Alloy Containing Molybdenum, Titanium, Or Tungsten Patents (Class 257/764)
  • Patent number: 7804144
    Abstract: A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Gate oxides formed from alloys such as cobalt-titanium are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which inhibits unwanted species migration and unwanted reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: September 28, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7795730
    Abstract: The invention includes a first step for forming a first conductive layer composed of a high melting point metal to be in contact with an insulating layer; and a second step for forming a second conductive layer by discharging a composition containing a conductive material so as to be in contact with the first conductive layer. The first conductive layer is formed prior to forming the second conductive layer by droplet discharging, and hence, adhesiveness and peel resistance of the second conductive layer are improved. Furthermore, the insulating layer is covered with the first conductive layer, thereby preventing damage or destruction of the insulating layer.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: September 14, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Osamu Nakamura, Junko Sato
  • Patent number: 7786585
    Abstract: In a semiconductor integrated circuit device having plural layers of buried wirings, it is intended to prevent the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 ?m and is smaller than about 1.44 ?m, and the width of a second Cu wiring and the diameter of a plug are about 0.18 ?m, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 31, 2010
    Assignee: Renesas Electronics Corp.
    Inventors: Takako Funakoshi, Eiichi Murakami, Kazumasa Yanagisawa, Kan Takeuchi, Hideo Aoki, Hizuru Yamaguchi, Takayuki Oshima, Kazuyuki Tsunokuni, Kousuke Okuyama
  • Patent number: 7786528
    Abstract: A trench MOSFET with improved metal schemes is disclosed. The improved contact structure applies a buffer layer to minimize the bonding damage to semiconductor when bonding copper wire upon front source and gate metal without additional cost.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: August 31, 2010
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20100176513
    Abstract: A metal interconnect structure in ultra low-k dielectrics is described having a capped interconnect layer; an interconnect feature with a contact via and a contact line formed in a dielectric layer, where the via is partially embedded into the interconnect layer; and a thin film formed on the dielectric layer and separating the dielectric layer from the contact line. A method of fabricating the interconnect structure is also described and includes forming a first dielectric on a capped interconnect element; forming a thin film over the first dielectric; forming a second dielectric on the thin film; forming a via opening on the second dielectric, the thin film and extending into the first dielectric; forming a line trench on a portion of the second dielectric; and filling the via opening and the line trench with a conductive material for forming a contact via and a contact line, where the contact via is partially embedded in the interconnect element.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Birendra Agarwala, Du Nguyen, Hazara Rathore
  • Publication number: 20100163294
    Abstract: A method of forming a metal line of a semiconductor device, and devices thereof. A method of forming a metal line of a semiconductor device may include forming a multi-layer structure over a substrate, forming a photoresist pattern over a multi-layer structure, forming a metal line by selectively etching a multi-layer structure using a photoresist pattern as an etching mask, removing an electron over a surface of a metal line by processing a surface of a metal line, and/or cleaning a metal line.
    Type: Application
    Filed: December 16, 2009
    Publication date: July 1, 2010
    Inventor: Chung-Kyung Jung
  • Patent number: 7737560
    Abstract: A power semiconductor IC device is disclosed. In one embodiment, the device includes a substrate, and a layer structure formed on the substrate. The layer structure includes a metallization layer including copper, wherein the metallization layer is formed as a stack structure including at least two copper layers and a stabilization layer between the two copper layers.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: June 15, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Matthias Stecher, Renate Hofmann, Joerg Busch
  • Publication number: 20100140803
    Abstract: A method of manufacturing a semiconductor device having a transition layer, including (a) forming a wiring and a die pad on a wafer, (b) forming a thin film layer on an entire surface of the wafer obtained in the step (a), (c) forming a resist layer on the thin film layer, and forming a thickening layer on a resist layer unformed section, (d) peeling the resist layer, (e) removing the thin film layer by etching, and (f) dividing the wafer to thereby form semiconductor devices.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 10, 2010
    Applicant: IBIDEN CO., LTD.
    Inventors: Hajime SAKAMOTO, Dongdong WANG
  • Patent number: 7719111
    Abstract: A nanowire electronmechanical device with an improved structure and a method of fabricating the same prevent burning of two nanowires which are switched due to contact with each other while providing stable on-off switching characteristics.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 18, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Eun Jang, Seung-Nam Cha, Yong-Wan Jin, Byong-Gwon Song
  • Patent number: 7704885
    Abstract: A method for fabricating a semiconductor device is provided. The method of fabricating a semiconductor device provides a semiconductor substrate; forming a first insulating layer, a first conductive layer and a chemical mechanical polishing (CMP) stop layer over the semiconductor substrate in sequence; forming openings in the chemical mechanical polishing (CMP) stop layer and the underlying first conductive layer to expose the first insulating layer, thereby leaving a patterned chemical mechanical polishing (CMP) stop layer and a patterned first conductive layer; forming a second insulating layer on the patterned chemical mechanical polishing (CMP) stop layer, filling in the openings; performing a planarization process to remove a portion of the second insulating layer until the patterned chemical mechanical polishing (CMP) stop layer is exposed, thereby leaving a remaining second insulating layer in the openings; removing the patterned chemical mechanical polishing (CMP) stop layer.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kern-Huat Ang, Po-Jen Wang
  • Patent number: 7701059
    Abstract: A process for forming a local interconnect includes applying a layer of metal over a semiconductor layer. A layer of metal silicide is formed over the layer of metal. The layer of metal silicide is patterned to define the boundaries of the local interconnect. The metal silicide is reacted with the layer of metal to form a composite structure. The composite structure includes the metal silicide, another metal silicide formed as silicon from the metal silicide reacts with the underlying layer of metal and an intermetallic compound of the metal from the layer of metal and metal from the layer of metal silicide. The unreacted layer of metal is removed with the composite structure remaining as the local interconnect.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Jigish D. Trivedi
  • Patent number: 7642654
    Abstract: A multilayer wiring structure of a semiconductor device having a stacked structure is arranged to restrain reliability degradation due to stress applied to the region of wiring between opposite upper and lower plugs. The rate of overlap of contact surface between upper plug and wiring on contact surface between lower plug and wiring, is small to the extent that no void is generated. The multilayer wiring structure is produced such that no grain boundary is contained in the region of wiring between upper and lower plugs. The difference in thermal expansion coefficient between the material of wiring and the material of upper and lower plugs, is small to the extent that no void is generated.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: January 5, 2010
    Assignee: Panasonic Corporation
    Inventors: Shinichi Domae, Hiroshi Masuda, Yoshiaki Kato, Kousaku Yano
  • Patent number: 7642655
    Abstract: In order to form an aluminum system wiring that does not peel off on an insulating film containing fluorine and to improve the reliability thereof, a semiconductor device according to the present invention includes an insulating film (14) containing fluorine formed on a substrate (11), a titanium aluminum alloy film (17a) formed on the insulating film (14) containing fluorine, and a metallic film (17b) comprising aluminum or an aluminum alloy formed on the titanium aluminum alloy film (17a).
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: January 5, 2010
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Enomoto, Ryuichi Kanamura
  • Patent number: 7633086
    Abstract: A light emitting device is disclosed which includes a substrate, a plurality of anode electrode layers disposed in a first direction on the substrate, a plurality of cathode electrode layers disposed in a second direction different from the first direction on the substrate, a plurality of data lines electrically communicated with the anode electrode layers, and a plurality of scan lines electrically communicated with the cathode electrode layers.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: December 15, 2009
    Assignee: LG Display Co., Ltd.
    Inventor: Chun Tak Lee
  • Publication number: 20090302475
    Abstract: A semiconductor device includes a first interlayer insulating film, and a plurality of first interconnects formed in the first interlayer insulating film. A void is selectively formed between adjacent ones of the plurality of first interconnects in the first interlayer insulating film, and a cap insulating film is formed in a region located over the void and between the interconnects. Respective widths of a lower end and an upper end of the void are substantially the same as a gap between the interconnects located adjacent to the void, and the lower end of the void is located lower than lower ends of the first interconnects located adjacent to the void.
    Type: Application
    Filed: August 12, 2009
    Publication date: December 10, 2009
    Inventors: Hayato Korogi, Takeshi Harada, Akira Ueki
  • Patent number: 7626264
    Abstract: A substrate for device bonding is provided, which enables bonding of a device with high bond strength to an Au electrode formed on a substrate such as aluminum nitride by soldering the device at a low temperature using a soft solder metal having a low melting point such as an Au—Sn-based solder having an Au content of 10% by weight. The substrate for device bonding comprises a substrate having an Au electrode layer formed on its surface and in which (i) a layer composed of a platinum group element, (ii) a layer composed of at least one transition metal element selected from the group consisting of Ti, V, Cr and Co, (iii) a barrier metal layer composed of at least one metal selected from the group consisting of Ag, Cu and Ni and (iv) a solder layer composed of a solder containing Sn or In as a main component are laminated in this order on the Au electrode layer.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: December 1, 2009
    Assignee: Tokuyama Corporation
    Inventor: Hiroki Yokoyama
  • Publication number: 20090283877
    Abstract: A semiconductor device and manufacturing method thereof are disclosed. The device comprises a semiconductor die, a passivation layer, a wiring redistribution layer (RDL), an Ni/Au layer, and a solder mask. The semiconductor die comprises a top metal exposed in an active surface thereof. The passivation layer overlies the active surface of the semiconductor die, and comprises a through passivation opening overlying the top metal. The wiring RDL, comprising an Al layer, overlies the passivation layer, and electrically connects to the top metal via the passivation opening. The solder mask overlies the passivation layer and the wiring RDL, exposing a terminal of the wiring RDL.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 19, 2009
    Applicant: Xintec Inc.
    Inventors: Chia-Lun Tsai, Ching-Yu Ni, Jack Chen, Wen-Cheng Chien
  • Patent number: 7595556
    Abstract: Embodiments relate to a semiconductor device and a method for manufacturing the same. According to embodiments, the semiconductor device may include a semiconductor substrate formed with a metal interconnection, a first interlayer dielectric layer formed on the metal interconnection and having a first contact plug, a second interlayer dielectric layer formed on the first interlayer dielectric layer and having a second contact plug, and a third interlayer dielectric layer formed on the second interlayer dielectric layer and having a third contact plug, wherein the first to third contact plugs are connected to each other.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 29, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jin Ah Kang
  • Patent number: 7566976
    Abstract: A semiconductor device has a porous low-dielectric-constant film formed on a substrate and having an opening and a fine particle film composed of a plurality of aggregately deposited fine particles each having a diameter of not less than 1 nm and not more than 2 nm and formed on a surface of the portion of the porous low-dielectric-constant film which is formed with the opening. The fine particles are filled in voids exposed at the surface of the portion of the porous low-dielectric-constant film which is formed with the opening.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: July 28, 2009
    Assignee: Panasonic Corporation
    Inventor: Shinichi Ogawa
  • Patent number: 7557446
    Abstract: A semiconductor device formed by the steps of forming a contact hole in an insulation film so as to extend therethrough and so as to expose a conductor body at a bottom part of the contact hole, forming a barrier metal film of tungsten nitride on the bottom part and a sidewall surface of the contact hole with a conformal shape to the bottom part and the sidewall surface of the contact hole, forming a tungsten layer so as to fill the contact hole via the barrier metal film, and forming a tungsten plug in the contact hole by the tungsten layer by polishing away a part of the tungsten film on the insulation film until a surface of the insulation film is exposed, wherein there is conducted a step of cleaning a surface of the conductor body prior to the forming step of the barrier metal film.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 7, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Takeshi Ito, Satoshi Inagaki, Yasunori Uchino, Kazuo Kawamura
  • Patent number: 7550851
    Abstract: A process is described that forms a low resistivity connection between a tungsten layer and a silicon surface with high adherence of the tungsten to the silicon. The silicon surface is plasma-cleaned to remove native oxide. A very thin layer (one or more monolayers) of Si-NH2 is formed on the silicon surface, serving as an adhesion layer. A WNx layer is formed over the Si-NH2 layer, using an atomic layer deposition (ALD) process, to serve as a barrier layer. A thick tungsten layer is formed over the WNx layer by CVD. An additional metal layer (e.g., aluminum) may be formed over the tungsten layer.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 23, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Huong T. Nguyen, Dennis Hausmann
  • Patent number: 7550782
    Abstract: In a semiconductor device in which a group III nitride compound semiconductor layer is formed without a low temperature grown buffer layer provided on an undercoat layer formed by a metal nitride layer, the metal nitride layer is formed of reddish brown titanium nitride. The reddish brown titanium nitride can be obtained by causing nitrogen to be rich in the titanium nitride.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: June 23, 2009
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masanori Murakami, Teppei Watanabe, Susumu Tsukimoto, Kazuhiro Ito, Jun Ito, Miki Moriyama, Naoki Shibata
  • Publication number: 20090152726
    Abstract: A metal line includes a lower metal line pattern having a first width formed over the dielectric pattern and an upper metal line pattern formed over and contacting the lower metal line pattern such that the upper metal line pattern has a second width less than the first width.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 18, 2009
    Inventor: Kwang-Seon Choi
  • Patent number: 7547972
    Abstract: The laminated structure includes a substrate of low dielectric constant material of silicon compound and an electroless copper plating layer laminated thereon with a barrier layer. The barrier layer is interposed between the substrate and the copper layer, and the barrier layer is formed by electroless plating. And the laminated structure is characterized in that the barrier layer is formed on the substrate with a monomolecular layer of organosilane compound and a palladium catalyst which are interposed between the substrate and the barrier layer, the palladium catalyst modifies the terminal, adjacent to the barrier layer, of the monomolecular layer, and the barrier layer includes an electroless NiB plating layer which is disposed on the substrate side, and a electroless CoWP plating layer.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 16, 2009
    Assignee: Waseda University
    Inventors: Tetsuya Osaka, Masahiro Yoshino
  • Patent number: 7531902
    Abstract: A multi-layered metal line of a semiconductor device has a lower metal line and an upper metal line. The upper metal line includes a diffusion barrier, which is made of a stack of a first WNx layer, a WCyNx layer and a second WNx layer.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 12, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jeong Tae Kim, Baek Mann Kim, Soo Hyun Kim, Young Jin Lee, Dong Ha Jung
  • Patent number: 7531896
    Abstract: A system and method is disclosed for minimizing increases in via resistance by applying a nitrogen plasma after a titanium liner deposition. A via in a semiconductor device is formed by placing a metal layer on a substrate and placing a layer of anti-reflective coating (ARC) titanium nitride (TiN) over the metal layer. A layer of dielectric material is placed over the ARC TiN layer and a via passage is etched through the dielectric and partially through the ARC TiN layer. A titanium layer is then deposited and subjected to a nitrogen plasma process. The nitrogen plasma converts the titanium layer to a first layer of titanium nitride. The first layer of titanium nitride does not react with fluorine to form a high resistance compound. Therefore the electrical resistance of the first layer of titanium nitride does not significantly increase during subsequent thermal cycles.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: May 12, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Sergei Drizlikh, Thomas John Francis
  • Publication number: 20090115063
    Abstract: In manufacturing a semiconductor integrated circuit device, an interconnect trench and a contact hole are formed in an interlayer insulating film formed over a first-level interconnect on a semiconductor substrate, a barrier film is formed inside of the trench and contact hole so that its film thickness increases from the center of the bottom of the hole toward the sidewalls all around the bottom of the contact hole, a copper film is formed over the barrier film, and a second-level interconnect and a connector portion (plug) are formed by polishing by CMP. In this way, the geometrically shortest pathway of an electrical current flowing from the second-level interconnect toward the first-level interconnect through a connector portion (plug) does not coincide with a thin barrier film portion which has the lowest electrical resistance, so that the current pathway can be dispersed and a concentration of electrons does not occur readily.
    Type: Application
    Filed: December 30, 2008
    Publication date: May 7, 2009
    Inventors: Kensuke Ishikawa, Tatsuyuki Saito, Masanori Miyauchi, Toshio Saito, Hiroshi Ashihara
  • Patent number: 7528491
    Abstract: Methods for forming vias are disclosed. The methods include providing a substrate having a first surface and an opposing, second surface. A first opening, a second opening, and a third opening are formed in a substrate such that the first opening, the second opening, and the third opening are in communication with each other. A portion of the first opening, the second opening, and the third opening are filled with a conductive material. Semiconductor devices, including the vias of the present invention, are also disclosed. Semiconductor components and assemblies resulting therefrom, and an electronic system, including the vias of the present invention, are further disclosed.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Warren M. Farnworth
  • Patent number: 7521801
    Abstract: A Ti barrier film and a TiN barrier film are formed between a top-level pad made of copper or an alloy film mainly composed of copper and an Al pad. The Ti barrier film is formed to have a greater thickness than the TiN barrier film.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 21, 2009
    Assignee: Panasonic Corporation
    Inventors: Koji Takemura, Hiroshige Hirano, Yutaka Itoh, Koji Koike
  • Publication number: 20090096108
    Abstract: Methods and a structure. A method of forming contact structure includes depositing a silicide layer onto a substrate; depositing an electrically insulating layer over a first surface of the silicide layer; forming a via through the insulating layer extending to the first surface; depositing an electrically conductive layer covering a bottom and at least one vertical wall of the via; removing the conductive layer from the bottom; and filling the via with aluminum directly contacting the silicide layer. A structure includes: a silicide layer disposed on a substrate; an electrically insulating layer disposed over the silicide layer; an aluminum plug extending through the insulating layer and directly contacting the silicide layer; and an electrically conductive layer disposed between the plug and the insulating layer. Also included is a method where an aluminum layer grows selectively from a silicide layer and at least one sidewall of a trench.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 16, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ying Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 7511302
    Abstract: Multi-layered wiring for a larger flat panel display is formed by depositing molybdenum on a substrate in presence of a precursor gas containing at least one oxygen, nitrogen and carbon to form a molybdenum layer. An aluminum layer is deposited on the molybdenum layer. Another metal layer may be formed on the aluminum layer. The molybdenum layer has a face-centered cubic (FCC) lattice structure with a preferred orientation of (111).
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Hun Lee, Jae-Kyeong Lee, Chang-Oh Jeong, Beom-Seok Cho
  • Patent number: 7504712
    Abstract: An electronic device comprises a leadframe attached to a die and embedded in a mold packaging with enhanced adhesion property. The leadframe comprises a bonding surface, a soldering surface, a mold adhesion surface, and a die attachment surface wherein the soldering surface and bonding surface are selectively plated with nickel/palladium/gold. The mold adhesion surface and the die attachment surface are roughened for better attachment to a mold and a die respectively.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 17, 2009
    Assignee: QPL Limited
    Inventors: Joseph Andrew Martin, King Yin Fred Fu, Hoi Ping Patrick Phen
  • Patent number: 7504728
    Abstract: An integrated circuit includes active circuitry and at least one bond pad. The at least one bond pad, in turn, comprises a metallization layer and a capping layer having one or more grooves. The metallization layer is in electrical contact with at least a portion of the active circuitry. In addition, the capping layer is formed over at least a portion of the metallization layer and is in electrical contact with the metallization layer. The grooves in the capping layer may be located only proximate to the edges of the bond pad or may run throughout the bond pad depending on the application.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: March 17, 2009
    Assignee: Agere Systems Inc.
    Inventor: Vivian Ryan
  • Patent number: 7482684
    Abstract: A semiconductor device and a method of fabricating the same are disclosed. The semiconductor device includes a lower wire, an interlayer insulating film formed on the lower wire and having a via hole exposing the upper surface of the lower wire, a diffusion barrier formed on the inner wall of the via hole, and an upper wire filling the via hole and directly contacting the lower wire, in which a dopant region containing a component of the diffusion barrier is formed in the lower wire in the extension direction of the via hole.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: January 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-hwan Oh, Dong-cho Maeng, Soon-ho Kim
  • Patent number: 7470991
    Abstract: The present invention provides an integrated high voltage capacitor, a method of manufacture therefore, and an integrated circuit chip including the same. The integrated high voltage capacitor, among other features, includes a first capacitor plate (120) located over or in a semiconductor substrate (105), and an insulator (130) located over the first capacitor plate (120), at least a portion of the insulator (130) comprising an interlevel dielectric layer (135, 138, 143, or 148). The integrated high voltage capacitor further includes capacitance uniformity structures (910) located at least partially within the insulator (130) and a second capacitor plate (160) located over the insulator (130).
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 30, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: David L. Larkin, Lily X. Springer, Makoto Takemura, Ashish V. Gokhale, Dhaval A. Saraiya
  • Patent number: 7459788
    Abstract: An ohmic electrode structure of a nitride semiconductor device having a nitride semiconductor. The ohmic electrode structure is provided with a first metal film formed on the nitride semiconductor and a second metal film formed on the first metal film. The first metal film is composed of at least one material selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta and Zr. The second metal film is composed of at least one material different from that of the first metal film (102), selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta, Zr, Pt and Au.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: December 2, 2008
    Assignee: NEC Corporation
    Inventors: Tatsuo Nakayama, Yuji Ando, Hironobu Miyamoto, Masaaki Kuzuhara, Yasuhiro Okamoto, Takashi Inoue, Koji Hataya
  • Publication number: 20080277797
    Abstract: A semiconductor structure includes a first dielectric layer over a substrate. At least one first conductive structure is within the first dielectric layer. The first conductive structure includes a cap portion extending above a top surface of the first dielectric layer. At least one first dielectric spacer is on at least one sidewall of the cap portion of the first conductive structure.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Hua Yu, Hai-Ching Chen, Tien-I. Bao
  • Patent number: 7443032
    Abstract: A titanium layer is formed on a substrate with chemical vapor deposition (CVD). First, a seed layer is formed on the substrate by combining a first precursor with a reducing agent by CVD. Then, the titanium layer is formed on the substrate by combining a second precursor with the seed layer by CVD. The titanium layer is used to form contacts to active areas of substrate and for the formation of interlevel vias.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: October 28, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Donald L. Westmoreland
  • Publication number: 20080251779
    Abstract: A memory cell includes a FinFET select device and a memory element. In some embodiments a memory cell has a contact element coupled between a surface of the fin and the memory element.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 16, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Ronald Kakoschke, Klaus Schruefer
  • Publication number: 20080230914
    Abstract: A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
    Type: Application
    Filed: April 22, 2008
    Publication date: September 25, 2008
    Applicant: IBIDEN CO., LTD.
    Inventors: Hajime Sakamoto, Dongdong Wang
  • Publication number: 20080197338
    Abstract: Contacts having use in an integrated circuit and exemplary methods of forming the contacts are disclosed. The methods involve forming a conductive cap over a metal plug. The invention can mitigate keyholes in the contacts by capping and encapsulating the conductive material used to form the contact. The exemplary cap may be made of a nitride material.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 21, 2008
    Inventor: Jun Liu
  • Publication number: 20080136028
    Abstract: The invention includes a method of forming a metal-containing film over a surface of a semiconductor substrate. The surface is exposed to a supercritical fluid. The supercritical fluid has H2, at least one H2-activating catalyst, and at least one metal-containing precursor dispersed therein. A metal-containing film is formed across the surface of the semiconductor substrate from metal of the at least one metal-containing precursor. The invention also includes semiconductor constructions having metal-containing layers which include one or more of copper, cobalt, gold and nickel in combination with one or more of palladium, platinum, iridium, rhodium and ruthenium.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 12, 2008
    Inventors: Chien M. Wai, Hiroyuki Ohde, Steve Kramer
  • Patent number: 7385294
    Abstract: A semiconductor device having nickel silicide and a method for fabricating nickel silicide. A semiconductor substrate having a plurality of doped regions is provided. Subsequently, a nickel layer is formed on the semiconductor substrate, and a first rapid thermal process (RTP) is performed to react the nickel layer with the doped regions disposed thereunder. Thereafter, the unreacted nickel layer is removed, and a second rapid thermal process is performed to form a semiconductor device having nickel silicide. The second rapid thermal process is a spike anneal process whose process temperature is between 400 and 600° C.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: June 10, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chao-Ching Hsieh, Yi-Yiing Chiang, Tzung-Yu Hung, Yu-Lan Chang, Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen
  • Publication number: 20080128913
    Abstract: In one embodiment, the disclosure relates to a method for forming a semiconductor power device by depositing a first layer of TiW on a gate region and a source region, depositing a second layer of refractory metal over the first layer of TiW at the gate region, depositing a dielectric stack over the second layer of refractory metal and a portion of the first layer of TiW, depositing an etch stop layer over a portion of the dielectric stack, depositing an interconnect layer over the etch stop layer and the dielectric stack and depositing an etch mask over the interconnect layer.
    Type: Application
    Filed: October 25, 2007
    Publication date: June 5, 2008
    Applicant: Northrop Grumman Systems Corporation
    Inventors: Li-Shu Chen, Philip C. Smith, Steven M. Buchoff, Joel Frederick Rosenbaum, Joel Barry Schneider, Witold J. Malkowski
  • Patent number: 7372160
    Abstract: A protective barrier layer, formed of a material such as titanium or titanium nitride for which removal by chemical mechanical polishing (CMP) is primarily mechanical rather than primarily chemical, formed on a conformal tungsten layer. During subsequent CMP to pattern the tungsten layer, upper topological regions of the protective barrier layer (such as those overlying interlevel dielectric regions) are removed first, exposing the tungsten under those regions to removal, while protective barrier layer regions over lower topological regions (such as openings within the interlevel dielectric) remain to prevent chemical attack of underlying tungsten. CMP patterned tungsten is thus substantially planar with the interlevel dielectric without dishing, even in large area tungsten structures such as MOS capacitor structures.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 13, 2008
    Assignee: STMicroelectronics, Inc.
    Inventors: Charles R. Spinner, III, Rebecca A. Nickell, Todd H. Gandy
  • Publication number: 20080105982
    Abstract: A method of manufacturing a semiconductor device having an interconnection part formed of multiple carbon nanotubes is disclosed. The method includes the steps of (a) forming a growth mode control layer controlling the growth mode of the carbon nanotubes, (b) forming a catalyst layer on the growth mode control layer, and (c) causing the carbon nanotubes to grow by heating the catalyst layer by thermal CVD so that the carbon nanotubes serve as the interconnection part. The growth mode control layer is formed by sputtering or vacuum deposition in an atmospheric gas, using a metal selected from a group of Ti, Mo, V, Nb, and W. The growth mode is controlled in accordance with a predetermined concentration of oxygen gas of the atmospheric gas.
    Type: Application
    Filed: July 3, 2006
    Publication date: May 8, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Masahiro Horibe, Akio Kawabata, Mizuhisa Nihei
  • Patent number: 7368823
    Abstract: A method of manufacturing a semiconductor device having an interconnection part formed of multiple carbon nanotubes is disclosed. The method includes the steps of (a) forming a growth mode control layer controlling the growth mode of the carbon nanotubes, (b) forming a catalyst layer on the growth mode control layer, and (c) causing the carbon nanotubes to grow by heating the catalyst layer by thermal CVD so that the carbon nanotubes serve as the interconnection part. The growth mode control layer is formed by sputtering or vacuum deposition in an atmospheric gas, using a metal selected from a group of Ti, Mo, V, Nb, and W. The growth mode is controlled in accordance with a predetermined concentration of oxygen gas of the atmospheric gas.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: May 6, 2008
    Assignee: Fujitsu Limited
    Inventors: Masahiro Horibe, Akio Kawabata, Mizuhisa Nihei
  • Patent number: 7365430
    Abstract: Disclosed herein is a semiconductor device and method of manufacturing the same. A step between a memory cell formed in a cell region and a transistor formed in a peripheral circuit region is minimized, and the height of a gate in the memory cell is minimized. Accordingly, subsequent processes are facilitated and the electrical property of the device is thus improved.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 29, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cheol Mo Jeong
  • Patent number: 7361993
    Abstract: Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: April 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Daniel C. Edelstein, Ebenezer E. Eshun, Zhong-Xiang He, Robert M. Rassel, Anthony K. Stamper
  • Publication number: 20080048282
    Abstract: A semiconductor device for a system in a package (SiP) type device can include a semiconductor substrate; a pre-metal-dielectric (PMD) layer on the semiconductor substrate; at least one metal layer on the PMD layer; a first through-electrode extending through the semiconductor substrate and the PMD layer; and a second through-electrode connected to the first through-electrode through the metal layer.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 28, 2008
    Inventor: JAE WON HAN