Characterized By The Post-treatment Used To Control The Interface Betw Een Substrate And Epitaxial Layer, E.g., Ion Implantation Followed By Annealing (epo) Patents (Class 257/E21.12)
-
Patent number: 12199180Abstract: A semiconductor device may include a substrate and spaced apart first and second doped regions in the substrate. The first doped region may be larger than the second doped region to define an asymmetric channel therebetween. The semiconductor device may further include a superlattice extending between the first and second doped regions to constrain dopant therein. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A gate may overly the asymmetric channel.Type: GrantFiled: November 21, 2023Date of Patent: January 14, 2025Assignee: ATOMERA INCORPORATEDInventors: Hideki Takeuchi, Richard Burton, Yung-Hsuan Yang
-
Patent number: 11791438Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.Type: GrantFiled: March 11, 2021Date of Patent: October 17, 2023Assignee: Sensor Electronic Technology, Inc.Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
-
Patent number: 11581456Abstract: GaN-based nanowire heterostructures have been intensively studied for applications in light emitting diodes (LEDs), lasers, solar cells and solar fuel devices. Surface charge properties play a dominant role on the device performance and have been addressed within the prior art by use of a relatively thick large bandgap AlGaN shell covering the surfaces of axial InGaN nanowire LED heterostructures has been explored and shown substantial promise in reducing surface recombination leading to improved carrier injection efficiency and output power. However, these lead to increased complexity in device design, growth and fabrication processes thereby reducing yield/performance and increasing costs for devices. Accordingly, there are taught self-organising InGaN/AlGaN core-shell quaternary nanowire heterostructures wherein the In-rich core and Al-rich shell spontaneously form during the growth process.Type: GrantFiled: December 3, 2020Date of Patent: February 14, 2023Assignee: The Royal Institution for the Advancement of Learning/Mcgill UniversityInventors: Zetian Mi, Songrui Zhao, Renjie Wang
-
Patent number: 11508684Abstract: A direct bond hybridization (DBH) method is provided. The DBH method includes preparing a first underlying layer, a first contact layer disposed on the first underlying layer and a first contact electrically communicative with the first underlying layer and protruding through the first contact layer, preparing a second underlying layer, a second contact electrically communicative with the second underlying layer and formed of softer material than the first contact and a second contact layer disposed on the second underlying layer and defining an aperture about the second contact and a moat at least partially surrounding the second contact and bonding the first and second contact layers whereby the first contact contacts the second contact such that the second contact deforms and expands into the moat.Type: GrantFiled: January 8, 2020Date of Patent: November 22, 2022Assignee: RAYTHEON COMPANYInventors: Jonathan Getty, Daniel D. Lofgreen, Alexandra V. Miller
-
Patent number: 10444084Abstract: The subject of the invention is a spring sensor element 1, comprising carbon nanotubes 6 on a carrier 2, wherein the carbon nanotubes 6 are arranged in CNT blocks 10, 20, 30, 40, wherein the carbon nanotubes 6 of each CNT block 10, 20, 30, 40 preferably have the same length and the same alignment with respect to the carrier 2, wherein at least the highest one of the CNT blocks 10, 20, 30, 40 is arranged nearby at least two electric contacts 60, 61, 62. The spring sensor element 1 has at least one additional neighboring CNT block 20, 30, 40 of the height H2 in addition to the first CNT block 10 of the height H1, wherein the heights H1 and H2 differ by a factor of at least 2.Type: GrantFiled: December 15, 2015Date of Patent: October 15, 2019Assignee: TECHNISCHE UNIVERSITAET DARMSTADTInventors: Oktay Yilmazoglu, Sandeep Yadav, Deniz Cicek, Joerg Schneider
-
Patent number: 10297441Abstract: Methods of the disclosure include a BN ALD process at low temperatures using a reactive nitrogen precursor, such as thermal N2H4, and a boron containing precursor, which allows for the deposition of ultra thin (less than 5 nm) films with precise thickness and composition control. Methods are self-limiting and provide saturating atomic layer deposition (ALD) of a boron nitride (BN) layer on various semiconductors and metallic substrates.Type: GrantFiled: August 10, 2017Date of Patent: May 21, 2019Assignee: APPLIED MATERIALS, INC.Inventors: Steven Wolf, Mary Edmonds, Andrew C. Kummel, Srinivas D. Nemani, Ellie Y. Yieh
-
Patent number: 10229839Abstract: An method of annealing by: providing a substrate having a III-nitride, sapphire, silicon, diamond, gallium arsenide, or silicon carbide surface; depositing a layer of a transition metal nitride directly on the surface; and annealing the substrate at at least 900° C. in an oxygen-free environment. An article having: a substrate having a III-nitride, sapphire, silicon, diamond, gallium arsenide, or silicon carbide surface; and a layer of a transition metal nitride directly on the surface.Type: GrantFiled: May 1, 2017Date of Patent: March 12, 2019Assignee: The United States of America, as Represented by the Secretary of the NavyInventors: Travis J. Anderson, Boris N. Feygelson, Andrew D. Koehler, Karl D. Hobart, Francis J. Kub, Jordan Greenlee
-
Patent number: 10115590Abstract: Method for making a strained silicon structure, wherein a silicon germanium layer is formed on the silicon layer, followed by another layer with a lower concentration of germanium before selective amorphisation of the silicon and silicon germanium layer relative to this other layer before the assembly is recrystallised so as to strain the silicon semiconducting layer.Type: GrantFiled: April 18, 2017Date of Patent: October 30, 2018Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Shay Reboh, Aurore Bonneviaille
-
Patent number: 10090153Abstract: Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.Type: GrantFiled: May 18, 2017Date of Patent: October 2, 2018Assignee: Ultratech, Inc.Inventors: Andrew M. Hawryluk, Ganesh Sundaram, Ritwik Bhatia
-
Patent number: 9929011Abstract: Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.Type: GrantFiled: May 17, 2017Date of Patent: March 27, 2018Assignee: Ultratech, Inc.Inventors: Andrew M. Hawryluk, Ganesh Sundaram, Ritwik Bhatia
-
Patent number: 9768016Abstract: Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.Type: GrantFiled: June 25, 2014Date of Patent: September 19, 2017Assignee: Ultratech, Inc.Inventors: Andrew M. Hawryluk, Ganesh Sundaram, Ritwik Bhatia
-
Patent number: 9691613Abstract: Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.Type: GrantFiled: June 25, 2014Date of Patent: June 27, 2017Assignee: Ultratech, Inc.Inventors: Andrew M. Hawryluk, Ganesh Sundaram, Ritwik Bhatia
-
Patent number: 9543439Abstract: Some embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a semiconductive substrate; a gate structure over a fin structure of the semiconductive substrate; a channel portion of the fin structure under the gate structure; and at least one epitaxy region disposed over the semiconductive substrate and in contact with the channel portion. The epitaxy region includes a substance with a first lattice constant larger than a second lattice constant of the semiconductive substrate; and a concentration profile of the substance in the epitaxy region being decreasing from near a bottom portion to near a top portion. The bottom portion is closer to the channel portion than the top portion.Type: GrantFiled: January 30, 2015Date of Patent: January 10, 2017Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Chin-I Liao, Shih-Chieh Chang
-
Patent number: 9443728Abstract: Implementations of the present disclosure generally relate to methods and apparatus for forming a film on a substrate. More particularly, implementations of the present disclosure relate to methods and apparatus for heteroepitaxial growth of crystalline films. In one implementation, a method of heteroepitaxial deposition of a strain relaxed buffer (SRB) layer on a substrate is provided. The method comprises epitaxially depositing a buffer layer over a dissimilar substrate, rapidly heating the buffer layer to relax the buffer layer, rapidly cooling the buffer layer and determining whether the buffer layer has achieved a desired thickness.Type: GrantFiled: August 15, 2014Date of Patent: September 13, 2016Assignee: APPLIED MATERIALS, INC.Inventors: Swaminathan T. Srinivasan, Atif M. Noori, David K. Carlson
-
Patent number: 9337335Abstract: A method includes forming a multilayered structure by providing a substrate having a semiconductor layer disposed on a top surface thereof, the semiconductor layer containing misfit dislocations and associated threading dislocations. The method further includes depositing a tensile strained dielectric layer on a top surface of the semiconductor layer to induce a compressive strain in the semiconductor layer and annealing the multilayered structure to cause the misfit dislocations and associated threading dislocations to propagate within the semiconductor layer. The method further immobilizes the propagating misfit dislocations and associated threading dislocations in a predetermined portion of the semiconductor layer.Type: GrantFiled: June 22, 2015Date of Patent: May 10, 2016Assignee: International Business Machines CorporationInventors: Shogo Mochizuki, Alexander Reznicek
-
Patent number: 9305781Abstract: A method includes forming a multilayered structure by providing a substrate having a semiconductor layer disposed on a top surface thereof, the semiconductor layer containing misfit dislocations and associated threading dislocations. The method further includes depositing a tensile strained dielectric layer on a top surface of the semiconductor layer to induce a compressive strain in the semiconductor layer and annealing the multilayered structure to cause the misfit dislocations and associated threading dislocations to propagate within the semiconductor layer. The method further immobilizes the propagating misfit dislocations and associated threading dislocations in a predetermined portion of the semiconductor layer.Type: GrantFiled: April 30, 2015Date of Patent: April 5, 2016Assignee: International Business Machines CorporationInventors: Shogo Mochizuki, Alexander Reznicek
-
Patent number: 9041080Abstract: To provide a light-emitting element where electrons are efficiently injected into a Ge light emission layer and light can be efficiently emitted, the light-emitting element has a barrier layer 3 which is formed on an insulating film 2, worked in a size in which quantum confinement effect manifests and made of monocrystalline Si, a p-type diffused layer electrode 5 and an n-type diffused layer electrode 6 respectively provided at both ends of the barrier layer 3, and a monocrystalline Ge light emission part 13 provided on the barrier layer 3 between the electrodes 5, 6. At least a part of current that flows between the electrodes 5, 6 flows in the barrier layer 3 in a horizontal direction with respect to a substrate 1.Type: GrantFiled: August 2, 2012Date of Patent: May 26, 2015Assignee: HITACHI, LTD.Inventors: Kazuki Tani, Shinichi Saito, Katsuya Oda
-
Patent number: 9029250Abstract: A method for producing semiconductor regions including impurities includes forming a trench in a first surface of a semiconductor body. Impurity atoms are implanted into a bottom of the trench. The trench is extended deeper into the semiconductor body, thereby forming a deeper trench. Impurity atoms are implanted into a bottom of the deeper trench.Type: GrantFiled: September 24, 2013Date of Patent: May 12, 2015Assignee: Infineon Technologies Austria AGInventors: Jens Peter Konrath, Ronny Kern, Hans-Joachim Schulze
-
Patent number: 8987141Abstract: A method can include: growing a Ge layer on a Si substrate; growing a low-temperature nucleation GaAs layer, a high-temperature GaAs layer, a semi-insulating InGaP layer and a GaAs cap layer sequentially on the Ge layer after a first annealing, forming a sample; polishing the sample's GaAs cap layer, and growing an nMOSFET structure after a second annealing on the sample; performing selective ICP etching on a surface of the nMOSFET structure to form a groove, and growing a SiO2 layer in the groove and the surface of the nMOSFET structure using PECVD; performing the ICP etching again to etch the SiO2 layer till the Ge layer, forming a trench; cleaning the sample and growing a Ge nucleation layer and a Ge top layer in the trench by UHVCVD; polishing the Ge top layer and removing a part of the SiO2 layer on the nMOSFET structure; performing a CMOS process.Type: GrantFiled: March 21, 2014Date of Patent: March 24, 2015Assignee: Institute of Semiconductors, Chinese Academy of SciencesInventors: Xuliang Zhou, Hongyan Yu, Shiyan Li, Jiaoqing Pan, Wei Wang
-
Patent number: 8980718Abstract: A method is provided for fabricating a PMOS transistor. The method includes providing a semiconductor substrate, and forming a dummy gate structure at least having a dummy gate, a high-K dielectric layer, and a sidewall spacer surrounding the high-K dielectric layer and the dummy gate on the semiconductor substrate. The method also includes forming a source region and a drain region in the semiconductor substrate at both sides of the dummy gate structure by an ion implantation process, and performing a first annealing process to enhance the ion diffusion. Further, the method includes forming an interlayer dielectric layer leveling with the surface of the dummy gate, and forming a trench by removing the dummy gate. Further, the method also includes performing a second annealing process, and forming a metal gate in the trench.Type: GrantFiled: January 10, 2013Date of Patent: March 17, 2015Assignee: Semiconductor Manufacturing International Corp.Inventor: Yong Chen
-
Patent number: 8895407Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.Type: GrantFiled: September 27, 2010Date of Patent: November 25, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
-
Patent number: 8854614Abstract: A method of thermally treating a wafer includes loading a wafer into a process chamber having one or more regions of uniform temperature gradient and one or more regions of non-uniform temperature gradient. A defect is detected in the wafer. The wafer is aligned to position the defect within one of the one or more regions of uniform temperature gradient. A rapid thermal process is performed on the wafer in the process chamber while the defect is positioned within one of the one or more regions of uniform temperature gradient.Type: GrantFiled: December 14, 2012Date of Patent: October 7, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jong-Hoon Kang, Taegon Kim, Hanmei Choi, Eunyoung Jo, Gonsu Kang, Sungho Kang, Sungho Heo
-
Patent number: 8772129Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.Type: GrantFiled: September 27, 2010Date of Patent: July 8, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
-
Patent number: 8753961Abstract: A method of nucleating and growing oxygen precipitates during a pad oxidation process. The nucleating is performed during in the oxidation furnace prior to the pad oxide growth. At least a portion of the growth of the oxygen precipitates occurs during the pad oxide growth. The oxygen precipitates are of sufficient concentration and size in lightly doped p-type wafers for effective gettering of heavy metals is deep submicron transistor, integrated circuit manufacturing flows.Type: GrantFiled: January 10, 2012Date of Patent: June 17, 2014Assignee: Texas Instruments IncorporatedInventor: Bradley David Sucher
-
Patent number: 8735234Abstract: An improved method of doping a substrate is disclosed. The method is particularly beneficial to the creation of interdigitated back contact (IBC) solar cells. A paste having a dopant of a first conductivity is applied to the surface of the substrate. This paste serves as a mask for a subsequent ion implantation step, allowing ions of a dopant having an opposite conductivity to be introduced to the portions of the substrate which are exposed. After the ions are implanted, the mask can be removed and the dopants may be activated. Methods of using an aluminum-based and phosphorus-based paste are disclosed.Type: GrantFiled: February 16, 2011Date of Patent: May 27, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Atul Gupta, Nicholas Bateman
-
Publication number: 20140061862Abstract: A semiconductor substrate including a first epitaxial semiconductor layer is provided. The first epitaxial semiconductor layer includes a first semiconductor material, and can be formed on an underlying epitaxial substrate layer, or can be the entirety of the semiconductor substrate. A second epitaxial semiconductor layer including a second semiconductor material is epitaxially formed upon the first epitaxial semiconductor layer. Semiconductor fins including portions of the second single crystalline semiconductor material are formed by patterning the second epitaxial semiconductor layer employing the first epitaxial semiconductor layer as an etch stop layer. At least an upper portion of the first epitaxial semiconductor layer is oxidized to provide a localized oxide layer that electrically isolates the semiconductor fins.Type: ApplicationFiled: August 29, 2012Publication date: March 6, 2014Applicant: International Business Machines CorporationInventors: Reinaldo A. VEGA, Michael V. AQUILINO, Daniel J. JAEGER
-
Patent number: 8647951Abstract: Generally, the present disclosure is directed to various methods of making a semiconductor device by implanting hydrogen or hydrogen-containing clusters to improve the interface between a gate insulation layer and the substrate. One illustrative method disclosed herein involves forming a gate insulation layer on a substrate, forming a layer of gate electrode material above the gate insulation material and performing an ion implantation process with a material comprising hydrogen or a hydrogen-containing compound to introduce the hydrogen or hydrogen-containing compound proximate an interface between the gate insulation layer and said substrate with a concentration of the implanted hydrogen or hydrogen-containing compound being at least 1e10 ions/cm2.Type: GrantFiled: August 24, 2011Date of Patent: February 11, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Ralf Illgen, Jan Hoentschel
-
Patent number: 8552616Abstract: A micro-scale power source and method includes a semiconductor structure having an n-type semiconductor region, a p-type semiconductor region and a p-n junction. A radioisotope provides energy to the p-n junction resulting in electron-hole pairs being formed in the n-type semiconductor region and p-type semiconductor region, which causes electrical current to pass through p-n junction and produce electrical power.Type: GrantFiled: October 25, 2006Date of Patent: October 8, 2013Assignee: The Curators of the University of MissouriInventor: Mark A. Prelas
-
Patent number: 8536028Abstract: The present invention relates to a self alignment and assembly fabrication method for stacking multiple material layers, wherein a variety of homogeneous/heterogeneous materials can be stacked on a substrate by this self alignment and assembly fabrication method, without using any epitaxial buffer layers or gradient buffer layers; Moreover, these stacked materials can be single crystal, polycrystalline or non-crystalline phase materials. So that, by applying this self alignment and assembly fabrication method to fabricate a multi-layer device, not only the material cost can be effectively reduced, but the wafer alignment problem existing in the conventional wafer bonding process can also be solved. In addition, in the present invention, rapid melting growth (RMG) is used for growing the multiple crystallized materials laterally and rapidly from the substrate surface by liquid phase epitaxy, therefore the thermal budget can be largely reduced when fabricating the multi-layer device.Type: GrantFiled: January 10, 2013Date of Patent: September 17, 2013Assignee: National Tsing Hua UniversityInventors: Ming-Chang Lee, Chih-Kuo Tseng, Zhong-Da Tian
-
Patent number: 8492250Abstract: A method for forming a polysilicon layer includes forming an amorphous silicon layer over a substrate, performing a first thermal treatment of the amorphous silicon layer by performing an implantation with a gas that includes silicon (Si), and performing a second thermal treatment on the thermally treated layer at a temperature higher than a temperature of the first thermal treatment.Type: GrantFiled: September 1, 2011Date of Patent: July 23, 2013Assignee: Hynix Semiconductor Inc.Inventor: Eun-Jung Ko
-
Patent number: 8399340Abstract: A method of manufacturing a super-junction semiconductor device facilitates increasing the epitaxial growth rate without increasing the manufacturing steps greatly. In substitution for the formation of alignment mark in the surfaces of the second and subsequent non-doped epitaxial layers, patterning for forming a new alignment mark is conducted simultaneously with the resist pattering for selective ion-implantation into the second and subsequent non-doped epitaxial layers in order to form the new alignment mark at a position different from the position, at which the initial alignment mark is formed, and to form the new alignment mark in every one or more repeated epitaxial layer growth cycles.Type: GrantFiled: June 10, 2011Date of Patent: March 19, 2013Assignee: Fuji Electric Co., Ltd.Inventor: Akihiko Ohi
-
Publication number: 20120326128Abstract: A method of directly growing graphene of a graphene-layered structure, the method including ion-implanting at least one ion of a nitrogen ion and an oxygen ion on a surface of a silicon carbide (SiC) thin film to form an ion implantation layer in the SiC thin film; and heat treating the SiC thin film with the ion implantation layer formed therein to graphenize a SiC surface layer existing on the ion implantation layer.Type: ApplicationFiled: June 22, 2012Publication date: December 27, 2012Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Hyeon-jin SHIN, Jae-young CHOI, Joung-real AHN, Jung-tak SEO
-
Patent number: 8314017Abstract: The present invention is related to a method for manufacturing a low defect interface between a dielectric material and an III-V compound. More specifically, the present invention relates to a method for manufacturing a passivated interface between a dielectric material and an III-V compound. The present invention is also directed to a device comprising a low defect interface between a dielectric material and an III-V compound that has improved performance.Type: GrantFiled: October 1, 2010Date of Patent: November 20, 2012Assignee: IMECInventor: Clement Merckling
-
Patent number: 8288186Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.Type: GrantFiled: September 22, 2010Date of Patent: October 16, 2012Assignee: Philips Lumileds Lighting Company LLCInventors: Michael R. Krames, Nathan F. Gardner, John E. Epler
-
Patent number: 8193068Abstract: To provide an SOI substrate with an SOI layer that can be put into practical use, even when a substrate with a low allowable temperature limit such as a glass substrate is used, and to provide a semiconductor substrate formed using such an SOI substrate. In order to bond a single-crystalline semiconductor substrate to a base substrate such as a glass substrate, a silicon oxide film formed by CVD with organic silane as a source material is used as a bonding layer, for example. Accordingly, an SOL substrate with a strong bond portion can be formed even when a substrate with an allowable temperature limit of less than or equal to 700° C. such as a glass substrate is used. A semiconductor layer separated from the single-crystalline semiconductor substrate is irradiated with a laser beam so that the surface of the semiconductor layer is planarized and the crystallinity thereof is recovered.Type: GrantFiled: February 2, 2011Date of Patent: June 5, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Eiji Higa, Yoji Nagano, Tatsuya Mizoi, Akihisa Shimomura
-
Patent number: 8148246Abstract: A method for separating a semiconductor from a substrate is disclosed. The method comprises the following steps: forming a plurality of columns on a substrate; epitaxially growing a semiconductor on the plurality of columns; and injecting etching liquid into the void among the plurality of columns so as to separate the semiconductor from the substrate. The method of this invention can enhance the etching efficiency of separating the semiconductor from the substrate and reduce the fabrication cost because the etching area is increased due to the void among the plurality of columns. In addition, the method will not confine the material of the above-mentioned substrate.Type: GrantFiled: May 7, 2009Date of Patent: April 3, 2012Assignee: Advanced Optoelectronic Technology, Inc.Inventors: Wen Yu Lin, Shih Cheng Huang, Po Min Tu, Chih Peng Hsu, Shih Hsiung Chan
-
Patent number: 8088672Abstract: A method for producing a thin film includes the following steps: providing a primary substrate; forming an etching stop layer on the primary substrate; forming a sacrificial layer on the etching stop layer; implanting gas ions to form an ion implantation peak layer, which defines an effective transferred layer and a remnant layer; and separating the effective transferred layer from the remnant layer. The thickness of the effective transferred layer can be effectively determined by controlling the thickness of the sacrificial layer. Moreover, the thickness of the effective transferred layer can be uniform and then the effective transferred layer can become a nanoscale thin film.Type: GrantFiled: June 20, 2008Date of Patent: January 3, 2012Inventors: Tien-Hsi Lee, Ching-Han Huang, Chao-Liang Chang, Yao-Yu Yang
-
Patent number: 8067298Abstract: The invention relates to methods of fabricating a layer of at least partially relaxed material, such as for electronics, optoelectronics or photovoltaics. An exemplary method includes supplying a structure that includes a layer of strained material situated between a reflow layer and a stiffener layer. The method further includes applying a heat treatment that brings the reflow layer to a temperature equal to or greater than the glass transition temperature of the reflow layer, and the thickness of the stiffener layer is progressively reduced during heat treatment. The invention also relates to an exemplary method of fabricating semiconductor devices on a layer of at least partially relaxed material. Specifically, at least one active layer may be formed on the at least partially relaxed material layer. The active layer may include laser components, photovoltaic components and/or electroluminescent diodes.Type: GrantFiled: October 6, 2009Date of Patent: November 29, 2011Assignee: S.O.I.TEC Silicon on Insulator TechnologiesInventor: Oleg Kononchuk
-
Publication number: 20110250739Abstract: This invention generally relates to a process for suppressing silicon self-interstitial diffusion near the substrate/epitaxial layer interface of an epitaxial silicon wafer having a heavily doped silicon substrate and a lightly doped silicon epitaxial layer. Interstitial diffusion into the epitaxial layer is suppressed by a silicon self-interstitial sink layer comprising dislocation loops.Type: ApplicationFiled: June 21, 2011Publication date: October 13, 2011Applicant: MEMC ELECTRONIC MATERIALS, INC.Inventors: Robert J. Falster, Vladimir V. Voronkov, Luca Moiraghi, DongMyun Lee, Chanrae Cho, Marco Ravani
-
Patent number: 8034694Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.Type: GrantFiled: March 10, 2008Date of Patent: October 11, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
-
Publication number: 20110223749Abstract: The present method of forming a nitride semiconductor epitaxial layer includes the steps of growing at least one layer of nitride semiconductor epitaxial layer on a nitride semiconductor substrate having a dislocation density lower than or equal to 1×107 cm?2 with a chemical decomposition layer interposed therebetween, the chemical decomposition layer being chemically decomposed at least with either a gas or an electrolytic solution, and decomposing the chemical decomposition layer at least with either the gas or the electrolytic solution at least either during or after the step of growing the nitride semiconductor epitaxial layer, thereby separating the nitride semiconductor epitaxial layer from the nitride semiconductor substrate. A high-quality nitride semiconductor epitaxial layer suffering less damage when separated from the nitride semiconductor substrate is thereby formed.Type: ApplicationFiled: October 27, 2010Publication date: September 15, 2011Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Hiromu SHIOMI, Yu Saitoh, Kazuhide Sumiyoshi, Akihiro Hachigo, Makoto Kiyama, Seiji Nakahata
-
Publication number: 20110201163Abstract: A semiconductor structure is provided, which includes multiple sections arranged along a longitudinal axis. Preferably, the semiconductor structure comprises a middle section and two terminal sections located at opposite ends of the middle section. A semiconductor core having a first dopant concentration preferably extends along the longitudinal axis through the middle section and the two terminal sections. A semiconductor shell having a second, higher dopant concentration preferably encircles a portion of the semiconductor core at the two terminal sections, but not at the middle section, of the semiconductor structure. It is particularly preferred that the semiconductor structure is a nanostructure having a cross-sectional dimension of not more than 100 nm.Type: ApplicationFiled: March 7, 2011Publication date: August 18, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Joerg Appenzeller, Supratik Guha, Emanuel Tutuc
-
Patent number: 7998848Abstract: The laser beam with a wavelength having a higher energy than the band gap energy of the material forming the carrier moving layer is irradiated to activate the impurities contained in the constituent layer of the field effect transistor in the method of producing the field effect transistor. The method of the invention does not apply the heating of the substrate or the sample stage to raise the temperature of the semiconductor layer using the thermal conductivity so as to activate the impurities. Thus, the implanted impurities can be activated without deteriorating the performance of the device and reliability.Type: GrantFiled: March 26, 2009Date of Patent: August 16, 2011Assignee: Furukawa Electric Co., Ltd.Inventors: Yuki Niiyama, Seikoh Yoshida, Masatoshi Ikeda, legal representative, Hiroshi Kambayashi, Takehiko Nomura
-
Patent number: 7994073Abstract: A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film. Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.Type: GrantFiled: November 15, 2007Date of Patent: August 9, 2011Assignee: Texas Instruments IncorporatedInventors: Jiong-Ping Lu, Periannan Chidambaram, Srinivasan Chakravarthi
-
Patent number: 7977224Abstract: A method of preventing the escape of nitrogen during the activation of ion implanted dopants in a Group III-nitride semiconductor compound without damaging the Group III-nitride semiconductor comprising: depositing a first layer of another Group III-nitride that acts as an adhesion layer; depositing a second layer of a Group III-nitride that acts as a mechanical supporting layer; said first and second layers forming an annealing cap to prevent the escape of the nitrogen component of the Group III-nitride semiconductor; annealing the Group III-nitride semiconductor at a temperature in the range of approximately 1100-1250° C.; and removing the first and second layers from the Group III-nitride semiconductor.Type: GrantFiled: December 3, 2008Date of Patent: July 12, 2011Assignee: The United States of America as represented by the Secretary of the ArmyInventors: Carl Emmett Hager, IV, Michael Andrew Derenge, Kenneth Andrew Jones
-
Patent number: 7977223Abstract: A method of forming a nitride semiconductor through ion implantation and an electronic device including the same are disclosed. In the method, an ion implantation region composed of a line/space pattern is formed on a substrate at an ion implantation dose of more than 1E17 ions/cm2 to 5E18 ions/cm2 or less and an ion implantation energy of 30˜50 keV, and a metal nitride thin film is grown on the substrate by epitaxial lateral overgrowth, thereby decreasing lattice defects in the metal nitride thin film. Thus, the electronic device has improved efficiency.Type: GrantFiled: April 28, 2009Date of Patent: July 12, 2011Assignee: Korea University Industrial & Academic Collaboration FoundationInventors: Dong-Jin Byun, Bum-Joon Kim, Jung-Geun Jhin, Jong-Hyeob Baek
-
Patent number: 7977221Abstract: A strained Si—SOI substrate, and a method for producing the same are provided, wherein the method includes the steps of growing a SiGe mixed crystal layer 14 on an SOI substrate 10 having an Si layer 13 and a buried oxide film 12; forming protective films 15, 16 on the surface of the SiGe mixed crystal layer 14; implanting light element ions into a vicinity of the interface between the Si layer 13 and the buried oxide film 12; performing a first heat treatment at a temperature in the range of 400 to 1000° C.; performing a second heat treatment at a temperature not lower than 1050° C. under an oxidizing atmosphere; performing a third heat treatment at a temperature not lower than 1050° C. under an inert atmosphere; removing the Si oxide film 18 formed on the surface; and forming a strained Si layer 19.Type: GrantFiled: October 5, 2007Date of Patent: July 12, 2011Assignees: Sumco Corporation, Kyushu University, National University CorporationInventors: Masaharu Ninomiya, Koji Matsumoto, Masahiko Nakamae, Masanobu Miyao
-
Patent number: 7964483Abstract: The present invention relates to a method for growing a nitride semiconductor epitaxial layer, which comprises the steps of growing a second nitride semiconductor epitaxial layer on a first nitride semiconductor epitaxial layer at a first temperature, growing a third nitride semiconductor epitaxial layer on the second nitride semiconductor epitaxial layer at a second temperature, and releasing nitrogen from the second nitride semiconductor epitaxial layer by increasing a temperature to a third temperature higher than the second temperature, thereby, it is possible to lower the defect density of epitaxial layers and reduce warpage of a substrate.Type: GrantFiled: July 7, 2004Date of Patent: June 21, 2011Assignee: Seoul National University Industry FoundationInventors: Euijoon Yoon, Hyunseok Na
-
Publication number: 20110117708Abstract: To suppress an effect of metal contamination caused in manufacturing an SOI substrate. After forming a damaged region by irradiating a semiconductor substrate with hydrogen ions, the semiconductor substrate is bonded to a base substrate. Heat treatment is performed to cleave the semiconductor substrate; thus an SOI substrate is manufactured. Even if metal ions enter the semiconductor substrate together with the hydrogen ions in the step of hydrogen ion irradiation, the effect of metal contamination can be suppressed by the gettering process. Accordingly, the irradiation with hydrogen ions can be performed positively by an ion doping method.Type: ApplicationFiled: January 21, 2011Publication date: May 19, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Akihisa Shimomura, Hidekazu Miyairi
-
Publication number: 20110089469Abstract: The present invention is related to a method for manufacturing a low defect interface between a dielectric material and an III-V compound. More specifically, the present invention relates to a method for manufacturing a passivated interface between a dielectric material and an III-V compound. The present invention is also directed to a device comprising a low defect interface between a dielectric material and an III-V compound that has improved performance.Type: ApplicationFiled: October 1, 2010Publication date: April 21, 2011Applicant: IMECInventor: Clement Merckling