Applied Layer Being Silicon Or Silicide Or Sipos, E.g., Polysilicon, Porous Silicon (epo) Patents (Class 257/E21.151)
  • Patent number: 11955481
    Abstract: A microelectronic device includes a PNP transistor and NPN transistor arranged vertically in a P-type doped semiconductor substrate. The PNP and NPN transistors are manufactured by: forming an N+ doped isolating well for the PNP transistor in the semiconductor substrate; forming a P+ doped region in the N+ doped isolating well; epitaxially growing a first semiconductor layer on the semiconductor substrate; forming an N+ doped well for the NPN transistor, where at least part of the N+ doped well extends into the first semiconductor layer; then epitaxially growing a second semiconductor layer on the first semiconductor layer; forming a P doped region forming the collector of the PNP transistor in the second semiconductor layer and in electrical contact with the P+ doped region; and forming an N doped region forming the collector of the NPN transistor in the second semiconductor layer and in electrical contact with the N+ doped well.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: April 9, 2024
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Jean Jimenez Martinez
  • Patent number: 11862724
    Abstract: Compact radiation-hardened NMOS transistors permitting close spacing for high circuit density can be fabricated using modern commercial foundry processes incorporating lightly-doped drain (LDD) and silicidation techniques. Radiation-induced leakage currents in parasitic field oxide transistors are reduced by spacing diffusions away from field oxide edges under the gate, forming gap regions from which n-type dopants and silicide formation are excluded using blocking patterns in the layout. P-type implants along these field oxide edges further increase radiation tolerance. Dimensions can be tailored to permit tradeoffs between radiation tolerance, breakdown voltage, and circuit density. Compact layouts for series-connected NMOS transistors are provided and applied to high-density rad-hard circuits. Methods for fabricating devices having these features are also provided, requiring minimal adaptation of standard processes.
    Type: Grant
    Filed: September 1, 2023
    Date of Patent: January 2, 2024
    Assignee: Apogee Semiconductor, Inc.
    Inventor: Mark Hamlyn
  • Patent number: 11245039
    Abstract: A semiconductor device includes a first oxide insulating layer over a first insulating layer, an oxide semiconductor layer over the first oxide insulating layer, a source electrode layer and a drain electrode layer over the oxide semiconductor layer, a second insulating layer over the source electrode layer and the drain electrode layer, a second oxide insulating layer over the oxide semiconductor layer, a gate insulating layer over the second oxide insulating layer, a gate electrode layer over the gate insulating layer, and a third insulating layer over the second insulating layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer. A side surface portion of the second insulating layer is in contact with the second oxide insulating layer. The gate electrode layer includes a first region and a second region. The first region has a width larger than that of the second region.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: February 8, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Yutaka Okazaki, Satoru Okamoto, Shinya Sasagawa
  • Patent number: 11133184
    Abstract: The disclosure describes a tunneling field effect transistor having an overlapping structure between the source and drain regions providing a greater tunneling area. The source or drain region may be a doped region in a semi-conductive substrate. The other source or drain region may be formed by epitaxial deposition over the doped region. The gate is formed over the epitaxial region where the doped and epitaxial regions overlap. The doped region may be formed in a fin structure with the epitaxial region and gate being formed on the top and sides of the fin.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 28, 2021
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Chiao Tung University
    Inventors: Steve S. Chung, E. Ray Hsieh, Kuan-Yu Chang
  • Patent number: 11024743
    Abstract: A semiconductor device includes a first oxide insulating layer over a first insulating layer, an oxide semiconductor layer over the first oxide insulating layer, a source electrode layer and a drain electrode layer over the oxide semiconductor layer, a second insulating layer over the source electrode layer and the drain electrode layer, a second oxide insulating layer over the oxide semiconductor layer, a gate insulating layer over the second oxide insulating layer, a gate electrode layer over the gate insulating layer, and a third insulating layer over the second insulating layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer. A side surface portion of the second insulating layer is in contact with the second oxide insulating layer. The gate electrode layer includes a first region and a second region. The first region has a width larger than that of the second region.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: June 1, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Yutaka Okazaki, Satoru Okamoto, Shinya Sasagawa
  • Patent number: 10804453
    Abstract: A Peltier element for a thermoelectric heat exchanger may include n-doped n-type semiconductors, p-doped p-type semiconductors, and a plate structure for electrically contacting the semiconductors. The plate structure may include first plate sections and second plate sections, which may be alternately arranged along an extension of the Peltier element. The first plate sections may form a first side of the Peltier element, and the second plate sections may form a second side of the Peltier element, the second side being spaced from the first side. The plate structure may further include a plurality of legs. Each leg may interconnect adjacent first and second plate sections and may extend inclined relative to the adjacent first and second plate sections. An n-type semiconductor and a p-type semiconductor may be alternately integrated in the legs along the plate structure.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: October 13, 2020
    Assignee: Mahle International GmbH
    Inventors: Juergen Gruenwald, Christian Heneka, Dirk Neumeister
  • Patent number: 10777637
    Abstract: One illustrative integrated circuit product disclosed herein includes a single diffusion break (SDB) isolation structure positioned between a first fin portion and a second fin portion, wherein the first fin portion comprises a first end surface and the second fin portion comprises a second end surface. In this example, the SDB structure includes a conformal liner layer that engages the first end surface of the first fin portion and the second end surface of the second fin portion, an insulating material positioned on the conformal liner layer, a cap structure positioned above an upper surface of the insulating material and an air gap positioned between a bottom surface of the cap structure and the upper surface of the insulating material.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: September 15, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hong Yu, Jiehui Shu, Hui Zang
  • Patent number: 10651042
    Abstract: A method of forming a contact to a semiconductor device that includes forming a vertically orientated channel region on semiconductor material layer of a substrate; and forming a first source/drain region in the semiconductor material layer. The method may continue with forming a metal semiconductor alloy contact on the first source/drain region extending along a horizontally orientated upper surface of the first source/drain region that is substantially perpendicular to the vertically orientated channel region, wherein the metal semiconductor alloy contact extends substantially to an interface with the vertically orientated channel region. Thereafter, a gate structure is formed on the vertically orientated channel region, and a second source/drain region is formed on the vertically orientated channel region.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: May 12, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Praneet Adusumilli, Alexander Reznicek, Oscar van der Straten
  • Patent number: 10468407
    Abstract: A FinFET device structure is provided. The FinFET device structure includes an isolation structure formed over a substrate and a fin structure formed over the substrate. The FinFET device structure includes a first gate structure and a second gate structure formed over the fin structure, and the first gate structure has a first width in a direction parallel to the fin structure, the second gate structure has a second width in a direction parallel to the fin structure, and the first width is smaller than the second width. The first gate structure includes a first work function layer having a first height. The second gate structure includes a second work function layer having a second height and a gap between the first height and the second height is in a range from about 1 nm to about 6 nm.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chai-Wei Chang, Che-Cheng Chang, Po-Chi Wu, Yi-Cheng Chao
  • Patent number: 10446653
    Abstract: A semiconductor structure includes a semiconductor substrate, a semiconductor fin on the semiconductor substrate, a transistor integrated with the semiconductor fin at a top portion thereof, the transistor including an active region including a source, a drain and a channel region therebetween. The semiconductor structure further includes a gate structure over the channel region, the gate structure including a gate electrode, an air-gap spacer pair on opposite sidewalls of the gate electrode, and a gate contact for the gate electrode. A method of fabricating such a semiconductor device is also provided.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: October 15, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Min Gyu Sung, Chanro Park, Lars Wolfgang Liebmann, Hoon Kim
  • Patent number: 10439036
    Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to transistor devices such as metal-oxide-semiconductor (MOS) transistor devices. In one aspect, a transistor device comprises a channel region in a substrate partially delimited by a source and a drain junction at a main surface of the substrate. A first dielectric layer stack is arranged on the channel region, such that an orthogonal projection of the first dielectric layer stack on the main surface defining a first area is between and does not overlap the junctions and. A second dielectric layer stack is formed laterally adjacent to and in contact with the first dielectric layer stack, such that an orthogonal projection of the second dielectric layer stack overlaps the junction and defines a second area. A metal gate layer is formed on the first and second dielectric layer stacks, where an orthogonal projection of the metal gate layer on the main surface overlaps the first area and the second area.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 8, 2019
    Assignee: IMEC vzw
    Inventors: Alessio Spessot, An De Keersgieter, Naoto Horiguchi
  • Patent number: 10396182
    Abstract: A layer of amorphous silicon is formed on a germanium-on-insulator substrate, or a layer of germanium is formed on a silicon-on-insulator substrate. An anneal is then performed which causes thermal mixing of silicon and germanium atoms within one of the aforementioned structures and subsequent formation of a silicon germanium-on-insulator material.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Joel P. De Souza, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10312349
    Abstract: During a fabrication of a semiconductor device, a recess is created in a substrate material disposed along a direction of a plane of fabrication. A layer of a removable material is formed in the recess. A bottom layer is formed above the layer of removable material. A vertical channel above the bottom layer is formed in a direction substantially orthogonal to the direction of the plane of fabrication. A gate is formed using a metal above the bottom layer and relative to the vertical channel. A tunnel is created under the bottom layer by removing the removable material from under the bottom layer such that the backside of the bottom layer forms a ceiling of the tunnel. The tunnel is filled using a conductive material such that the conductive material makes electrical contact with the backside of the bottom layer.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shogo Mochizuki, Junli Wang
  • Patent number: 10249737
    Abstract: A layer of amorphous silicon is formed on a germanium-on-insulator substrate, or a layer of germanium is formed on a silicon-on-insulator substrate. An anneal is then performed which causes thermal mixing of silicon and germanium atoms within one of the aforementioned structures and subsequent formation of a silicon germanium-on-insulator material.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Joel P. De Souza, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 10079261
    Abstract: An image sensor includes a plurality of photodiodes and a floating diffusion disposed in a semiconductor material. The image sensor also includes a plurality of transfer gates coupled between the plurality of photodiodes and the floating diffusion to transfer the image charge generated in the plurality of photodiodes into the floating diffusion. Peripheral circuitry is disposed proximate to the plurality of photodiodes and coupled to receive the image charge from the plurality of photodiodes. A shallow trench isolation structure is laterally disposed, at least in part, between the plurality of photodiodes and the peripheral circuitry to prevent electrical crosstalk between the plurality of photodiodes and the peripheral circuitry. The peripheral circuitry includes one or more transistors including a source electrode and a drain electrode that are raised above a surface of the semiconductor material.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 18, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Qin Wang, Bill Phan, Sing-Chung Hu, Gang Chen
  • Patent number: 9911821
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate. The semiconductor device structure includes a metal gate electrode structure over the semiconductor substrate. The semiconductor device structure includes an insulating layer over the semiconductor substrate and surrounding the metal gate electrode structure. The semiconductor device structure includes a first metal nitride layer over a first top surface of the metal gate electrode structure and in direct contact with the metal gate electrode structure. The first metal nitride layer includes a nitride material of the metal gate electrode structure.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Ruei Yeh, Chih-Lin Wang, Kang-Min Kuo
  • Patent number: 9899494
    Abstract: A semiconductor device with improved roll-off resistivity and reliability are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a gate electrode overlying the gate dielectric, a gate silicide region on the gate electrode, a source/drain region adjacent the gate dielectric, and a source/drain silicide region on the source/drain region, wherein the source/drain silicide region and the gate silicide region have different metal compositions.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: February 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tan-Chen Lee, Bor-Wen Chan
  • Patent number: 9793171
    Abstract: An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filled with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 17, 2017
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai, William J. Taylor
  • Patent number: 9735016
    Abstract: A semiconductor device includes a substrate, upper impurity regions in upper portions of the substrate, metal electrodes electrically connected to the upper impurity regions, metal silicide layers between the metal electrodes and the upper impurity regions, and a lower impurity region in a lower portion of the substrate. A method of fabricating the semiconductor device and an apparatus used in fabricating the semiconductor device is also provided.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: August 15, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Choong-rae Cho
  • Patent number: 9711411
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first gate structure and a second gate structure on the substrate; forming a contact etch stop layer (CESL) on the first gate structure, the second gate structure, and the substrate; removing part of the CESL between the first gate structure and the second gate structure; and forming an interlayer dielectric (ILD) layer on the CESL.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 18, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Lin Lu, Shih-Fang Tzou, Chun-Lung Chen, Kun-Yuan Liao, Feng-Yi Chang, Wei-Hao Huang
  • Patent number: 9698247
    Abstract: A semiconductor arrangement is produced by providing a semiconductor carrier of a second conduction type and epitaxially growing a first semiconductor zone of a first conduction type on the carrier. The first semiconductor zone includes a semiconductor base material doped with first and second dopants which are made of different substances which are both different from the semiconductor base material. The first dopant is electrically active and causes a doping of the first conduction type in the semiconductor base material, and causes a decrease or an increase of a lattice constant of the first semiconductor zone. The second dopant causes one or both of hardening of the first semiconductor zone and an increase of the lattice constant of the first semiconductor zone if the first dopant causes a decrease, or a decrease of the lattice constant of the first semiconductor zone if the first dopant causes an increase.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: July 4, 2017
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Manfred Kotek, Johannes Baumgartl, Markus Harfmann, Christian Krenn, Thomas Neidhart
  • Patent number: 9673278
    Abstract: A source-drain structure and method of manufacturing the same are disclosed. The source-drain structure includes a substrate containing a drain region and a source region. The drain region includes a lightly-doped ultra-shallow junction and a heavily-doped region, and a drain-substrate junction disposed in the vicinity of a junction between a side portion and a bottom portion of the lightly-doped ultra-shallow junction and the substrate, a plurality of impurity ions in the drain-substrate junction and a plurality of impurity ions in the lightly-doped ultra-shallow junction are opposite-conductivity type ions. The drain-substrate junction can smooth out the steep surface of the lightly-doped ultra-shallow junction to minimize the maximum electric field and reduce the ion flow close to the channel, and effectively reduce the inter-band tunneling hot electron effect.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 6, 2017
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Chengcheng Wang
  • Patent number: 9653296
    Abstract: A method for processing a semiconductor device in accordance with various embodiments may include: depositing a first metallization material over a semiconductor body; performing a heating process so as to form at least one region in the semiconductor body including a eutectic of the first metallization material and material of the semiconductor body; and depositing a second metallization material over the semiconductor body so as to contact the semiconductor body via the at least one region in the semiconductor body.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: May 16, 2017
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Andreas Haertl, Francisco Javier Santos Rodriguez, André Rainer Stegner, Daniel Schloegl
  • Patent number: 9502309
    Abstract: A method of making a semiconductor device includes forming a first trench contact over a first source/drain region of a first transistor; forming a second trench contact over a second source/drain region of a second transistor; depositing a first liner material within the first trench contact; and depositing a second liner material within the second trench contact; wherein the first liner material and the second liner material include different materials.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Zuoguang Liu, Tenko Yamashita
  • Patent number: 9484456
    Abstract: A semiconductor device is manufactured by using an SOI substrate having an insulating layer on a substrate and a semiconductor layer on the insulating layer. The semiconductor device is provided with a gate electrode formed on the semiconductor layer via a gate insulating film, a sidewall spacer formed on a sidewall of the gate electrode, a semiconductor layer for source/drain that is epitaxially grown on the semiconductor layer, and a sidewall spacer formed on a sidewall of the semiconductor layer.
    Type: Grant
    Filed: July 18, 2015
    Date of Patent: November 1, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiki Yamamoto, Hideki Makiyama, Toshiaki Iwamatsu, Takaaki Tsunomura
  • Patent number: 9418870
    Abstract: A layer of amorphous silicon is formed on a germanium-on-insulator substrate, or a layer of germanium is formed on a silicon-on-insulator substrate. An anneal is then performed which causes thermal mixing of silicon and germanium atoms within one of the aforementioned structures and subsequent formation of a silicon germanium-on-insulator material.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: August 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Joel P. De Souza, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 9343470
    Abstract: A polysilicon gate electrode is formed in a memory cell area, and a dummy polysilicon gate electrode is formed in a logic cell area of a silicon substrate. The dummy polysilicon gate electrode is removed and a gate insulation film and a metal gate electrode having a recess portion are formed. Further, contact holes are formed on source regions and drain regions of the memory cell area and the logic cell area. The recess portion of the metal gate electrode and the contact holes are filled with a wiring metal, substantially simultaneously, and thereafter the wiring metal is planarized by polishing.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 17, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Kimihiko Hosaka, Toro Anezaki
  • Patent number: 9324854
    Abstract: A semiconductor device includes a high-k metal gate electrode structure that is positioned above an active region, has a top surface that is positioned at a gate height level, and includes a high-k dielectric material and an electrode metal. Raised drain and source regions are positioned laterally adjacent to the high-k metal gate electrode structure and connect to the active region, and a top surface of each of the raised drain and source regions is positioned at a contact height level that is below the gate height level. An etch stop layer is positioned above the top surface of the raised drain and source regions and a contact element connects to one of the raised drain and source regions, the contact element extending through the etch stop layer and a dielectric material positioned above the high-k metal gate electrode structure and the raised drain and source regions.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 26, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Till Schloesser, Peter Baars, Frank Jakubowski
  • Patent number: 9252015
    Abstract: An ultra-shallow junction semiconductor field-effect transistor and its methods of making are disclosed. In the present disclosure, a mixture film is formed on a semiconductor substrate with a gate structure formed thereon using a physical vapor deposition (PVD) process, which employs a mixture of metal and semiconductor dopants as a target. The PVD process is followed by annealing, during which ultra-shallow junctions and ultra-thin metal silicide are formed. After removing the mixture film remaining on the semiconductor substrate, an ultra-shallow junction semiconductor field-effect transistor is formed. Because the mixture film comprises metal and semiconductor dopants, ultra-shallow junctions and ultra-thin metal silicide can be formed in a same annealing process. The ultra-shallow junction thus formed can be used in semiconductor field-effect transistors for the 14 nm, 11 nm, or even further technology node.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 2, 2016
    Assignee: FUDAN UNIVERSITY
    Inventors: Dongping Wu, Xiangbiao Zhou, Peng Xu, Wei Zhang, Shi-Li Zhang
  • Patent number: 9035384
    Abstract: A semiconductor device includes a first fin-shaped silicon layer on a substrate and a second fin-shaped silicon layer on the substrate, each corresponding to the dimensions of a sidewall pattern around a dummy pattern. A silicide in upper portions of n-type and p-type diffusion layers in the upper portions of the first and second fin-shaped silicon layers. A metal gate line is connected to first and second metal gate electrodes and extends in a direction perpendicular to the first fin-shaped silicon layer and the second fin-shaped silicon layer. A first contact is in direct contact with the n-type diffusion layer in the upper portion of the first pillar-shaped silicon layer, and a second contact is in direct contact with the p-type diffusion layer in the upper portion of the second pillar-shaped silicon layer.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: May 19, 2015
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 9012960
    Abstract: A photo detector comprising a first doped impurity region (adapted to receive a first voltage) disposed in or on a substrate; a body region, juxtaposed the first doped impurity region; a gate (adapted to receive a second voltage) spaced from a first portion of the body region; a light absorbing region, juxtaposed a second portion of the body region, includes a material which, in response to light incident thereon, generates carrier pairs including a first and second type carriers; a contact region (adapted to receive a third voltage) juxtaposed the light absorbing region; wherein, in response to incident light, the gate attracts first type carriers of the carrier pairs to the first portion of the body region which causes second carriers from the first doped impurity region to flow to the contact region, and the contact region attracts second type carriers.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: April 21, 2015
    Assignee: Actlight, S.A.
    Inventor: Serguei Okhonin
  • Patent number: 8936989
    Abstract: A method for fabricating a semiconductor integrated circuit having a self-aligned structure, the method comprises the steps of: providing a semiconductor substrate; forming a gate dielectric layer, a first polysilicon layer, and a first capping layer on top of the semiconductor substrate; patterning the first capping layer, the first polysilicon layer and stopping on the gate dielectric layer to form a gate structure; forming and patterning a composite dielectric layer, a second polysilicon layer, and a second capping layer to form an interconnect structure; forming a composite spacer; removing the photo-resist layer; forming a third polysilicon layer; making blanket removal of the third polysilicon layer to leave a remain third polysilicon layer; removing the first and the second capping layer; forming a source and a drain; and forming a silicide layer overlying the gate structure, source, drain and the interconnect structure to form the self-aligned structure.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: January 20, 2015
    Inventor: Tzu-Yin Chiu
  • Patent number: 8928064
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming a non-stoichiometric high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the non-stoichiometric high-k gate dielectric layer and the semiconductor substrate. At least one gate conductor layer may be formed on the non-stoichiometric high-k gate dielectric layer. The at least one gate conductor layer comprises a boron semiconductor alloy layer. An anneal process is applied, wherein during the anneal process the non-stoichiometric high-k gate dielectric layer removes oxide material from the oxide containing interfacial layer. The oxide containing interfacial layer is thinned by removing the oxide material during the anneal process.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8916478
    Abstract: A CMOS SGT manufacturing method includes a step of forming first and second fin-shaped silicon layers on a substrate, forming a first insulating film around the first and second fin-shaped silicon layers, and forming first and second pillar-shaped silicon layers; a step of forming n-type diffusion layers; a step of forming p-type diffusion layers; a step of forming a gate insulating film and first and second polysilicon gate electrodes; a step of forming a silicide in upper portions of the diffusion layers in upper portions of the first and second fin-shaped silicon layers; and a step of depositing an interlayer insulating film, exposing the first and second polysilicon gate electrodes, etching the first and second polysilicon gate electrodes, and then depositing a metal to form first and second metal gate electrodes.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: December 23, 2014
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8859410
    Abstract: A method of forming a gate structure for a semiconductor device that includes forming a non-stoichiometric high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the non-stoichiometric high-k gate dielectric layer and the semiconductor substrate. At least one gate conductor layer may be formed on the non-stoichiometric high-k gate dielectric layer. The at least one gate conductor layer comprises a boron semiconductor alloy layer. An anneal process is applied, wherein during the anneal process the non-stoichiometric high-k gate dielectric layer removes oxide material from the oxide containing interfacial layer. The oxide containing interfacial layer is thinned by removing the oxide material during the anneal process.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8778771
    Abstract: A method of manufacturing a semiconductor device includes steps of providing a substrate including a semiconductor portion, a non-porous semiconductor layer, and a porous semiconductor layer arranged between the semiconductor portion and the non-porous semiconductor layer, forming a porous oxide layer by oxidizing the porous semiconductor layer, forming a bonded substrate by bonding a supporting substrate to a surface, on a side of the non-porous semiconductor layer, of the substrate on which the porous oxide layer is formed, and separating the semiconductor portion from the bonded substrate by utilizing the porous oxide layer.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 15, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuo Kokumai
  • Patent number: 8772175
    Abstract: A CMOS SGT manufacturing method includes a step of forming first and second fin-shaped silicon layers on a substrate, forming a first insulating film around the first and second fin-shaped silicon layers, and forming first and second pillar-shaped silicon layers; a step of forming n-type diffusion layers; a step of forming p-type diffusion layers; a step of forming a gate insulating film and first and second polysilicon gate electrodes; a step of forming a silicide in upper portions of the diffusion layers in upper portions of the first and second fin-shaped silicon layers; and a step of depositing an interlayer insulating film, exposing the first and second polysilicon gate electrodes, etching the first and second polysilicon gate electrodes, and then depositing a metal to form first and second metal gate electrodes.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 8, 2014
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8765608
    Abstract: Methods for making a semiconductor device are disclosed. The method includes forming a plurality of gate stacks on a substrate, forming an etch buffer layer on the substrate, forming a dielectric material layer on the etch buffer layer, forming a hard mask layer on the substrate, wherein the hard mask layer includes one opening, and etching the dielectric material layer to form a plurality of trenches using the hard mask layer and the etch buffer layer as an etch mask.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ya Hui Chang
  • Patent number: 8759164
    Abstract: In a method for manufacturing an integral imaging device, a layer of curable adhesive is first applied on a flexible substrate and half cured such that the curable adhesive is solidified but is capable of deforming under external forces. Then the curable adhesive is printed into a lenticular lens having a predetermined shape and size using a roll-to-roll processing device and fully cured such that the curable adhesive is capable of withstanding external forces to hold the predetermined shape and size. Last, a light emitting diode display is applied on the flexible substrate opposite to the lenticular lens such that an image plane of the light emitting diode display coincides with a focal plane of the lenticular lens.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: June 24, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chia-Ling Hsu
  • Patent number: 8704353
    Abstract: A method of manufacturing is provided that includes fabricating a first plurality of electrically functional interconnects on a front side of a first semiconductor chip and fabricating a first plurality of electrically non-functional interconnects on a back side of the first semiconductor chip. Additional chips may be stacked on the first semiconductor chip.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 22, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael Su, Bryan Black, Neil McLellan, Joe Siegel, Michael Alfano
  • Patent number: 8669187
    Abstract: A porous lift off layer facilitates removal of films from surfaces, such as semiconductors. A layer, with porosities typically larger than the film thickness is provided where no film is desired. The film is applied over the porous layer and also where it is desired. The porous material and the film are then removed from areas where film is not intended. The porous layer can be provided as a slurry, dried to open porosities, or fugitive particles within a field, which disassociate upon the application of heat or solvent. The film can be removed by etchant that enters through porosities that have arisen due to the film not bridging the spaces between solid portions. Etchant attacks both film surfaces. Particles may have diameters of four to ten times the film thickness. Particles may be silica, alumina and ceramics. Porous layers can be used in depressions or on flat surfaces.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: March 11, 2014
    Assignee: 1366 Technologies, Inc.
    Inventors: Emanuel M. Sachs, Andrew M. Gabor
  • Patent number: 8669598
    Abstract: A unit pixel of an image sensor and a photo detector are disclosed. The photo detector of the present invention configured to absorb light can include: a light-absorbing part configured to absorb light by being formed in a floated structure; an oxide film being in contact with one surface of the light-absorbing part; a source being in contact with one side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; a drain facing the source so as to be in contact with the other side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; and a channel interposed between the source and the drain and configured to form flow of an electric current between the source and the drain.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 11, 2014
    Inventor: Hoon Kim
  • Patent number: 8669599
    Abstract: A unit pixel of an image sensor and a photo detector are disclosed. The photo detector of the present invention configured to absorb light can include: a light-absorbing part configured to absorb light by being formed in a floated structure; an oxide film being in contact with one surface of the light-absorbing part; a source being in contact with one side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; a drain facing the source so as to be in contact with the other side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; and a channel interposed between the source and the drain and configured to form flow of an electric current between the source and the drain.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 11, 2014
    Inventor: Hoon Kim
  • Patent number: 8664776
    Abstract: A semiconductor device has a semiconductor chip and a first interconnection tape. The semiconductor chip has a plurality of first electrode pads arranged on a first surface. The first interconnection tape is in contact with each of the plurality of first electrode pads such that the plurality of first electrode pads are electrically connected with each other.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: March 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Yamamoto
  • Patent number: 8569806
    Abstract: A unit pixel of an image sensor and a photo detector are disclosed. The photo detector of the present invention configured to absorb light can include: a light-absorbing part configured to absorb light by being formed in a floated structure; an oxide film being in contact with one surface of the light-absorbing part; a source being in contact with one side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; a drain facing the source so as to be in contact with the other side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; and a channel interposed between the source and the drain and configured to form flow of an electric current between the source and the drain.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: October 29, 2013
    Inventor: Hoon Kim
  • Patent number: 8390135
    Abstract: The reliability of a porous Low-k film is improved. The mean diameter of first pores and second pores in an interlayer insulation film of a second fine layer including a porous Low-k film is set at 1.0 nm or more and less than 1.45 nm. This prevents the formation of a modified layer over the surface of the interlayer insulation film by process damages. Further, the formation of the moisture-containing modified layer is inhibited to prevent oxidation of a barrier film and a main conductor film forming respective wirings. This prevents deterioration of breakdown voltage between respective wirings. This prevents deterioration of the EM lifetime of wirings formed adjacent to the interlayer insulation film and the inter-wiring TDDB lifetime of the wirings.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshihiro Oka, Kinya Goto
  • Patent number: 8367533
    Abstract: Provided are a semiconductor device and a method of forming the same. The method includes forming an interlayer dielectric on a semiconductor substrate, forming a contact hole in the interlayer dielectric to expose the semiconductor substrate, forming a metal pattern including a dopant on the exposed semiconductor substrate, and performing a heat treatment process to react the semiconductor substrate with the metal pattern to form a metal silicide pattern. The heat treatment process includes diffuses the dopant into the semiconductor substrate.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Ho Yun, Gil-heyun Choi, Jong-Myeong Lee
  • Publication number: 20120302050
    Abstract: Disclosed herein is a method of manufacturing a semiconductor device. The method comprises forming a first silicon film on a semiconductor substrate, forming a second silicon film on the first silicon film, forming a third silicon film on the second silicon film, and forming a first diffusion barrier film on the third silicon film. The method further comprises performing a thermal treatment to diffuse an impurity included in the second silicon film into at least the first silicon film and the semiconductor substrate, respectively.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 29, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Takayuki MATSUI
  • Patent number: 8232187
    Abstract: A doping method for a semiconductor device includes forming a trench in a semiconductor substrate, forming a doped layer doped with a dopant over the undoped layer, and forming a doped region into which the dopant is diffused, wherein the doped region is a portion of the semiconductor substrate in contact with the doped layer.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: July 31, 2012
    Assignee: Hynix Semiconcuctor Inc.
    Inventor: Won-Kyu Kim
  • Patent number: 8183137
    Abstract: The disclosure provides a semiconductor device and method of manufacture therefore. The method for manufacturing the semiconductor device, in one embodiment, includes forming a layer of gate electrode material over a layer of gate dielectric material, wherein the layer of gate dielectric material is positioned over a substrate (210). This method further includes patterning the layer of gate electrode material and the layer of gate dielectric material into an NMOS gate structure (230), wherein the NMOS gate structure (230) includes an NMOS gate dielectric (240) and an NMOS gate electrode (250). This method further includes forming n-type source/drain regions (710) within the substrate (210) proximate the NMOS gate structure (230), and siliciding the NMOS gate electrode (250) to form a silicided gate electrode (1110, 1210). This method additionally includes placing a p-type dopant within the layer of gate electrode material or the NMOS gate electrode (250) prior to or concurrently with siliciding.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: May 22, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Mark Visokay, Jorge Adrian Kittl