Diffusion Into Or Out Of Group Iv Semiconductor (epo) Patents (Class 257/E21.145)
  • Patent number: 8921174
    Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Patent number: 8828776
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded, synchronously driven, metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces. Longitudinal side wall heaters comprising coil heaters in Inconel sheaths inserted in carrier tubes are employed to insure even heating of wafer edges adjacent the side walls.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 9, 2014
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Patent number: 8637386
    Abstract: An electronic device includes a silicon carbide layer having a first conductivity type and a main junction adjacent a surface of the silicon carbide layer, and a junction termination region at the surface of the silicon carbide layer adjacent the main junction. Charge in the junction termination region decreases with lateral distance from the main junction, and a maximum charge in the junction termination region may be less than about 2×1014 cm?2.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: January 28, 2014
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant K. Agarwal, Tangali S. Sudarshan, Alexander Bolotnikov
  • Publication number: 20130099312
    Abstract: A semiconductor device structure includes a substrate having a background doping of a first concentration and of a first conductivity type. A through substrate via (TSV) is through the substrate. A device has a first doped region of a second conductivity on a first side of the substrate. A second doped region is around the TSV. The second doped region has a doping of a second concentration greater than the first concentration and is of the first conductivity type.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Inventors: Thuy B. Dao, Joel E. Keys, Hernan A. Rueda, Paul W. Sanders
  • Publication number: 20130081691
    Abstract: A coating fluid comprising a boron compound, an organic binder, a silicon compound, an alumina precursor, and water and/or an organic solvent is used to diffuse boron into a silicon substrate to form a p-type diffusion layer. The coating fluid is spin coated onto the substrate to form a uniform coating having a sufficient amount of impurity whereupon a p-type diffusion layer having in-plane uniformity is formed.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 4, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: SHIN-ETSU CHEMICAL CO., LTD.
  • Publication number: 20130059433
    Abstract: Compositions and methods for doping silicon substrates by treating the substrate with a diluted dopant solution comprising tetraethylene glycol dimethyl ether (tetraglyme) and a dopant-containing material and subsequently diffusing the dopant into the surface by rapid thermal annealing. Diethyl-1-propylphosphonate and allylboronic acid pinacol ester are preferred dopant-containing materials, and are preferably included in the diluted dopant solution in an amount ranging from about 1% to about 20%, with a dopant amount of 4% or less being more preferred.
    Type: Application
    Filed: October 5, 2012
    Publication date: March 7, 2013
    Applicant: DYNALOY, LLC
    Inventor: Dynaloy, LLC
  • Publication number: 20120289037
    Abstract: A method for fabricating a semiconductor power device includes the following steps. First, a substrate having at least a semiconductor layer and a pad layer thereon is provided. At least a trench is etched into the pad layer and the semiconductor layer. Then, a dopant source layer is deposited in the trench and on the pad layer followed by thermally driving in dopants of the dopant source layer into the semiconductor layer. A polishing process is performed to remove the dopant source layer from a surface of the pad layer and a thermal oxidation process is performed to eliminate micro-scratches formed during the polishing process. Finally, the pad layer is removed to expose the semiconductor layer.
    Type: Application
    Filed: August 17, 2011
    Publication date: November 15, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Yi-Lin Sun
  • Publication number: 20120276726
    Abstract: A method for fabricating a semiconductor power device includes the following steps. First, a substrate having thereon at least a semiconductor layer and a pad layer is provided. Then, at least a trench is etched into the pad layer and the semiconductor layer followed by depositing a dopant source layer in the trench and on the pad layer. A process is carried out thermally driving in dopants of the dopant source layer into the semiconductor layer. A rapid thermal process is performed to mend defects in the dopant source layer and defects between the dopant source layer and the semiconductor layer. Finally, a polishing process is performed to remove the dopant source layer from a surface of the pad layer.
    Type: Application
    Filed: August 17, 2011
    Publication date: November 1, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Yi-Lin Sun
  • Publication number: 20120193769
    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
    Type: Application
    Filed: May 23, 2011
    Publication date: August 2, 2012
    Inventors: Guojun Liu, Uma Srinivasan, Shivkumar Chiruvolu
  • Publication number: 20120149182
    Abstract: Silicon wafer processing system, apparatus and method of doping silicon wafers with hot concentrated acid dopant compositions for forming p-n junction and back contact layers during processing into PV solar cells. Highly concentrated acid dopant is atomized with pressurized gas and heated in the range of 80-200° C., then introduced into a concentrated acid vapor processing chamber to apply vapor over 1.5-6 min to wafers moving horizontally on a multi-lane conveyor system through the processing chamber. The wafers are dried and forwarded to a diffusion furnace. An optional UV pre-treatment assembly pre-conditions the wafers with UV radiation prior to dopant application, and doped wafers may be post-treated in a UV treatment module before being fired. The wafers may be cooled in the processing chamber. Post-firing, the wafers exhibit excellent sheet resistance in the 60-95 ?/sq range, and are highly uniform across the wafers and wafer-to-wafer.
    Type: Application
    Filed: September 12, 2011
    Publication date: June 14, 2012
    Applicant: TP SOLAR, INC.
    Inventors: Luis Alejandro Rey Garcia, Peter G. Ragay, Richard W. Parks
  • Patent number: 8163638
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 24, 2012
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20110256377
    Abstract: Photovoltaic elements can be formed by in-motion processing of a silicon ribbon. In some embodiments, only a single surface of a silicon ribbon is processed in-motion. In other embodiments both surfaces of a silicon ribbon is processed in-motion. In-motion processing can include, but is not limited to, formation of patterned or uniform doped regions within or along the silicon ribbon as well as the formation of patterned or uniform dielectric layers and/or electrically conductive elements on the silicon ribbon. After performing in-motion processing, additional processing steps can be performed after the ribbon is cut into portions. Furthermore, post-cut processing can include, but is not limited to, the formation of solar cells, photovoltaic modules, and solar panels.
    Type: Application
    Filed: November 17, 2010
    Publication date: October 20, 2011
    Inventors: Shivkumar Chiruvolu, Neeraj Pakala, Scott Ferguson, Kieran Drain
  • Patent number: 8030203
    Abstract: A semiconductor device and a method of forming a metal line of a semiconductor device includes a first insulating layer formed over a semiconductor substrate an etch-stop layer formed over the first insulating layer, contact holes formed by etching the etch-stop layer and the first insulating layer, Contact plugs formed within the contact holes and a second insulating layer formed over the contact plugs and the etch-stop layer. The second insulating layer is etched in order to form trenches through which the contact plugs are exposed. Metal lines are formed within the trenches. Accordingly, since a hard mask with a high dielectric constant does not remain between the metal lines, the capacitance of the metal lines can be reduced.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: October 4, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Gu Kim
  • Patent number: 7999250
    Abstract: In accordance with one or more embodiments, a semiconductor structure includes a semiconductor substrate, a first semiconductor material over the semiconductor substrate, and a second semiconductor material over a portion the first semiconductor material, wherein the second semiconductor material comprises silicon-germanium-carbon (SiGeC) and wherein the first semiconductor material is a silicon epitaxial layer. The semiconductor structure further includes an active device, wherein a portion of the active device is formed in the second semiconductor material and a dielectric structure extending from the first surface of the first semiconductor material into the semiconductor substrate through the first semiconductor material.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: August 16, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventors: Bishnu Prasanna Gogoi, Robert Bruce Davies
  • Patent number: 7851339
    Abstract: Performance of field effect transistors and other channel dependent devices formed on a monocrystalline substrate is improved by carrying out a high temperature anneal in a nitrogen releasing atmosphere while the substrate is coated by a sacrificial oxide coating containing easily diffusible atoms that can form negatively charged ions and can diffuse deep into the substrate. In one embodiment, the easily diffusible atoms comprise at least 5% by atomic concentration of chlorine atoms in the sacrificial oxide coating and the nitrogen releasing atmosphere includes NO. The high temperature anneal is carried out for less than 10 hours at a temperature less than 1100° C.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 14, 2010
    Assignee: Promos Technologies Pte. Ltd.
    Inventors: Zhong Dong, Ching-Hwa Chen
  • Publication number: 20100289032
    Abstract: An electronic device includes a silicon carbide layer having a first conductivity type and a main junction adjacent a surface of the silicon carbide layer, and a junction termination region at the surface of the silicon carbide layer adjacent the main junction. Charge in the junction termination region decreases with lateral distance from the main junction, and a maximum charge in the junction termination region may be less than about 2×1014 cm?2.
    Type: Application
    Filed: March 8, 2010
    Publication date: November 18, 2010
    Inventors: Qingchun Zhang, Anant K. Agarwal, Tangali S. Sudarshan, Alexander Bolotnikov
  • Patent number: 7820475
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Sunpower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20100167508
    Abstract: A method for introducing impurities includes a step for forming an amorphous layer at a surface of a semiconductor substrate, and a step for forming a shallow impurity-introducing layer at the semiconductor substrate which has been made amorphous, and an apparatus used therefore. Particularly, the step for forming the amorphous layer is a step for irradiating plasma to the surface of the semiconductor substrate, and the step for forming the shallow impurity-introducing layer is a step for introducing impurities into the surface which has been made amorphous.
    Type: Application
    Filed: March 5, 2010
    Publication date: July 1, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Yuichiro Sasaki, Bunji Mizuno, Cheng-Guo Jin
  • Patent number: 7683488
    Abstract: A semiconductor device is provided having an insulating layer structure with a low dielectric constant and excellent barrier properties against copper. This semiconductor device has a copper wiring layer and includes at least one layered structure having a copper wiring line, an amorphous carbon film with a density of 2.4 g/cm3 or more, a porous silicon oxide insulating material layer, an amorphous carbon film with a density of 2.4 g/cm3 or more and a copper wiring line in that order.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Limited
    Inventor: Tsukasa Itani
  • Patent number: 7491629
    Abstract: A method for producing an n-doped field stop zone in a semiconductor body. The method includes carrying out a diffusion process for the indiffusion of sulfur, hydrogen or selenium proceeding from one side into the semiconductor body in order to produce a first n-doped semiconductor zone. A second n-doped semiconductor zone is produced in the first semiconductor zone, which is doped more highly than the first semiconductor zone. Additionally, a semiconductor component having a field stop zone is disclosed.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: February 17, 2009
    Assignee: Infineon Technologies Austria AG
    Inventor: Hans-Joachim Schulze
  • Patent number: 7473587
    Abstract: A method of forming a low-defect, substantially relaxed SiGe-on-insulator substrate material is provided. The method includes first forming a Ge-containing layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to Ge diffusion. A heating step is then performed at a temperature that approaches the melting point of the final SiGe alloy and retards the formation of stacking fault defects while retaining Ge. The heating step permits interdiffusion of Ge throughout the first single crystal Si layer and the Ge-containing layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Moreover, because the heating step is carried out at a temperature that approaches the melting point of the final SiGe alloy, defects that persist in the single crystal SiGe layer as a result of relaxation are efficiently annihilated therefrom.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Anthony G. Domenicucci, Keith E. Fogel, Devendra K. Sadana
  • Publication number: 20080248635
    Abstract: A structure and method of fabrication for MOSFET devices with a polycrystalline SiGe junction is disclosed. Ge is selectively grown on Si while Si is selectively grown on Ge. Alternating depositions of Ge and Si layers yield the SiGe junction. The deposited layers are doped, and subsequently the dopants outdiffused into the device body. A thin porous oxide layer between the polycrystalline Ge and Si layers enhances the isotropy of the SiGe junctions.
    Type: Application
    Filed: May 12, 2008
    Publication date: October 9, 2008
    Applicant: International Business Machines Corporation
    Inventors: Kevin Kok Chan, Rober J. Miller, Erin C. Jones, Atul Ajmera
  • Patent number: 7303967
    Abstract: Disclosed is a method for fabricating a transistor of a semiconductor device, the method comprising the steps of: providing a semiconductor; forming a gate electrode; performing a low-density ion implantation process with respect to the substrate, thereby forming an LDD ion implantation layer; forming an insulation spacer on a sidewall of the gate electrode; forming a diffusion barrier; performing a high-density ion implantation process with respect to the substrate, thereby forming a source/drain; performing a first thermal treatment process with respect to a resultant structure, so as to activate impurities in the source/drain, and simultaneously causing a diffusion velocity of the impurities in the source/drain to be reduced by the diffusion barrier; and forming a salicide layer.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 4, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hoon Sa
  • Publication number: 20070243688
    Abstract: A method for forming a strained semiconductor device is described. A substrate including a first semiconductor material and having a first conductivity type is provided. A semiconductor layer of a second conductivity type is formed contacting with the substrate, wherein the semiconductor layer includes the first semiconductor material and a second semiconductor material and has a dopant of the second conductivity type. In-situ annealing is then conducted to diffuse the dopant.
    Type: Application
    Filed: April 17, 2006
    Publication date: October 18, 2007
    Inventor: Chin-I Liao