Cross-over Arrangement, Component Or Structure Patents (Class 257/776)
  • Patent number: 8729675
    Abstract: A semiconductor device includes a plurality of parallel-trenches that are parallel to each other, a plurality of intersect-trenches that are parallel to each other, a plurality of active regions that are confined by the parallel-trenches and the intersect-trenches, a plurality of lower conductive lines that cross the active regions, a plurality of upper conductive lines that are parallel to each other, that cross the lower conductive lines, and that cross over the active regions, and data storage elements connected to the active regions. Each of the parallel-trenches and the intersect-trenches is a straight line. The parallel-trenches cross the upper conductive lines and form a first acute angle with the upper conductive lines. The intersect-trenches cross the parallel-trenches and form a second acute angle with the parallel-trenches.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jay-Bok Choi, Kyu-Hyun Lee, Mi-Jeong Jang, Young-Jin Choi, Ju-Young Huh
  • Patent number: 8729520
    Abstract: A method includes forming an electrical insulator material over an integrated circuit having a metal-containing conductive interconnect and activating a dopant in a semiconductor material of a substrate to provide a doped region. The doped region provides a junction of opposite conductivity types. After activating the dopant, the substrate is bonded to the insulator material and at least some of the substrate is removed where bonded to the insulator material. After the removing, a memory cell is formed having a word line, an access diode, a state-changeable memory element containing chalcogenide phase change material, and a bit line all electrically connected in series, the access diode containing the junction as a p-n junction. A memory device includes an adhesion material over the insulator material and bonding the word line to the insulator material.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: May 20, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej S. Sandhu
  • Patent number: 8716863
    Abstract: The present disclosure provides an integrated circuit structure. The integrated circuit structure includes a substrate having an IC device formed therein; a first dielectric material layer disposed on the substrate and having a first trench formed therein; and a first composite interconnect feature disposed in the first trench and electrically coupled with the IC device. The first composite interconnect feature includes a first barrier layer disposed on sidewalls of the first trench; a first metal layer disposed on the first barrier layer; and a first graphene layer disposed on the metal layer.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsingjen Wann, Ting-Chu Ko
  • Publication number: 20140117566
    Abstract: A semiconductor device includes a plurality of parallel-trenches that are parallel to each other, a plurality of intersect-trenches that are parallel to each other, a plurality of active regions that are confined by the parallel-trenches and the intersect-trenches, a plurality of lower conductive lines that cross the active regions, a plurality of upper conductive lines that are parallel to each other, that cross the lower conductive lines, and that cross over the active regions, and data storage elements connected to the active regions. Each of the parallel-trenches and the intersect-trenches is a straight line. The parallel-trenches cross the upper conductive lines and form a first acute angle with the upper conductive lines. The intersect-trenches cross the parallel-trenches and form a second acute angle with the parallel-trenches.
    Type: Application
    Filed: February 11, 2013
    Publication date: May 1, 2014
    Inventors: Jay-Bok CHOI, Kyu-Hyun LEE, Mi-Jeong JANG, Young-Jin CHOI, Ju-Young HUH
  • Patent number: 8710674
    Abstract: Aspects of the invention provide an internal wiring structure of a power semiconductor device, which is capable of reducing a mutual inductance between two wiring conductors and improving the heat dissipation effect, the two wiring conductors being disposed so as to oppose each other and having currents flowing in the same direction. In some aspects, notches can be formed alternately from side walls of two flat plates, on the flat plates, to obtain two wiring conductors. The two wiring conductors can be disposed so as to oppose each other and in parallel to each other so that currents flow along the notches in directions opposite to each other. Accordingly, in some circumstances, the mutual inductance can be reduced. Further, in some circumstances, the dimensions of the planes of the wiring conductors obtained by forming the notches can be increased to improve the heat dissipation.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: April 29, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Kyohei Fukuda
  • Patent number: 8710667
    Abstract: A semiconductor device includes a first interconnect layer and a second interconnect layer provided above or under the first interconnect layer. The first interconnect layer includes a plurality of first interconnect blocks, and in each of the first interconnect blocks, a first interconnect has a first potential, and extends in at least two or more directions, and a second interconnect has a second potential, and extends in at least two or more directions. The second interconnect layer includes a third interconnect which electrically connects the first interconnect of one of a pair of adjacent first interconnect blocks and the first interconnect of the other of the pair of adjacent first interconnect blocks, and a fourth interconnect which electrically connects the second interconnect of one of the pair of adjacent first interconnect blocks and the second interconnect of the other of the pair of adjacent first interconnect blocks.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroshige Hirano, Yukitoshi Ota
  • Patent number: 8710648
    Abstract: A method to provide a wafer level package with increasing contact pad area comprising the steps of forming a first packaging layer on wafer top surface, grinding the wafer back surface and etch through holes, depositing a metal to fill the through holes and covering wafer backside, cutting through the wafer from wafer backside forming a plurality of grooves separating each chip then depositing a second packaging layer filling the grooves and covering the wafer back metal, reducing the first packaging layer thickness to expose the second packaging layer filling the grooves and forming a plurality of contact pads overlaying the first packaging layer thereafter cutting through the second packaging layer in the grooves to form individual package.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventor: Yan Xun Xue
  • Patent number: 8704363
    Abstract: An interface plate capable of being mounted between first and second surface-mounted electronic chips. The plate includes a plurality of first, second, and third through openings, the first openings being filled with a conductive material and being arranged to be in front of pads of the first and second chips during the assembly, the second openings being filled with a second material, the third openings being filled with a third material, the second and third materials forming two complementary components of a thermoelectric couple.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: April 22, 2014
    Assignee: STMicroelectronics S.A.
    Inventors: Yacine Felk, Alexis Farcy
  • Patent number: 8698314
    Abstract: A semiconductor device of the invention include a rectangular semiconductor element mounted on a substrate formed with an external input terminal, an external output terminal, and a plurality of wiring patterns connected to each of the external input terminal and the external output terminal. The semiconductor element comprises, a plurality of first electrodes formed along a first edge of a surface thereof, a plurality of second electrodes formed along an edge opposite to the first edge of the surface, a plurality of third electrodes formed in the neighborhood of a functional block, and an internal wiring for connecting the first electrodes and the third electrodes. The substrate comprises, a first wiring pattern for connecting the external input terminal and the first electrodes, a second wiring pattern for connecting the external output terminal and the second electrodes, and a third wiring pattern for connecting the first electrodes and the third electrodes.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 15, 2014
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Akira Nakayama
  • Patent number: 8698276
    Abstract: A semiconductor system includes a controller; a semiconductor device comprising a plurality of stacked semiconductor chips stacked over the controller, and a plurality of through-silicon vias (TSVs) configured to commonly transfer a signal to the plurality of stacked semiconductor chips; and a defect information transfer TSV configured to transfer TSV defect information sequentially outputted from at least one of the semiconductor chips to the controller, wherein the controller comprises: a plurality of first repair fuse units configured to set first fuse information based on the TSV defect information; and a plurality of first TSV selection units configured to selectively drive the TSVs in response to the first fuse information.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jeong-Woo Lee, Hyung-Dong Lee, Sang-Hoon Shin, Hyang-Hwa Choi
  • Patent number: 8698320
    Abstract: This invention relates to thermosetting resin compositions useful for flip chip (“FC”) underfill sealant materials, where a semiconductor chip is mounted directly onto a circuit through solder electrical interconnections. Similarly, the compositions are useful for mounting onto a circuit board semiconductor devices, such as chip size or chip scale packages (“CSPs”), ball grid arrays (“BGAs”), land grid arrays (“LGAs”) and the like, each of which having a semiconductor chip, such as large scale integration (“LSI”), on a carrier substrate.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 15, 2014
    Assignee: Henkel IP & Holding GmbH
    Inventors: My Nhu Nguyen, Puwei Liu
  • Patent number: 8692280
    Abstract: An optoelectronic semiconductor device including: a substrate; a semiconductor system having an active layer formed on the substrate; and an electrode structure formed on the semiconductor system, wherein the electrode structure includes: a first conductivity type bonding pad; a second conductivity type bonding pad; a first conductivity type extension electrode; and a second conductivity type extension electrode, wherein the first conductivity type extension electrode and the second conductivity type extension electrode form a three-dimensional crossover; wherein the first conductivity type extension electrode and the second conductivity type extension electrode are on the opposite sides of the active layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 8, 2014
    Assignee: Epistar Corporation
    Inventors: Chien-Yuan Wang, Shih-Chiang Yeh
  • Patent number: 8692351
    Abstract: Semiconductor integrated circuit line structures for improving a process window in the vicinity of dense-to-isolated pattern transition areas and a technique to implement the line structures in the layout process are described in this disclosure. The disclosed structure includes a semiconductor substrate, and a material layer above the substrate. The material layer has a closely spaced dense line structure, an isolated line structure next to the dense line structure, and a dummy line shoulder structure formed in the vicinity of the dense line and the isolated line structures. One end of the dummy line shoulder structure connects to the isolated line structure and another end extends away from the isolated line structure in an orientation substantially perpendicular to the isolated line structure.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Cheng Kuo, Luke Lo, Minghsing Tsai, Ken-Yu Chang, Jye-Yen Cheng, Jeng-Shiun Ho, Hua-Tai Lin, Chih-Hsiang Yao
  • Patent number: 8692379
    Abstract: A connector access region of an integrated circuit device includes a set of parallel conductors, extending in a first direction, and interlayer connectors. The conductors comprise a set of electrically conductive contact areas on different conductors which define a contact plane with the conductors extending below the contact plane. A set of the contact areas define a line at an oblique angle, such as less than 45° or 5° to 27°, to the first direction. The interlayer connectors are in electrical contact with the contact areas and extend above the contact plane. At least some of the interlayer connectors overlie but are electrically isolated from the electrical conductors adjacent to the contact areas with which the interlayer connectors are in electrical contact. The set of parallel conductors may include a set of electrically conductive layers with the contact plane being generally perpendicular to the electrically conductive layers.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Macronix International Co., Ltd.
    Inventor: Shih-Hung Chen
  • Patent number: 8686567
    Abstract: A semiconductor device includes a lower wiring layer, having signal lines and power supply lines extending in a Y-direction; an upper wiring layer having signal lines and power supply lines extending in an X-direction; via conductors provided in first overlap regions where corresponding signal lines overlap each other; and via conductors provided in second overlap regions where corresponding power supply lines overlap each other. The width in the X-direction of the first regions is wider than the widths in the X-direction of the second regions. Therefore, in the first regions, a plurality of via conductors can be provided. Moreover, the power supply lines are divided in the Y-direction to avoid interference with the first regions. On a plurality of lower-layer lines, two vias are placed at a minimum pitch containing one via.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: April 1, 2014
    Inventors: Kiyotaka Endo, Kazuteru Ishizuka, Hiroki Fujisawa
  • Patent number: 8680686
    Abstract: A system and method for a thin multi chip stack package with film on wire and copper wire. The package comprises a substrate and a first die overlying the substrate. Copper wires electrically connect the first die to the substrate. A film overlies the first die and a portion of the copper wires. In addition, the film adheres a second die to the first die. The film also electrically insulates the copper wires from the second die.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 25, 2014
    Assignee: Spansion LLC
    Inventors: Lai Nguk Chin, Foong Yue Ho, Wong Kwet Nam, Thor Lee Lee, Sally Foong, Kevin Guan
  • Patent number: 8673772
    Abstract: A method of forming a biosensor chip enables a bond pad and detector electrode to be formed of different materials (one is formed of a connection layer such as copper and the other is formed of a diffusion barrier layer such as tantalum or tantalum nitride). A single planarizing operation is used for both the bond pad and the detector electrode. By using the same processing, resist patterning on an already-planarized surface is avoided, and the cleanliness of both the bond pad and detector electrode is ensured. Self-aligned nanoelectrodes and bond pads are obtained.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 18, 2014
    Assignee: NXP B.V.
    Inventor: Frans Widdershoven
  • Patent number: 8664769
    Abstract: An element using a semiconductor layer is formed between wiring layers and, at the same time, a gate electrode is formed using a conductive material other than a material for wirings. A first wiring is embedded in a surface of a first wiring layer. A gate electrode is formed over the first wiring. The gate electrode is coupled to the first wiring. The gate electrode is formed by a process different from a process for the first wiring. Therefore, the gate electrode can be formed using a material other than a material for the first wiring. Further, a gate insulating film and a semiconductor layer are formed over the gate electrode.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: March 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Sunamura, Naoya Inoue, Kishou Kaneko
  • Patent number: 8653648
    Abstract: A system and method for forming a TSV contact is presented. A preferred embodiment includes a TSV in contact with a portion of the uppermost metal layer of a semiconductor die. The interface between the TSV conductor and the contact pad is preferably characterized by a non-planar zigzag pattern that forms a grid pattern of contacts. Alternatively, the contacts may form a plurality of metal lines that make contact with the contact pad.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: February 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Chen-Cheng Kuo, Wen-Wei Shen
  • Patent number: 8648449
    Abstract: According to example configurations herein, a leadframe includes a connection interface. The connection interface can be configured for attaching an electrical circuit to the leadframe. The leadframe also can include a conductive path. The conductive path in the leadframe provides an electrical connection between a first electrical node of the electrical circuit and a second electrical node of the electrical circuit. Prior to making the connection between the electrical circuit and the leadframe, the first electrical node and the second electrical node can be electrically isolated from each other. Subsequent to making connection of the electrical circuit with the leadframe, the conductive path of the leadframe electrically connects the first electrical node and the second electrical node together. Accordingly, the leadframe provides connectivity between nodes of an electrical circuit in lieu of having to provide such connectivity at, for example, a metal interconnect layer of an integrated circuit device.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: February 11, 2014
    Assignee: International Rectifier Corporation
    Inventors: Gary D. Polhemus, Robert T. Carroll, Donald J. Desbiens
  • Patent number: 8648467
    Abstract: A method of manufacturing a semiconductor memory device according to the embodiment includes: forming a first stacked-structure; forming a first stripe part and a first hook part at the first stacked-structure; forming a second stacked-structure on the first stacked-structure; forming a second stripe part and a second hook part at the second stacked-structure; repeating the above-described four steps for a certain number of times; and forming a contact plug contacting the first or second hook parts. The etching is conducted to remove the first stacked-structure in a region at which the second hook part is to be formed in the second stacked-structure higher than the first stacked-structure by one layer. The etching is conducted to remove the second stacked-structure in a region at which the first hook part is to be formed in the first stacked-structure higher than the second stacked-structure by one layer.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuyuki Baba
  • Patent number: 8648471
    Abstract: A nonvolatile semiconductor memory device comprises a semiconductor substrate; a cell array block formed on the semiconductor substrate and including plural stacked cell array layers each with a plurality of first lines, a plurality of second lines crossing the plurality of first lines, and memory cells connected at intersections of the first and second lines between both lines; and a plurality of via-holes extending in the stacked direction of the cell array layers to individually connect the first or second line in the each cell array layer to the semiconductor substrate. The via-holes are formed continuously through the plural cell array layers, and multiple via-holes having equal lower end positions and upper end positions are connected to the first or second lines in different cell array layers.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tabata, Eiji Ito, Hirofumi Inoue
  • Patent number: 8643189
    Abstract: A packaged semiconductor die has a die support mounting surface mounted to a die support having external connectors. A die connection pad surface opposite to die supporting mount surface has associated die connection pads that are circuit nodes of the semiconductor die. The die connection pad surface also has a power rail pad. The power rail pad has a surface area larger than surface areas of the die connection pads. Bond wires electrically couple the power rail pad to two or more of the die connection pads.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Boon Yew Low, Navas Khan Oratti Kalandar, Lan Chu Tan
  • Patent number: 8637976
    Abstract: A semiconductor device in which a semiconductor chip, a lead frame and metal wires for electrically connecting the lead frame are sealed with sealing resin. The lead frame has a plurality of lead terminal portions, a supporting portion for supporting the semiconductor chip, and hanging lead portions supporting the supporting portion. Each of the lead terminal portions adjacent to the hanging lead portion is a chamfered lead terminal portion having, at its head, a chamfered portion formed substantially in parallel with the hanging lead portion so as to avoid interference with the hanging lead portion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 28, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Kazutaka Shibata
  • Patent number: 8633594
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8633595
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Publication number: 20140008796
    Abstract: A semiconductor package includes a mounting board including a bonding pad, first and second semiconductor chips sequentially stacked on the mounting board, a first wire connecting a first region of the bonding pad to a chip pad of the first semiconductor chip, and a second wire connecting the first region of the bonding pad to a chip pad of the second semiconductor chip, the second wire having a reverse loop configuration.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Inventor: Keun-Ho CHOI
  • Patent number: 8603906
    Abstract: Provided is a three-dimensional semiconductor memory device. The three-dimensional semiconductor memory device includes a substrate that has a cell array region including a pair of sub-cell regions and a strapping region interposed between the pair of sub-cell regions. A Plurality of sub-gates are sequentially stacked on the substrate in each of the sub-cell regions, and interconnections are electrically connected to extensions of the stacked sub-gates, respectively, which extend into the strapping region. Each of the interconnections is electrically connected to the extensions of the sub-gate which are disposed in the pair of the sub-cell regions, respectively, and which are located at the same level.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sunil Shim, Sunghoi Hur, Hansoo Kim, Jaehoon Jang, Hoosung Cho
  • Patent number: 8598708
    Abstract: An element to interconnect at least two conductors of a microelectronic circuit is disclosed that includes an initial conductor, referred to as lower conductor; a dielectric layer situated on the initial conductor; a second conductor, referred to as upper conductor, on the dielectric layer; a cavity in the dielectric layer emerging, on the one hand, on the lower conductor and, on the other hand, on the upper conductor. The upper conductor forms a bridge above the lower conductor and the cavity forms, at a level where it emerges on the upper conductor, two vents on both sides of the latter.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 3, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean Dijon, Philippe Pantigny
  • Patent number: 8592974
    Abstract: An electronic component includes a high voltage switching transistor encased in a package. The high voltage switching transistor comprises a source electrode, a gate electrode, and a drain electrode all on a first side of the high voltage switching transistor. The source electrode is electrically connected to a conducting structural portion of the package. Assemblies using the abovementioned transistor with another transistor can be formed, where the source of one transistor can be electrically connected to a conducting structural portion of a package containing the transistor and a drain of the second transistor is electrically connected to the second conductive structural portion of a package that houses the second transistor. Alternatively, the source of the second transistor is electrically isolated from its conductive structural portion, and the drain of the second transistor is electrically isolated from its conductive structural portion.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: November 26, 2013
    Assignee: Transphorm Inc.
    Inventor: Yifeng Wu
  • Patent number: 8592978
    Abstract: A semiconductor device includes a semiconductor substrate, an insulating film formed above the semiconductor substrate, and a plurality of first buried wirings and a plurality of second buried wirings located in the insulating film at predetermined intervals alternately in a direction parallel to a surface of the semiconductor substrate. Each second buried wiring is formed so that a width between both side surfaces thereof is increased from a lower end toward an upper portion and at an upper surface the width is larger than a width at an upper surface of each first buried wiring.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Matsuno, Yoshiaki Himeno
  • Patent number: 8592979
    Abstract: A conductive pattern structure includes a first insulating interlayer on a substrate, metal wiring on the first insulating interlayer, a second insulating interlayer on the metal wiring, and first and second metal contacts extending through the second insulating interlayer. The first metal contacts contact the metal wiring in a cell region and the second metal contact contacts the metal wiring in a peripheral region. A third insulating interlayer is disposed on the second insulating interlayer. Conductive segments extend through the third insulating interlayer in the cell region and contact the first metal contacts. Another conductive segment extends through the third insulating interlayer in the peripheral region and contacts the second metal contact. The structure facilitates the forming of uniformly thick wiring in the cell region using an electroplating process.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hei-Seung Kim, Gil-Heyun Choi, Ji-Soon Park, Jong-Myeong Lee
  • Patent number: 8587123
    Abstract: Embodiments for multi-chip and multi-substrate reconstitution based packaging are provided. Example packages are formed using substrates from a reconstitution. substrate panel or strip. The reconstitution substrate panel or strip may include known good substrates of same or different material types and/or same of different layer counts and sizes. As such, different combinations of reconstitution substrates and chips can be used within the same package, thereby allowing substrate customization according to semiconductor chip block(s) and types contained in the package.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 19, 2013
    Assignee: Broadcom Corporation
    Inventors: Edward Law, Kevin (Kunzhong) Hu, Rezaur Rahman Khan
  • Patent number: 8587129
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base having a through-conductor and having an insulator protecting the base and the through-conductor; mounting a chip over the base and connected to the base with a first interconnect; forming a second interconnect above the base and horizontally beside the chip; and encapsulating the chip, the first interconnect, and the second interconnect with an encapsulation.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 19, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: HeeJo Chi, NamJu Cho, YeongIm Park
  • Patent number: 8581415
    Abstract: For simplifying the dual-damascene formation steps of a multilevel Cu interconnect, a formation step of an antireflective film below a photoresist film is omitted. Described specifically, an interlayer insulating film is dry etched with a photoresist film formed thereover as a mask, and interconnect trenches are formed by terminating etching at the surface of a stopper film formed in the interlayer insulating film. The stopper film is made of an SiCN film having a low optical reflectance, thereby causing it to serve as an antireflective film when the photoresist film is exposed.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiko Hotta, Kyoko Sasahara
  • Patent number: 8575585
    Abstract: A memristive device includes a first electrode, a second electrode crossing the first electrode at a non-zero angle, and an active region disposed between the first and second electrodes. The active region has a controlled defect profile throughout its thickness.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: November 5, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Qiangfei Xia, Alexandre M. Bratkovski
  • Publication number: 20130285258
    Abstract: Disclosed herein is a device that includes: first lines formed on a first wiring layer extending in a first direction; second lines formed on a second wiring layer extending in a second direction; and conductor plugs connecting the first lines to the second lines such that the first and second lines form a mesh-structure wiring. The first lines include first enlarged portions at intersection positions where the first and second lines cross to each other, a width in the second direction of the first enlarged portions is wider than a line width of the first lines at other than the intersection position. The second lines include second enlarged portions at the intersection positions, a width in the first direction of the second enlarged portions is wider than a line width of the second lines at other than the intersection position.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 31, 2013
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Shuichi NAGASE, Hisayuki NAGAMINE
  • Patent number: 8569820
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes a plurality of first parallel conductive members, and a plurality of second parallel conductive members disposed over the plurality of first parallel conductive members. A first base member is coupled to an end of the plurality of first parallel conductive members, and a second base member is coupled to an end of the plurality of second parallel conductive members. A connecting member is disposed between the plurality of first parallel conductive members and the plurality of second parallel conductive members, wherein the connecting member includes at least one elongated via.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 29, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Erwin Ruderer, Alexander Von Glasow, Philipp Riess, Erdem Kaltalioglu, Peter Baumgartner, Thomas Benetik, Helmut Horst Tews
  • Patent number: 8564127
    Abstract: To provide a technique capable of reducing the chip size of a semiconductor chip and particularly, a technique capable of reducing the chip size of a semiconductor chip in the form of a rectangle that constitutes an LCD driver by devising a layout arrangement in a short-side direction. In a semiconductor chip that constitutes an LCD driver, input protection circuits are arranged in a lower layer of part of a plurality of input bump electrodes and on the other hand, in a lower layer of the other part of the input bump electrodes, the input protection circuits are not arranged but SRAMs (internal circuits) are arranged.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Shinya Suzuki, Kiichi Makuta
  • Patent number: 8558391
    Abstract: A semiconductor device having redistribution interconnects in the WPP technology and improved reliability, wherein the redistribution interconnects have first patterns and second patterns which are electrically separated from each other within the plane of the semiconductor substrate, the first patterns electrically coupled to the multi-layer interconnects and the floating second patterns are coexistent within the plane of the semiconductor substrate, and the occupation ratio of the total of the first patterns and the second patterns within the plane of the semiconductor substrate, that is, the occupation ratio of the redistribution interconnects is 35 to 60%.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: October 15, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yuki Koide, Masataka Minami
  • Patent number: 8558385
    Abstract: An interconnection architecture, for a semiconductor device (having regions arranged to include at least an inner region, an intermediate region located at least aside the inner region, and an outer region located at least on a side of the intermediate region opposite to the inner region, includes: one or more pairs of first and second signal lines, each pair extending from the inner region into the intermediate region; first portions and second portions of the first and second signal lines being parallel, respectively, the first portions being located in the inner region; the first and second portion of at least the first signal line not being collinear; and an intra-pair line-spacing, d(i), for each pair including the following magnitudes, d2 in the inner region, and d2? in the intermediate region, where d2<d2?.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeman Yoon, Yungi Kim, Kangyoon Lee, Youngwoong Son
  • Patent number: 8558348
    Abstract: A method of forming a memory device includes forming a first interlayer insulating layer on a semiconductor substrate, forming a first electrode in the first interlayer insulating layer, the first electrode having a top surface of a rectangular shape extending in a first direction, and forming a variable resistance pattern on the first electrode, the variable resistance pattern having a bottom surface of a rectangular shape extending in a second direction crossing the first direction, the bottom surface of the variable resistance pattern contacting the first electrode, wherein the area of contact between the lower electrode and the variable resistance pattern is substantially equal to a multiplication of a minor axis length of a top surface of the first electrode and a minor axis length of a bottom surface of the variable resistance pattern.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyuhwan Oh, Dong-Hyun Im, Soonoh Park, Dongho Ahn, Young-Lim Park, Eun-Hee Cho
  • Patent number: 8552563
    Abstract: A system and method for making semiconductor die connections with through-silicon vias (TSVs) are disclosed. TSVs are formed through the substrate to allow for signal connections as well as power and ground connections. In one embodiment this allows these connections to be made throughout the substrate instead of on the periphery of the substrate. In another embodiment, the TSVs are used as part of a power matrix to supply power and ground connections to the active devices and metallization layers through the substrate.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Oscar M. K. Law, Kuo H. Wu
  • Publication number: 20130249114
    Abstract: A semiconductor memory device includes a memory cell array layer which includes a first wiring line, a memory cell stacked on the first wiring line, and a second wiring line formed on the memory cell so as to intersect the first wiring line, wherein a step is formed in the first wiring line so that the height of an upper surface of the first wiring line in the memory cell array region where the memory cell array is formed is higher than the height in a peripheral region around the memory cell array region.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoya Osaki, Naohito Morozumi
  • Publication number: 20130249113
    Abstract: The semiconductor memory device comprises a plurality of first wiring lines extending in a first direction, a plurality of second wiring lines extending in a second direction crossing the first direction, and a memory cell array comprising memory cells, the memory cells being connected to the first wiring lines and second wiring lines in the crossing portions of the first and second wiring lines. A plurality of first dummy-wiring-line regions are formed in the peripheral area around the memory cell array. A contact is formed in the peripheral area, the contact extending in a third direction perpendicular to the first and second directions. A plurality of second dummy-wiring-line regions are formed in the periphery of the contact. The mean value of the areas of the second dummy-wiring-line regions is less than the mean value of the areas of the first dummy-wiring-line regions.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yasuyuki BABA
  • Patent number: 8541893
    Abstract: A semiconductor memory device and a power line arrangement method are disclosed. The semiconductor memory device includes a plurality of pads, each pad including an upper pad and a lower pad arranged below the upper pad, wherein pad power lines are arranged below the lower pads of the plurality of pads in a direction of crossing the pads to interconnect the pads that transmit the same level of electrical power among the plurality of pads.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hoon Kim, Young-Chul Cho, Kwang-Il Park, Seong-Jin Jang
  • Patent number: 8519545
    Abstract: An electronic device includes a carrier, a plurality of pins, and an electronic circuit that includes a first semiconductor chip and a second semiconductor chip. The first semiconductor chip is attached to the carrier and the second semiconductor chip is attached to one of the plurality of pins.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 27, 2013
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 8513707
    Abstract: An improved RF CMOS transistor design is described. Local, narrow interconnect lines, which are located substantially above the active area of the transistor, are each connected to either a source terminal or a drain terminal. The source and the drain terminal are arranged orthogonally to the local interconnect lines and each terminal is significantly wider than a local interconnect line. In an example, the local interconnect lines are formed in a first metal layer and the source and drain terminals are formed in one or more subsequent metal layers.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 20, 2013
    Assignee: Cambridge Silicon Radio Ltd.
    Inventor: Rainer Herberholz
  • Patent number: 8513708
    Abstract: The present invention provides an integrated circuit suitable for various packaging modes. This integrated circuit includes: a core circuit, a plurality of pads, and a selection circuit. The selection circuit is coupled between the core circuit and the pads for determining the connection state between the core circuit and the pads based on a control signal. When the control signal provides a first value, the core circuit and the pads will be in a first connection state, and the integrated circuit will be applied with a single-die package. However, when the control signal provides a second value, the core circuit and the pads will be in the second connection state, and the integrated circuit will be applied with a multi-die package.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: August 20, 2013
    Assignee: Realtek Semiconductor Corp.
    Inventors: Hsien Chun Chang, Chia Lung Hung, Tsung Chi Lin, Tzuo Bo Lin
  • Patent number: 8513777
    Abstract: A method for generating reticle data for forming a reticle. The method includes recognizing a non-layout region free from main chips in a process pattern, dividing the non-layout region into a plurality of rectangular non-layout regions, generating scribe data using the plurality of divided rectangular non-layout region as a plurality of dummy chips, and generating a dummy pattern for each of the dummy chips.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 20, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kenji Suzuki, Yukisada Horie, Katsuhito Kojima