Of Specified Configuration Patents (Class 257/773)
  • Patent number: 10910285
    Abstract: The present disclosure provides a package structure including a redistribution layer and a die. The redistribution layer includes a switch circuit portion and a redistribution portion, the switch circuit portion includes a transistor, and the redistribution portion is adjacent to the switch circuit portion. The die overlaps the redistribution portion, wherein the transistor is electrically connected to the die.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 2, 2021
    Assignee: InnoLux Corporation
    Inventors: Yi-Hung Lin, Chien-Chang Lu, Cheng-I Wu, Li-Wei Sung, Cheng-Chi Wang, Chin-Lung Ting
  • Patent number: 10910298
    Abstract: An electronic package includes a substrate having a plurality of lands embedded within an insulating layer. Conductive patterns are disposed on at least a portion of a respective land top surface. An electronic device is electrically connected to the conductive patterns, wherein the land bottom surfaces are exposed to the outside. In another embodiment, the top land surfaces and the top surface of the insulating layer are substantially co-planar and the conductive patterns further overlap portions of the top surface of the insulating layer. In one embodiment, a package body encapsulates the top surface of the insulating material and the electronic device, wherein the land bottom surfaces are exposed to the outside of the package body.
    Type: Grant
    Filed: February 3, 2018
    Date of Patent: February 2, 2021
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Won Bae Bang, Byong Jin Kim, Gi Jeong Kim, Ji Young Chung
  • Patent number: 10903457
    Abstract: A display device and a method of manufacturing the same are provided. A display device includes: a display panel including a first area, a second area, and a bending area between the first area and the second area; a first polarizing film on a first surface of the first area of the display panel; and a second polarizing film on a first surface of the second area of the display panel, and the first and second polarizing films are spaced apart from each other with the bending area therebetween.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 26, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ki Hyun Cho, Yong Hui Lee, Jung Hwa Kim, Ji Hoon Kim, Byung Seon An
  • Patent number: 10892219
    Abstract: Disclosed is an embedded multi-die interconnect bridge (EMIB) substrate. The EMIB substrate can comprise an organic substrate, a bridge embedded in the organic substrate and a plurality of routing layers. The plurality of routing layers can be embedded within the bridge. Each routing layer can have a plurality of traces. Each of the plurality of routing layers can have a coefficient of thermal expansion (CTE) that varies from an adjacent routing layer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Patent number: 10892300
    Abstract: A storage device according to embodiments includes a first conductive layer; a second conductive layer; a resistance change element provided between the first conductive layer and the second conductive layer; and an intermediate layer provided in any one of a position between the resistance change element and the first conductive layer and a position between the resistance change element and the second conductive layer, the intermediate layer containing at least one element of silicon (Si) and germanium (Ge), tellurium (Te), and aluminum (Al).
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: January 12, 2021
    Assignee: Toshiba Memory Corporation
    Inventors: Takanori Usami, Takeshi Ishizaki, Ryohei Kitao, Katsuyoshi Komatsu, Takeshi Iwasaki, Atsuko Sakata
  • Patent number: 10879345
    Abstract: A semiconductor device includes a plurality of electrode structures formed on a substrate; and an upper supporter group and a lower supporter between upper ends and lower ends of the plurality of electrode structures The upper supporter group includes a plurality of supporters, and at least some of the plurality of supporters each have an upper surface and a lower surface. One of the upper surface and the lower surface has a curved profile, and the other surface has a flat profile.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 29, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ha-young Yi, Youn-seok Choi, Young-min Ko, Mun-jun Kim, Hong-gun Kim, Seung-heon Lee
  • Patent number: 10879196
    Abstract: Semiconductor memory devices are provided. A semiconductor memory device includes a cell array region including stacked structures and a word line cut region that extends between the stacked structures. Moreover, the semiconductor memory device includes a peripheral circuit region in a stack with the cell array region and including a support pattern.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 29, 2020
    Inventors: Sang Jun Hong, Kyeong Jin Park
  • Patent number: 10878908
    Abstract: Three-dimensional (3D) semiconductor memory devices and methods of manufacturing the same are provided. Three-dimensional (3D) semiconductor memory devices may include a substrate including a cell array region and a connection region, a lower stack structure including a plurality of lower electrodes vertically stacked on the substrate, the lower stack structure having a first stair step structure extending in a first direction on the connection region and a second stair step structure extending in a second direction substantially perpendicular to the first direction on the connection region, and a plurality of intermediate stack structures vertically stacked on the lower stack structure. Each of the intermediate stack structures includes a plurality of intermediate electrodes vertically stacked and has a third stair step structure extending in the second direction on the connection region.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: December 29, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Da Woon Jeong, Sung-Hun Lee, Seokjung Yun, Hyunmog Park, JoongShik Shin, Young-Bae Yoon
  • Patent number: 10879143
    Abstract: A method of manufacturing semiconductor devices includes providing one or more semiconductor chips having a surface with electrical contact pads and a package mass encapsulating the semiconductor chip. The package mass includes a recessed portion leaving the semiconductor chip surface with the contact pads exposed, the recessed portion having a peripheral wall extending from the surface of the semiconductor chip to the outer surface of the package mass. Electrically-conductive formations are provided extending over the peripheral wall of the recessed portion with proximal ends electrically coupled with the contact pads of the semiconductor chip and distal ends at the outer surface of the package mass. The recessed portion is filled with a further package mass by leaving the distal ends of the electrically-conductive formations uncovered.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 29, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Federico Giovanni Ziglioli, Pierangelo Magni
  • Patent number: 10872872
    Abstract: Integrated circuit package substrates with high-density interconnect architecture for scaling high-density routing, as well as related structures, devices, and methods, are generally presented. More specifically, integrated circuit package substrates with fan out routing based on a high-density interconnect layer that may include pillars and vias, and integrated cavities for die attachment are presented. Additionally, integrated circuit package substrates with self-aligned pillars and vias formed on the high-density interconnect layer as well as related methods are presented.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Sri Ranga Sai Boyapati, Kristof Kuwawi Darmawikarta, Srinivas V. Pietambaram, Javier Soto Gonzalez, Kwangmo Chris Lim, Aleksandar Aleksov
  • Patent number: 10871691
    Abstract: A display device includes a substrate including pixel electrodes, a first data line extending in the first direction and through which a data signal is supplied to the pixel electrodes in a first region that is close to one ends of the pixel electrodes in the first direction, and a second data line extending in the first direction and through which a data signal is supplied to the pixel electrodes in a second region that is closer to another ends of the pixel electrodes in the first direction than the first region is, and a driver circuit disposed close to the one ends of the pixel electrodes and configured to supply a data signal to each of the pixel electrodes through the first data line and the second data line. The first data line and the second data line are overlapped with each other in the first region.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: December 22, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Masakatsu Tominaga
  • Patent number: 10868085
    Abstract: The present disclosure provides a display panel and a method for manufacturing the same, a detection method and a display device, and relates to the field of display technology. The display panel includes one or more detection units located on a substrate, wherein at least one of the one or more detection units comprises: a first electrode layer and a second electrode layer opposite to the first electrode layer; a light emitting layer located between the first electrode layer and the second electrode layer; and a fluorescent probe layer located between the first electrode layer and the light emitting layer.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: December 15, 2020
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Dini Xie, Wei Li, Xiaojin Zhang
  • Patent number: 10868178
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Patent number: 10867954
    Abstract: A method includes bonding a first device die and a second device die to an interconnect die. The interconnect die includes a first portion over and bonded to the first device die, and a second portion over and bonded to the second device die. The interconnect die electrically connects the first device die to the second device die. The method further includes encapsulating the interconnect die in an encapsulating material, and forming a plurality of redistribution lines over the interconnect die.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chiang Ting, Chi-Hsi Wu, Shang-Yun Hou, Tu-Hao Yu, Chia-Hao Hsu, Ting-Yu Yeh
  • Patent number: 10868401
    Abstract: A robotic wire termination system for efficiently and accurately connecting a plurality of wires to an electrical connector having a plurality of connector pins with corresponding wire receptacles. The system generally includes a housing, a removable alignment plate, a robotic positioner, a heating device, a touch responsive display, and a control unit. The alignment plate removably holds a selected electrical connector in a specific position and orientation with the connector pins exposed in the housing and the wire receptacles exposed outside. The display provides a visual representation of the connector pins and selections of the connector pins. The control unit receives inputs indicating the pin selections and controls the robotic positioner to sequentially move the heating device along three orthogonal longitudinal axes to a series of heating positions relative to the selected connector pins to provide heat for melting solder to connect wires to the wire receptacles.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: December 15, 2020
    Assignee: Onanon, Inc.
    Inventors: Dennis J. Johnson, Brian Fang
  • Patent number: 10867874
    Abstract: A semiconductor device and method includes forming a conductive post on a die; coupling a test probe to the conductive post with solder; and etching the solder and the conductive post with a plurality of etching processes, the plurality of etching processes including a first etching process, the first etching process comprising etching the conductive post with a nitric-based etchant.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hui-Jung Tsai, Yun Chen Hsieh, Hung-Jui Kuo
  • Patent number: 10861770
    Abstract: Examples of a power module include a resin housing including a main body and at least one projection protruding from the main body, and a lead terminal extending outwardly from the main body, wherein a through-hole is provided so as to penetrate the main body and the projection protruding from the main body.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: December 8, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventor: Teruaki Nagahara
  • Patent number: 10854499
    Abstract: An integrated circuit structure includes a set of rails, a first and second set of conductive structures and a first set of vias. The set of rails extends in a first direction and is located at a first level. Each rail of the set of rails is separated from one another in a second direction. The first set of conductive structures extends in the second direction, overlaps the set of rails and is located at a second level. The first set of vias is between the set of rails and the first set of conductive structures. Each of the first set of vias is located where each of the first set of conductive structures overlaps each of the set of rails. The first set of vias couple the first set of conductive structures to the set of rails. The second set of conductive structures is between the set of rails.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Chan Yang, Ting-Wei Chiang, Cheng-I Huang, Hui-Zhong Zhuang, Chi-Yu Lu, Stefan Rusu
  • Patent number: 10851454
    Abstract: A method of forming conformal amorphous metal films is disclosed. A method of forming crystalline metal films with a predetermined orientation is also disclosed. An amorphous nucleation layer is formed on a substrate surface. An amorphous metal layer is formed from the nucleation layer by atomic substitution. A crystalline metal layer is deposited on the amorphous metal layer by atomic layer deposition.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: December 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Yong Wu, Srinivas Gandikota, Abhijit Basu Mallick
  • Patent number: 10847442
    Abstract: A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Gowrisankar Damarla, Shyam Ramalingam
  • Patent number: 10847418
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a first dielectric layer over a semiconductor substrate and forming a first conductive feature extending into the first dielectric layer. The first conductive feature has a planar top surface. The method also includes forming a second dielectric layer over the first conductive feature. The method further includes forming a hole in the second dielectric layer to expose the planar top surface of the first conductive feature. In addition, the method includes partially removing the first conductive feature from the planar top surface of the first conductive feature to form a curved surface of the first conductive feature. The method further includes forming a second conductive feature to fill the hole after the curved surface of the first conductive feature is formed.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 24, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-Yen Peng, Chia-Tien Wu, Jye-Yen Cheng
  • Patent number: 10840133
    Abstract: The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a semiconductor substrate; a first conductive feature and a second conductive feature disposed on the semiconductor substrate; and a staggered dielectric feature interposed between the first and second conductive feature. The staggered dielectric feature includes first dielectric layers and second dielectric layers being interdigitated. The first dielectric layers include a first dielectric material and the second dielectric layers include a second dielectric material being different from the first dielectric material.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 17, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Chang Lin, Teng-Chun Tsai, Wei-Hao Wu
  • Patent number: 10840186
    Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: November 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
  • Patent number: 10840203
    Abstract: An assembly platform for arrangement as an interposer device between an integrated circuit and a substrate to interconnect the integrated circuit and the substrate through the assembly platform, the assembly platform comprising: an assembly substrate; a plurality of conducting vias extending through the assembly substrate; at least one nanostructure connection bump on a first side of the assembly substrate, the nanostructure connection bump being conductively connected to the vias and defining connection locations for connection with at least one of the integrated circuit and the substrate, wherein each of the nanostructure connection bumps comprises: a plurality of elongated conductive nanostructures vertically grown on the first side of the assembly substrate, wherein the plurality of elongated nanostructures are embedded in a metal for the connection with at least one of the integrated circuit and the substrate, at least one connection bump on a second side of the assembly substrate, the second side being
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: November 17, 2020
    Assignee: SMOLTEK AB
    Inventors: M Shafiqul Kabir, Anders Johansson, Vincent Desmaris, Muhammad Amin Saleem
  • Patent number: 10833042
    Abstract: Embodiments of bonded semiconductor structures and fabrication methods thereof are disclosed. In an example, a semiconductor device includes a first and a second semiconductor structures. The first semiconductor structure includes a first interconnect layer including first interconnects. The first semiconductor structure further includes a first bonding layer including first bonding contacts. Each first interconnect is in contact with a respective first bonding contact. The second semiconductor structure includes a second interconnect layer including second interconnects. The second semiconductor structure further includes a second bonding layer including second bonding contacts. At least one second bonding contact is in contact with a respective second interconnect. At least another second bonding contact is separated from the second interconnects. The semiconductor device further includes a bonding interface between the first and second bonding layers.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: November 10, 2020
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Tao Wang, Si Ping Hu, Jia Wen Wang, Shi Qi Huang, Jifeng Zhu, Jun Chen, Zi Qun Hua
  • Patent number: 10832948
    Abstract: A semiconductor device includes a first interlayer dielectric film on a substrate, first and second wires respectively extending in a first direction within the first interlayer dielectric film, the first and second wires being adjacent to each other in a second direction different from the first direction, a hard mask pattern on the first interlayer dielectric film, the hard mask pattern including an opening, and an air gap within the first interlayer dielectric film, the air gap including a first portion overlapping vertically with the opening and a second portion not overlapping with the opening in the first direction.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: November 10, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyu Hee Han, Jong Min Baek, Viet Ha Nguyen, Woo Kyung You, Sang Shin Jang, Byung Hee Kim
  • Patent number: 10833060
    Abstract: According to one embodiment a semiconductor storage device includes a housing, a first rigid board, a controller, a second rigid hoard, a first semiconductor memory component, and a first connection board. The first rigid board includes a plurality of first terminals on a surface of the first rigid board. The second rigid board includes a plurality of second terminals on a surface of the second rigid board. The first connection board is in a state in which at least a part of the first connection board is bent. The first connection board includes a first end portion and a second end portion. The first end portion includes a plurality of third terminals connected to the plurality of first terminals of the first rigid board. The second end portion includes a plurality of fourth terminals connected to the plurality of second terminals of the second rigid board.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 10, 2020
    Assignee: Toshiba Memory Corporation
    Inventors: Kazuya Nagasawa, Norihiro Ishii, Seiji Kawahara
  • Patent number: 10825819
    Abstract: A semiconductor device includes a substrate, a first impurity implantation region and a second impurity implantation region on the substrate and spaced apart from each other, a storage node contact in contact with the first impurity implantation region, the storage node contact including an upper contact having a first width, and a lower contact having a second width that is greater than the first width at a lower portion of the upper contact, a bit line electrically connected to the second impurity implantation region and configured to cross the substrate, a bit line node contact between the bit line and the second impurity implantation region, and a spacer between the storage node contact and the bit line and between the storage node contact and the bit line node contact.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 3, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyo Sub Kim, Hui Jung Kim, Myeong Dong Lee, Jin Hwan Chun
  • Patent number: 10818616
    Abstract: A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 27, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hung Chen, Chu-Fu Lin, Ming-Tse Lin
  • Patent number: 10818818
    Abstract: A semiconductor device includes: a first semiconductor region; and a first electrode on the first semiconductor region; wherein first semiconductor region includes a first layer and a second layer, the second layer includes a first portion and a second portion adjacent to the first portion, the first portion has a first thickness, the second portion has a second thickness less than the first thickness, the first layer includes a first material and a first dopant, the first material includes multiple elements, the first dopant has a first concentration, the second layer includes a second material and a second dopant, the second material includes multiple elements, the second dopant has a second concentration, one of the elements of the first material of the first layer is different from the elements of the second material of the second layer.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 27, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Tzu-Chieh Hu, Wei-Chieh Lien, Chen Ou, Chia-Ming Liu, Tzu-Yi Chi
  • Patent number: 10811366
    Abstract: A microelectronic package may be fabricated with at least one compliant external bond pad having at least one integrated spring structure for mitigating the effects of warpage of the microelectronic package during attachment to an external substrate. An embodiment for the microelectronic package may include a microelectronic package substrate having a first surface and an opposing second surface, wherein the microelectronic package substrate includes a void defined therein that extends into the microelectronic package substrate from the second surface thereof, and a compliant bond pad suspended over the void, wherein the compliant bond pad includes a land portion and at least one spring portion, and wherein the at least one spring portion extends from the compliant bond pad land portion to an anchor structure on the microelectronic package substrate second surface.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Feras Eid, Robert L. Sankman, Sandeep B. Sane
  • Patent number: 10809615
    Abstract: A pattern forming method comprises forming a line pattern in a first film. The line pattern includes a first pattern part including feature portions at a first dimension and a second pattern part adjacent to the first pattern part and including feature portions at a second dimension smaller than the first dimension. A second film is formed on the substrate conformally over the first film. The second film is etched to expose a top surface of the first pattern part and remove the second pattern part. The remaining first film is then removed, leaving portions of the second film that were formed on sidewalls of the first pattern part. The substrate is then processed by using those portions of the second film left after the removal of the first film as a mask.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 20, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Noriko Sakurai
  • Patent number: 10804219
    Abstract: A semiconductor device includes a plurality of lower electrodes repeatedly arranged at a first pitch in a first direction and a second direction crossing the first direction at an acute angle on a substrate, and a support pattern in contact with sidewalls of the plurality of lower electrodes and supporting the plurality of lower electrodes. The support pattern includes a first support region having a plurality of openings penetrating the support pattern and a second support region disposed at a periphery of the first support region. The plurality of openings may continuously extend in a zigzag manner, respectively, throughout an entirety of the first support region.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: October 13, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Wan Gi Sohn
  • Patent number: 10804182
    Abstract: The invention is concerned with a semiconductor power module comprising an electrically and thermally conductive base plate (14) and a semiconductor chip (12) and where a first layer of graphene (32) is placed between the semiconductor chip (12) and the base plate (14) in electrical and thermal contact with a first side the base plate (14). Thereby the cooling of the semiconductor power module is improved.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 13, 2020
    Assignee: ABB Power Grids Switzerland AG
    Inventor: Muhammad Nawaz
  • Patent number: 10797024
    Abstract: A semiconductor device includes a substrate with an opening formed through the substrate. A first electronic component is disposed over the substrate outside a footprint of the first opening. A second electronic component is disposed over the substrate opposite the first electrical component. A third electronic component is disposed over the substrate adjacent to the first electronic component. The substrate is disposed in a mold including a second opening of the mold over a first side of the substrate. The mold contacts the substrate between the first electronic component and the third electronic component. An encapsulant is deposited into the second opening. The encapsulant flows through the first opening to cover a second side of the substrate. In some embodiments, a mold film is disposed in the mold, and an interconnect structure on the substrate is embedded in the mold film.
    Type: Grant
    Filed: March 21, 2020
    Date of Patent: October 6, 2020
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: DeokKyung Yang, YongMin Kim, JaeHyuk Choi, YeoChan Ko, HeeSoo Lee
  • Patent number: 10796952
    Abstract: Provided is a memory device, including a stacked structure, a pillar, a first stop layer, and a contact plug. The stacked structure includes a plurality of conductive layers. The pillar penetrates the plurality of series-connected memory cells. The plurality of series-connected memory cells are located in a layout pattern of pillar locations at cross-points between the pillar and the conductive layers. The first stop layer covers the stacked structure and a portion of a top surface of the pillar. The contact plug passes through the first stop layer, extending into the pillar, and is electrically connected to the plurality of series-connected memory cells. The contact is landed on the contact plug, and is electrically connected to a portion of the pillar through the contact plug.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 6, 2020
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Kuan-Yuan Shen
  • Patent number: 10790205
    Abstract: A method includes: forming overlay structures at scribe lines of a wafer, each side of a die region of the wafer is disposed with at least one of the overlay structures, each of the overlay structures comprises at least one feature and at least one recess disposed above the feature, the feature and the recess are respectively disposed at a first and second layers of the wafer, the recess exposes a portion of the feature vertically aligned with the recess; acquiring an image of the overlay structures; measuring a first dimension and a second dimension of a first portion and a second portion of the recess, respectively; determining an overlay between the first and second layers of an edge region of the wafer based on an average of differences between the first and second dimensions; and modifying a subsequent lithography step to compensate for the overlay.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Feng-Pin Chen, Te-Chia Ku, Chien-Kwen Chen, Chi-Chang Wu, Cheng-Ming Ho
  • Patent number: 10785872
    Abstract: A jumper may be adapted to transmit an electrical signal. The jumper may be included in a system on a chip. The system on a chip may include a substrate, and the substrate may include one or more routing layers. The jumper may be included in the one or more routing layers of the substrate. A first interconnect may be positioned on a first side of the system on a chip, and a second interconnect may be positioned on a second side of the system on a chip. The jumper may be in electrical communication with the first interconnect, and may be in electrical communication with the second interconnect. The jumper may be electrically isolated from other components of the system on a chip, such as one or more die coupled to the substrate.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 22, 2020
    Assignee: Intel Corporation
    Inventors: Eng Huat Goh, Hoay Tien Teoh
  • Patent number: 10777655
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first plurality of conductive interconnect lines in and spaced apart by a first ILD layer, wherein individual ones of the first plurality of conductive interconnect lines comprise a first conductive barrier material along sidewalls and a bottom of a first conductive fill material. A second plurality of conductive interconnect lines is in and spaced apart by a second ILD layer above the first ILD layer, wherein individual ones of the second plurality of conductive interconnect lines comprise a second conductive barrier material along sidewalls and a bottom of a second conductive fill material, wherein the second conductive fill material is different in composition from the first conductive fill material.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: September 15, 2020
    Assignee: Intel Corporation
    Inventors: Andrew W. Yeoh, Joseph Steigerwald, Jinhong Shin, Vinay Chikarmane, Christopher P. Auth
  • Patent number: 10770682
    Abstract: A display panel comprises: a planarization layer that lies on a substrate and compensates for irregularities; an electrode pattern that lies on the planarization layer in a non-display area of the substrate and exposes at least part of the planarization layer; and a moisture-impermeable layer that covers the planarization layer exposed by the electrode pattern.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 8, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Dohyung Kim, Seungwon Yoo, Jonghyeok Im, Jaesung Lee
  • Patent number: 10770390
    Abstract: An interposer device comprising a first conductor pattern on a first side defining a portion of the interposer device to be covered by a first electrical circuit element; and a second conductor pattern on a second side to be connected to a second electrical circuit element. The second conductor pattern is electrically coupled to the first conductor pattern. The interposer device further comprises a plurality of nanostructure energy storage devices arranged within the portion of the interposer device to be covered by the first electrical circuit element. Each of the nanostructure energy storage devices comprises at least a first plurality of conductive nanostructures; a conduction controlling material embedding the nanostructures; a first electrode connected to each nanostructure in the first plurality of nanostructures; and a second electrode separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: September 8, 2020
    Assignee: SMOLTEK AB
    Inventors: M Shafiqul Kabir, Anders Johansson, Muhammad Amin Saleem, Rickard Andersson, Vincent Desmaris
  • Patent number: 10763278
    Abstract: A semiconductor memory device includes a substrate having a cell array region and a contact region, a stack structure including a plurality of gate electrodes on the cell array region and the contact region, a plurality of cell vertical channel structures extending through the stack structure on the cell array region, and a contact structure disposed beside of the stack structure on a top surface of the substrate and disposed along a line extending from the cell array region toward the contact region. The height of the contact structure on the cell array region is different from the height of the contact structure on the contact region.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: September 1, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyunghwa Yun, Pansuk Kwak, Chanho Kim, Junghwa Lee
  • Patent number: 10756072
    Abstract: A microelectronic structure (200) and a fabrication method of microelectronic are described. A first package (10) has a first conductive pad (40, 41, 47, 48) formed on a first foundation layer (12). A loop of conductive wire (50-53) is wirebonded to the first conductive pad ((40, 41, 47, 48) of the first foundation layer (12). A mold cap (70) is formed on the first foundation layer (12). A via (90-93) is formed in the mold cap (70) to reach the conductive wire (50-53). A solder structure (80-83) is coupled to the conductive wire (50-53). A second package (100) is connected to the first package (10) by attaching a second solder structure (110-113) of a second package (100) to the first solder structure (80-83) of the first package (10).
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: August 25, 2020
    Assignee: Intel Corporation
    Inventor: Mao Guo
  • Patent number: 10756142
    Abstract: Provided is a display panel and display device. The display panel includes a first non-display area, a first display area, a second display area and a third display area. The first display area at least partially surrounds the first non-display area, the first display area and the second display area are arranged in a first direction, the third display area is arranged with the first and second display areas in a second direction. The first display area includes first sub-pixels arranged in array, the second display area includes second sub-pixels arranged in array, and the third display area includes third sub-pixels arranged in array. Each first sub-pixel, each second sub-pixel and each third sub-pixel have a same size in the first direction; each first sub-pixel and each second sub-pixel have a same size in the second direction and each second sub-pixel has the size greater than each third sub-pixel in the second direction.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: August 25, 2020
    Assignee: Shanghai Tianma AM-OLED Co., Ltd.
    Inventors: Huiping Chai, Lijing Han
  • Patent number: 10748865
    Abstract: Provided is a copper paste for joining including copper particles, second particles including a metal element other than copper, and a dispersion medium, in which the copper particles include submicro copper particles having a volume-average particle diameter of 0.12 ?m or more and 0.8 ?m or less and micro copper particles having a volume-average particle diameter of 2 ?m or more and 50 ?m or less, a sum of a content of the submicro copper particles and a content of the micro copper particles is 80% by mass or more of a sum of masses of the copper particles and the second particles, the content of the submicro copper particles is 30% by mass or more and 90% by mass or less of a sum of a mass of the submicro copper particles and a mass of the micro copper particles, and a content of the second particles is 0.01% by mass or more and 10% by mass or less of the sum of the masses of the copper particles and the second particles.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 18, 2020
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Yuki Kawana, Hideo Nakako, Dai Ishikawa, Chie Sugama, Kazuhiko Kurafuchi, Yoshinori Ejiri
  • Patent number: 10743415
    Abstract: A camera module has a reduced light leakage. The camera module includes a printed circuit board and a mounting bracket mounted on the printed circuit board. The printed circuit board includes a first surface and at least one side surface perpendicularly connected to the first surface. Gaps are formed on the printed circuit board. The gaps extend from the first surface to a thickness direction of the first surface. Bumps are formed on the mounting bracket and correspondingly placed according to the gaps. Each of the bumps is received and fixed in a corresponding one of the gaps.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: August 11, 2020
    Assignee: TRIPLE WIN TECHNOLOGY(SHENZHEN) CO. LTD.
    Inventors: Jing-Wei Li, Shin-Wen Chen, Yu-Shuai Li, Sheng-Jie Ding
  • Patent number: 10741523
    Abstract: A semiconductor package device includes a transparent carrier, a first patterned conductive layer, a second patterned conductive layer, and a first insulation layer. The transparent carrier has a first surface, a second surface opposite to the first surface and a third surface extended between the first surface and the second surface. The first patterned conductive layer is disposed on the first surface of the transparent carrier. The first patterned conductive layer has a first surface coplanar with the third surface of the transparent carrier. The second patterned conductive layer is disposed on the first surface of the transparent carrier and electrically isolated from the first patterned conductive layer. The first insulation layer is disposed on the transparent carrier and covers the first patterned conductive layer.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 11, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yung-Shun Chang, Teck-Chong Lee
  • Patent number: 10741707
    Abstract: Photodetectors and methods of forming the same include a first electrode. A carbon nanotube film is formed on the first electrode. A first graphene sheet is formed on the carbon nanotube film. A second graphene sheet is configured to exert an electrical field on the first graphene sheet that changes an electrical property of the first graphene sheet.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abram L. Falk, Kuan-Chang Chiu, Damon B. Farmer, Shu-Jen Han
  • Patent number: 10734371
    Abstract: A semiconductor device includes a first substrate structure having a first substrate, circuit elements disposed on the first substrate, and first bonding pads disposed on the circuit elements. A second substrate structure is connected to the first substrate structure. The second substrate structure includes a second substrate having first and second surfaces, first and second conductive layers spaced apart from each other, a pad insulating layer having an opening exposing a portion of the second conductive layer and gate electrodes stacked to be spaced apart from each other in a first direction and electrically connected to the circuit elements. First contact plugs extend on the second surface in the first direction and connect to the gate electrodes. A second contact plug extends on the second surface in the first direction and electrically connects to the second conductive layer. Second bonding pads electrically connect to the first and second contact plugs.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: August 4, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hyun Mog Park
  • Patent number: 10727398
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a bottom electrode having a small CD is formed and is located laterally adjacent to diamond like carbon (DLC). DLC replaces a material stack of, from bottom to top, a silicon nitride layer and an organic planarization layer (OPL) which is typically used in providing a conductive structure having a reduced CD. DLC provides a higher etch resistance to IBE than silicon nitride, but DLC can be patterned using conventional etchants. The use of DLC thus reduces the number of processing steps for providing a reduced CD bottom electrode, and also provides a more robust solution to the issue of punch through to an underlying conductive material layer.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Bruce B. Doris, Chandrasekharan Kothandaraman