabe, Mikimasa Suzuki
-
Patent number: 8952506Abstract: A system and method for manufacturing a through silicon via is disclosed. An embodiment comprises forming a through silicon via with a liner protruding from a substrate. A passivation layer is formed over the substrate and the through silicon via, and the passivation layer and liner are recessed from the sidewalls of the through silicon via. Conductive material may then be formed in contact with both the sidewalls and a top surface of the through silicon via.Type: GrantFiled: March 20, 2014Date of Patent: February 10, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Hua Yu, Shin-Puu Jeng, Wen-Chih Chiou, Fang Wen Tsai, Chen-Yu Tsai
-
Patent number: 8952543Abstract: A semiconductor device including a lower layer, an insulating layer on a first side of the lower layer, an interconnection structure in the insulating layer, a via structure in the lower layer. The via structure protrudes into the insulating layer and the interconnection structure.Type: GrantFiled: December 18, 2012Date of Patent: February 10, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Ho-Jin Lee, Pil-Kyu Kang, Kyu-Ha Lee, Byung-Lyul Park, Hyun-Soo Chung, Gil-Heyun Choi
-
Patent number: 8946908Abstract: Disclosed is a semiconductor structure which includes a semiconductor substrate and a wiring layer on the semiconductor substrate. The wiring layer includes a plurality of fin-like structures comprising a first metal; a first layer of a second metal on each of the plurality of fin-like structures wherein the first metal is different from the second metal, the first layer of the second metal having a height less than each of the plurality of fin-like structures; and an interlayer dielectric (ILD) covering the plurality of fin-like structures and the first layer of the second metal except for exposed edges of the plurality of fin-like structures at predetermined locations, and at locations other than the predetermined locations, the height of the plurality of fin-like structures has been reduced so as to be covered by the ILD.Type: GrantFiled: August 7, 2013Date of Patent: February 3, 2015Assignee: International Business Machines CorporationInventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
-
Patent number: 8946074Abstract: A method of forming a semiconductor device, comprising: providing a Si-containing layer; forming a barrier layer over said Si-containing layer, said barrier layer comprising a compound including a metallic element; forming a metallic nucleation_seed layer over said barrier layer, said nucleation_seed layer including said metallic element; and forming a metallic interconnect layer over said nucleation_seed layer, wherein said barrier layer and said nucleation_seed layer are formed without exposing said semiconductor device to the ambient atmosphere.Type: GrantFiled: October 31, 2011Date of Patent: February 3, 2015Assignee: Infineon Technologies AGInventor: Heinrich Koerner
-
Publication number: 20150008583Abstract: A method for fabricating packaged semiconductor devices; attaching a batch-sized metallic grid with openings onto an adhesive tape having an insulating clear core covered by a layer of UV-releasable adhesive, the openings sized larger than a semiconductor chip; attaching a semiconductor chip onto the tape of each window, the chip terminals facing the adhesive surface; laminating insulating material of low coefficient of thermal expansion to fill gaps between each chip and respective grid; turning over assembly to place a carrier under backside of chips and lamination and to remove the tape; plasma-cleaning the assembly front side and sputtering uniform at least one metal layer across the assembly; optionally plating metal layers; and patterning the metal layers to form rerouting traces and extended contact pads for assembly.Type: ApplicationFiled: July 1, 2014Publication date: January 8, 2015Inventor: Mark A. Gerber
-
Publication number: 20140374911Abstract: The present disclosure relates to a method for forming a semiconductor device. The method includes forming a first aluminum pad layer on a metal layer, forming an adhesion layer on the first aluminum pad layer, etching the adhesion layer so as to form a patterned adhesion layer, and forming a second aluminum pad layer on the first aluminum pad layer and the patterned adhesion layer.Type: ApplicationFiled: April 18, 2014Publication date: December 25, 2014Applicant: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Xinpeng WANG, Chenglong ZHANG, Ruixuan HUANG
-
Patent number: 8907486Abstract: A gate containing ruthenium for a dielectric having an oxide containing a lanthanide and a method of fabricating such a combination gate and dielectric produce a reliable structure for use in a variety of electronic devices. A ruthenium or a conductive ruthenium oxide gate may be formed on a lanthanide oxide. A ruthenium-based gate on a lanthanide oxide provides a gate structure that can effectively prevent a reaction between the gate and the lanthanide oxide.Type: GrantFiled: October 11, 2013Date of Patent: December 9, 2014Assignee: Micron Technology, Inc.Inventors: Kie Y. Ahn, Leonard Forbes
-
Patent number: 8900994Abstract: A system and method for manufacturing a through silicon via is disclosed. An embodiment comprises forming a through silicon via with a liner protruding from a substrate. A passivation layer is formed over the substrate and the through silicon via, and the passivation layer and liner are recessed from the sidewalls of the through silicon via. Conductive material may then be formed in contact with both the sidewalls and a top surface of the through silicon via.Type: GrantFiled: June 9, 2011Date of Patent: December 2, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Hua Yu, Shin-Puu Jeng, Wen-Chih Chiou, Fang Wen Tsai, Chen-Yu Tsai
-
Patent number: 8896136Abstract: In accordance with an embodiment, a structure comprises a substrate having a first area and a second area; a through substrate via (TSV) in the substrate penetrating the first area of the substrate; an isolation layer over the second area of the substrate, the isolation layer having a recess; and a conductive material in the recess of the isolation layer, the isolation layer being disposed between the conductive material and the substrate in the recess.Type: GrantFiled: June 30, 2010Date of Patent: November 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Yu Tsai, Shih-Hui Wang, Chien-Ming Chiu, Chia-Ho Chen, Fang Wen Tsai, Weng-Jin Wu, Jing-Cheng Lin, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
-
Publication number: 20140339702Abstract: Structures and methods of forming the same are disclosed herein. In one embodiment, a structure can comprise a region having first and second oppositely facing surfaces. A barrier region can overlie the region. An alloy region can overlie the barrier region. The alloy region can include a first metal and one or more elements selected from the group consisting of silicon (Si), germanium (Ge), indium (Id), boron (B), arsenic (As), antimony (Sb), tellurium (Te), or cadmium (Cd).Type: ApplicationFiled: May 20, 2013Publication date: November 20, 2014Applicant: INVENSAS CORPORATIONInventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Pezhman Monadgemi, Terrence Caskey
-
Publication number: 20140327142Abstract: Techniques for reducing the specific contact resistance of metal-semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal-group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.Type: ApplicationFiled: October 18, 2012Publication date: November 6, 2014Inventors: Walter A Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
-
Patent number: 8872341Abstract: One or more embodiments relate to a method of forming a semiconductor device, comprising: forming a structure, the structure including at least a first element and a second element; and forming a passivation layer over the structure, the passivation layer including at least the first element and the second element, the first element and the second element of the passivation layer coming from the structure.Type: GrantFiled: September 29, 2010Date of Patent: October 28, 2014Assignee: Infineon Technologies AGInventors: Gerald Dallmann, Heike Rosslau, Norbert Urbansky, Scott Wallace
-
Patent number: 8866299Abstract: A semiconductor device includes a workpiece having a bottom surface opposite the top surface. Metallization layers are disposed over the top surface and a protective layer is disposed over the metallization layers. The semiconductor device further includes a metal silicide layer disposed on the bottom surface. The metal silicide layer is less than about five atomic layers in thickness. A first metal layer is disposed over the metal silicide layer such that a metal of the first metal layer is the same as a metal of the metal silicide layer.Type: GrantFiled: July 1, 2013Date of Patent: October 21, 2014Assignee: Infineon Technologies AGInventors: Mark Harrison, Evelyn Napetschnig, Franz Stueckler
-
Patent number: 8860009Abstract: A device having an easy production process and capable of achieving a long lifetime. The device has a substrate, two or more electrodes facing each other disposed on the substrate and a positive hole injection transport layer disposed between two electrodes among the two or more electrodes. The positive hole injection transport layer contains a reaction product of a molybdenum complex or tungsten complex.Type: GrantFiled: April 28, 2009Date of Patent: October 14, 2014Assignee: Dai Nippon Printing Co., Ltd.Inventors: Shigehiro Ueno, Masato Okada, Keisuke Hashimoto
-
Patent number: 8859417Abstract: A conductive structure(s), such as a gate electrode(s) or a contact structure(s), and methods of fabrication thereof are provided. The conductive structure(s) includes a first conductive layer of a first conductive material, and a second conductive layer of a second conductive material. The second conductive layer is disposed over the first conductive layer, and at least a portion of the first conductive material includes grains having a size larger than a defined value, and at least a second portion of the second conductive material includes grains having a size less than the defined value. In one embodiment, the first and second conductive materials are the same conductive material, with different-sized grains.Type: GrantFiled: January 3, 2013Date of Patent: October 14, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Jialin Yu, Huang Liu, Jilin Xia
-
Publication number: 20140299994Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.Type: ApplicationFiled: June 24, 2014Publication date: October 9, 2014Inventor: Kenichi Watanabe
-
Publication number: 20140299993Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.Type: ApplicationFiled: June 24, 2014Publication date: October 9, 2014Inventor: Kenichi Watanabe
-
Patent number: 8847397Abstract: Provided are MIM DRAM capacitors and methods of forming thereof. A MIM DRAM capacitor may include an electrode layer formed from a high work function material (e.g., greater than about 5.0 eV). This layer may be used to reduce the leakage current through the capacitor. The capacitor may also include another electrode layer having a high conductivity base portion and a conductive metal oxide portion. The conductive metal oxide portion serves to promote the growth of the high k phase of the dielectric layer.Type: GrantFiled: January 9, 2013Date of Patent: September 30, 2014Assignee: Intermolecular, Inc.Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Deweerd, Arthur Gevondyan, Hiroyuki Ode
-
Patent number: 8835310Abstract: Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.Type: GrantFiled: December 21, 2012Date of Patent: September 16, 2014Assignee: Intermolecular, Inc.Inventors: Sergey Barabash, Dipankar Pramanik, Xuena Zhang
-
Publication number: 20140252630Abstract: Self-aligned pitch split techniques for metal wiring involving a hybrid (subtractive patterning/damascene) metallization approach are provided. In one aspect, a method for forming a metal wiring layer on a wafer includes the following steps. A copper layer is formed on the wafer. A patterned hardmask is formed on the copper layer. The copper layer is subtractively patterned using the patterned hardmask to form a plurality of first copper lines. Spacers are formed on opposite sides of the first copper lines. A planarizing dielectric material is deposited onto the wafer, filling spaces between the first copper lines. One or more trenches are etched in the planarizing dielectric material. The trenches are filled with copper to form a plurality of second copper lines that are self-aligned with the first copper lines. An electronic device is also provided.Type: ApplicationFiled: March 11, 2013Publication date: September 11, 2014Applicant: International Business Machines CorporationInventors: Josephine B. Chang, Michael A. Guillorn, Eric A. Joseph, Hiroyuki Miyazoe
-
Publication number: 20140232004Abstract: The present invention includes a semiconductor substrate and a back electrode (a back multilayer electrode in the preferred embodiment) provided on a back surface of the semiconductor substrate. A rough source pattern is formed in a peripheral edge portion of the back surface of the semiconductor substrate which faces the back multilayer electrode.Type: ApplicationFiled: October 24, 2013Publication date: August 21, 2014Applicant: MITSUBISHI ELECTRIC CORPORATIONInventors: Yasuhiro YOSHIURA, Masayoshi TARUTANI, Eiko OTSUKI
-
Publication number: 20140232000Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes conductive lines having sidewalls angled between about 45° to about 90° relative to a plane in which bottom surfaces of the conductive lines lie. A dielectric layer is formed over the conductive lines, where forming the dielectric layer after the conductive lines are formed mitigates damage to the dielectric layer, such as by not subjecting the dielectric layer to etching. The angled sidewalls of the conductive lines cause the dielectric layer to pinch off before an area between adjacent conductive lines is filled, thus establishing an air gap between adjacent conductive lines, where the air gap has a lower dielectric constant than the dielectric material. At least one of the substantially undamaged dielectric layer or the air gap serves to reduce parasitic capacitance within the semiconductor arrangement, which improves performance.Type: ApplicationFiled: April 30, 2014Publication date: August 21, 2014Inventors: Chien-Hua Huang, Hsin-Chieh Yao, Chung-Ju Lee
-
Publication number: 20140217594Abstract: Provided is a semiconductor device configured to prevent a penetration of moisture into an internal circuit. The moisture from a bonding pad to the internal circuit is blocked by providing an underlying polysilicon film (10) formed as a lower layer of a bonding pad, a bonding pad (1) formed above the underlying polysilicon film (10) through intermediation of an inter-layer insulation film (21), and an outer circumferential interconnecting line (3) formed so as to surround an outer side of the bonding pad 1, and by connecting the outer circumferential interconnecting line (3) and the underlying polysilicon film (10) with a continuous outer circumferential contact.Type: ApplicationFiled: February 4, 2014Publication date: August 7, 2014Applicant: Seiko Instruments Inc.Inventors: Keisuke UEMURA, Jun OSANAI
-
Publication number: 20140210092Abstract: According to one disclosed embodiment, an electrical contact for use on a semiconductor device comprises an electrode stack including a plurality of metal layers and a capping layer formed over the plurality of metal layers. The capping layer comprises a refractory metal nitride. In one embodiment, a method for fabricating an electrical contact for use on a semiconductor device comprises forming an electrode stack including a plurality of metal layers over the semiconductor device, and depositing a refractory metal nitride capping layer of the electrode stack over the plurality of metal layers. The method may further comprise annealing the electrode stack at a temperature of less than approximately 875° C. In some embodiments, the method may additionally include forming one of a Schottky metal layer and a gate insulator layer between the electrode stack and the semiconductor device.Type: ApplicationFiled: March 27, 2014Publication date: July 31, 2014Applicant: International Rectifier CorporationInventor: Sadiki Jordan
-
Patent number: 8791576Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.Type: GrantFiled: July 13, 2012Date of Patent: July 29, 2014Assignee: Fujitsu Semiconductor LimitedInventor: Kenichi Watanabe
-
Publication number: 20140203439Abstract: A system and method for manufacturing a through silicon via is disclosed. An embodiment comprises forming a through silicon via with a liner protruding from a substrate. A passivation layer is formed over the substrate and the through silicon via, and the passivation layer and liner are recessed from the sidewalls of the through silicon via. Conductive material may then be formed in contact with both the sidewalls and a top surface of the through silicon via.Type: ApplicationFiled: March 20, 2014Publication date: July 24, 2014Inventors: Chen-Hua Yu, Shin-Puu Jeng, Wen-Chih Chiou, Fang Wen Tsai, Chen-Yu Tsai
-
Publication number: 20140203438Abstract: Methods and apparatuses for forming an under-bump metallization (UBM) pad above a dielectric layer are disclosed. The dielectric layer may be above a metal layer and comprises a first opening and a second opening surrounding the first opening, which divide the dielectric layer into a first area and a second area. An UBM pad extends into and fills the first opening of the dielectric layer, above the first area between the first opening and the second opening, and may further extends down at least partly into the second opening covering a part or the whole of the second opening of the dielectric layer. The UBM pad may further extend over a part of the second area of the dielectric layer if the UBM pad fills the whole of the second opening of the dielectric layer. A solder ball may be mounted on the UBM pad.Type: ApplicationFiled: January 18, 2013Publication date: July 24, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsien-Wei Chen, Tsung-Yuan Yu, Jie Chen, Ying-Ju Chen
-
Publication number: 20140183745Abstract: A conductive structure(s), such as a gate electrode(s) or a contact structure(s), and methods of fabrication thereof are provided. The conductive structure(s) includes a first conductive layer of a first conductive material, and a second conductive layer of a second conductive material. The second conductive layer is disposed over the first conductive layer, and at least a portion of the first conductive material includes grains having a size larger than a defined value, and at least a second portion of the second conductive material includes grains having a size less than the defined value. In one embodiment, the first and second conductive materials are the same conductive material, with different-sized grains.Type: ApplicationFiled: January 3, 2013Publication date: July 3, 2014Applicant: GLOBALFOUNDRIES, INC.Inventors: Jialin YU, Huang LIU, Jilin XIA
-
Patent number: 8766448Abstract: A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts.Type: GrantFiled: April 14, 2008Date of Patent: July 1, 2014Assignee: Sensor Electronic Technology, Inc.Inventors: Remigijus Gaska, Xuhong Hu, Michael Shur
-
Patent number: 8766445Abstract: A semiconductor device includes: a semiconductor substrate; an underlying wiring on the semiconductor substrate; a resin film extending to the semiconductor substrate and the underlying wiring, and having a first opening on the underlying wiring; a first SiN film on the underlying wiring and the resin film, and having a second opening in the first opening; an upper layer wiring on the underlying wiring and part of the resin film; and a second SiN film on the upper layer wiring and the resin film, and joined to the first SiN film on the resin film. The upper layer wiring includes a Ti film, connected to the underlying wiring via the first and second openings, and an Au film on the Ti film. The first and second SiN films circumferentially protect the Ti film.Type: GrantFiled: June 18, 2012Date of Patent: July 1, 2014Assignee: Mitsubishi Electric CorporationInventors: Takayuki Hisaka, Takahiro Nakamoto, Toshihiko Shiga, Koichiro Nishizawa
-
Publication number: 20140167270Abstract: In one embodiment method, a first Ti based layer is deposited on the substrate. An intermediate Al based layer is deposited on the first layer, a second NiV based layer is deposited on the intermediate layer, and a third Ag based layer is deposited on the second layer. The layer stack is tempered in such a way that at least one inter-metallic phase is formed between at least two metals of the group containing Ti, Al, Ni and V.Type: ApplicationFiled: December 14, 2012Publication date: June 19, 2014Applicant: INFINEON TECHNOLOGIES AGInventors: Paul Ganitzer, Kurt Matoy, Martin Sporn, Mark Harrison
-
Publication number: 20140167271Abstract: An interconnect structure and a forming method thereof are provided. The method includes: providing a semiconductor substrate which has semiconductor devices formed therein; forming a conductive layer on the semiconductor substrate; forming a mask layer on the conductive layer; forming a groove in the mask layer and the conductive layer, the groove having a depth-to-width ratio greater than 0.8; and depositing an intermetallic dielectric layer to cover the mask layer and fill the groove, wherein an air gap is formed in a portion of the intermetallic dielectric layer in the groove. The mask layer is formed on the conductive layer, so that the depth-to-width ratio of the groove between adjacent interconnects is increased. Besides, the air gap with a relatively large size is formed between two adjacent interconnects. Therefore, a dielectric constant and parasitic capacitance between adjacent interconnects are reduced evidently, and the performance of the semiconductor devices is improved.Type: ApplicationFiled: December 17, 2013Publication date: June 19, 2014Applicant: Shanghai Huahong Grace Semiconductor Manufacturing CorporationInventor: Ernest Li
-
Publication number: 20140167268Abstract: A graphene and metal interconnect structure and methods of making the same are disclosed. The graphene is a multiple layer graphene structure that is grown using a graphene catalyst. The graphene forms an electrical connection between two or more VIAs or components, or a combination of VIAs and components. A VIA includes a fill metal, with at least a portion of the fill metal being surrounded by a barrier metal. A component may be a routing track, a clock signal source, a power source, an electromagnetic signal source, a ground terminal, a transistor, a macrocell, or a combination thereof. The graphene is grown, using a graphene catalyst, from both solid and liquid carbon sources using chemical vapor deposition (CVD) at a temperature between 300° C.-400° C. The graphene catalyst can be an elemental form of, or alloy including, nickel, palladium, ruthenium, iridium or copper.Type: ApplicationFiled: December 17, 2012Publication date: June 19, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Naftali E. Lustig, Andrew H. Simon
-
Patent number: 8749064Abstract: A semiconductor device includes an interlayer insulation film, an underlying line provided in the interlayer insulation film, a liner film overlying the interlayer insulation film, an interlayer insulation film overlying the liner film. The underlying line has a lower hole and the liner film and the interlayer insulation film have an upper hole communicating with the lower hole, and the lower hole is larger in diameter than the upper hole. The semiconductor device further includes a conductive film provided at an internal wall surface of the lower hole, a barrier metal provided along an internal wall surface of the upper hole, and a Cu film filling the upper and lower holes. The conductive film contains a substance identical to a substance of the barrier metal. A highly reliable semiconductor device can thus be obtained.Type: GrantFiled: April 22, 2013Date of Patent: June 10, 2014Assignee: Renesas Electronics CorporationInventors: Kazuyoshi Maekawa, Kenichi Mori
-
Patent number: 8742592Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes: forming a silicon oxide film on a semiconductor substrate; forming a via in the silicon oxide film; forming a contact layer inside the via; forming a silicon layer on the contact layer; and forming a tungsten film embedded in the via by making a tungsten-containing gas react with the silicon layer.Type: GrantFiled: March 20, 2012Date of Patent: June 3, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Satoshi Wakatsuki, Ichiro Mizushima, Atsuko Sakata, Masayuki Kitamura
-
Patent number: 8736054Abstract: A wiring structure for a semiconductor device includes a multilayer metallization having a total thickness of at least 5 ?m and an interlayer disposed in the multilayer metallization with a first side of the interlayer adjoining one layer of the multilayer metallization and a second opposing side of the interlayer adjoining a different layer of the multilayer metallization. The interlayer includes at least one of W, WTi, Ta, TaN, TiW, and TiN or other suitable compound metal or a metal silicide such as WSi, MoSi, TiSi, and TaSi.Type: GrantFiled: July 27, 2011Date of Patent: May 27, 2014Assignee: Infineon Technologies AGInventors: Manfred Schneegans, Jürgen Förster