Comprising Charge Trapping Insulator (epo) Patents (Class 257/E21.21)
  • Publication number: 20100022081
    Abstract: A semiconductor memory device with the thickness of both a tunnel film and a top film provided thereon configured to be in the FN tunneling region (4 nm or more). Data retention characteristics can be improved by configuring both a tunnel film and a top film to have a thickness in the FN tunneling region. Secondly, a high-concentration impurity region of a conductivity type the same as that of the substrate is provided in a substrate region arranged between assist gates provided adjacently to each other. The aforementioned high-concentration impurity region makes a depletion layer extremely thin when bias is applied to the assist gates. Hot holes generated between bands in the depletion region are injected into a charge storage region and the holes and electrons make pairs and disappear, enabling easy data erasing.
    Type: Application
    Filed: October 7, 2009
    Publication date: January 28, 2010
    Inventor: Hiroyuki NANSEI
  • Publication number: 20100019311
    Abstract: This semiconductor memory device comprises a semiconductor substrate, a plurality of tunnel insulator films formed on the semiconductor substrate along a first direction and a second direction orthogonal to the first direction with certain spaces in each directions, a plurality of charge accumulation layers formed on the plurality of tunnel insulator films, respectively, a plurality of element isolation regions formed on the semiconductor substrate, the plurality of element isolation regions including a plurality of trenches formed along the first direction between the plurality of tunnel insulator films, a plurality of element isolation films filled in the plurality of trenches, a plurality of inter poly insulator films formed over the plurality of element isolation regions and on the upper surface and side surfaces of the plurality of charge accumulation layer along the second direction in a stripe shape, a plurality of air gaps formed between the plurality of element isolation films filled in the plurality
    Type: Application
    Filed: July 21, 2009
    Publication date: January 28, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Atsuhiro SATO, Fumitaka Arai
  • Publication number: 20100013002
    Abstract: Provided is an excellent nonvolatile storage device having advantageous in miniaturization and less variation in initial threshold value, and exhibiting a high writing efficiency, without an erasing failure and a retention failure. The nonvolatile storage device is characterized by including a film stack extending from between a semiconductor substrate and a gate electrode onto at least a surface of the gate electrode lying on a first impurity diffusion region side, the film stack including a charge accumulating layer and a tunnel insulating film sequentially from a gate electrode side.
    Type: Application
    Filed: December 13, 2007
    Publication date: January 21, 2010
    Inventor: Yukihide Tsuji
  • Publication number: 20100006923
    Abstract: A semiconductor device includes a tunnel insulating film formed on a surface of a semiconductor region, a charge storage insulating film formed on a surface of the tunnel insulating film, a block insulating film formed on a surface of the charge storage insulating film, and a control gate electrode formed on a surface of the block insulating film, wherein the block insulating film includes a first insulating film containing a metal element and oxygen as main components, a second insulating film containing silicon and oxygen as main components, and an interface layer formed between the first insulating film and the second insulating film and containing the metal element, silicon, and oxygen as main components.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 14, 2010
    Inventors: Ryota FUJITSUKA, Katsuyuki SEKINE, Yoshio OZAWA, Daisuke NISHIDA
  • Publication number: 20100001336
    Abstract: The present invention is a semiconductor device including a semiconductor substrate having a trench, a first insulating film provided on side surfaces of the trench, a second insulating film of a material different from the first insulating film provided to be embedded in the trench, a word line provided extending to intersect with the trench above the semiconductor substrate, a gate insulating film of a material different from the first insulating film separated in an extending direction of the word line by the trench and provided under a central area in a width direction of the word line, and a charge storage layer separated in the extending direction of the word line by the trench and provided under both ends in the width direction of the word line to enclose the gate insulating film, and a method for manufacturing the same.
    Type: Application
    Filed: December 24, 2008
    Publication date: January 7, 2010
    Inventors: Takayuki MARUYAMA, Fumihiko INOUE
  • Publication number: 20090325373
    Abstract: The semiconductor memory device according to the present invention includes a charge storage layer 26 formed over a semiconductor substrate 10 and including a plurality of particles 16 as charge storage bodies in insulating films 12, 24, and a gate electrode 30 formed over the charge storage layer 26, in which the particles 16 are formed of metal oxide or metal nitride.
    Type: Application
    Filed: September 9, 2009
    Publication date: December 31, 2009
    Applicant: JUJITSU LIMITED
    Inventor: Taro SUGIZAKI
  • Publication number: 20090321812
    Abstract: The present invention provides a semiconductor device including a semiconductor substrate provided with a trench section; a tunnel insulating film covering an inner surface of the trench section; a trap layer provided in contact with the tunnel insulating film on an inner surface of an upper portion of the trench section; a top insulating film provided in contact with the trap layer; a gate electrode embedded in the trench section, and provided in contact with the tunnel insulating film at a lower portion of the trench section and in contact with the top insulating film at the upper portion of the trench section, in which the trap layer and the top insulating film, in between the lower portion of the trench section and the upper portion of the trench section, extend and protrude from both sides of the trench section so as to be embedded in the gate electrode, and a method for manufacturing thereof.
    Type: Application
    Filed: December 22, 2008
    Publication date: December 31, 2009
    Inventors: Fumiaki TOYAMA, Fumihiko INOUE
  • Publication number: 20090315100
    Abstract: Disclosed is a method of manufacturing a semiconductor device. The method includes forming an oxide-nitride-oxide (ONO) layer over a semiconductor substrate, and forming a recess over the semiconductor substrate by etching the ONO layer, forming a vertical structure pattern being higher than the ONO layer over the recess, sequentially forming a spacer oxide film and a first gate poly over the side wall of the vertical structure pattern, and forming a nitride film spacer at a partial region of the side wall of the first gate poly, removing the nitride film spacer, and forming a second gate poly in a spacer shape over the side wall of the first gate poly, and forming a first split gate and a second split gate, symmetrically divided from each other, by removing the vertical structure pattern.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 24, 2009
    Inventor: Hee-Don Jeong
  • Publication number: 20090316032
    Abstract: An image sensor includes an increase portion for impact-ionizing and increasing signal charges, a charge increasing electrode for applying a voltage increasing the signal charges to the increase portion and an insulating film provided between the charge increasing electrode and the increase portion, wherein the insulating film includes a first insulating film made of a thermal oxide film and a second insulating film made of an oxide film, formed on the first insulating film.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 24, 2009
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Kaori Misawa, Mamoru Arimoto, Hayato Nakashima, Ryu Shimizu
  • Publication number: 20090289293
    Abstract: A semiconductor device of an example of the invention comprises a memory cell and a select gate transistor provided for the memory cell. A gate electrode of the select gate transistor has a Tri-gate structure in which an upper surface of a gate insulating film formed above a channel of the select gate transistor is set higher than a portion of an upper surface of an element isolation region of the select gate transistor.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 26, 2009
    Inventors: Takashi IZUMIDA, Takahisa Kanemura, Nobutoshi Aoki
  • Patent number: 7623366
    Abstract: A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Tae Park, Jung-Dal Choi, Uk-Jin Roh
  • Patent number: 7622355
    Abstract: Structures and methods for write once read only memory employing charge trapping in insulators are provided. The write once read only memory cell includes a metal oxide semiconductor field effect transistor having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, and a gate separated from the channel region by a gate insulator. A plug couples the first source/drain region to an array plate. A bitline is coupled to the second source/drain region. The MOSFET can be programmed by operation in a reverse direction trapping charge in the gate insulator adjacent to the first source/drain region such that the programmed MOSFET operates at reduced drain source current when read in a forward direction.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 24, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Publication number: 20090283821
    Abstract: Isolation trenches are formed in the main surface of a semiconductor substrate, and isolation regions. are embedded in these trenches. First insulating films, charge storage layers, a second insulating film, and a control gate are formed on the main surface of the semiconductor substrate sectioned by the isolation regions. Shielding layers are arranged in the isolation regions in such a manner that their bottom portions are lower than the channel regions and their upper portions are higher than at least the main surface of the semiconductor substrate to provide an electric and magnetic shield between their storage layers and channel regions of adjacent memory cells.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 19, 2009
    Inventor: Takashi NAKAO
  • Publication number: 20090283819
    Abstract: A nonvolatile semiconductor memory device includes: a substrate; a plurality of dielectric films and electrode films which are alternately stacked on the substrate and have a through hole penetrating in the stacking direction; a semiconductor pillar formed inside the through hole; and a charge storage layer provided at least between the semiconductor pillar and the electrode film. At least part of a side surface of a portion of the through hole located in the electrode film is sloped relative to the stacking direction.
    Type: Application
    Filed: March 20, 2009
    Publication date: November 19, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masao Ishikawa, Katsunori Yahashi
  • Publication number: 20090280611
    Abstract: A non-volatile memory (NVM) cell includes a silicon substrate having a main surface, a source region in a portion of the silicon substrate, a drain region in a portion of the silicon substrate, and a well region disposed in a portion of the silicon substrate between the source and drain regions. The cell includes a bottom oxide layer formed on the main surface of the substrate. The bottom oxide layer is disposed on a portion of the main surface proximate the well region. The cell includes a charge storage layer disposed above the bottom oxide layer, a dielectric tunneling layer disposed above the charge storage layer and a control gate formed above the dielectric tunneling layer. The dielectric tunneling layer includes a first oxide layer, a nitride layer and a second oxide layer. Erasing the NVM cell includes applying a positive gate voltage to inject holes from the gate.
    Type: Application
    Filed: July 21, 2009
    Publication date: November 12, 2009
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: HANG-TING LUE, Erh-Kun Lai
  • Publication number: 20090273021
    Abstract: A semiconductor device includes a semiconductor substrate, a tunnel insulating film on the semiconductor substrate, a charge storage layer on the tunnel insulating film, a block insulating film on the charge storage layer, and a control gate electrode on the block insulating film, the charge storage layer including a plurality of layers including first and second charge storage layers, the second charge storage layer being provided on a nearest side of the block insulating film, the first charge storage layer being provided between the tunnel insulating film and the second charge storage layer, the second charge storage layer having a higher trap density than the first charge storage layer, the second charge storage layer having a smaller band gap than the first charge storage layer, and the second charge storage layer having a higher permittivity than the first charge storage layer and a silicon nitride film.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 5, 2009
    Inventors: Katsuyuki SEKINE, Daisuke Nishida, Ryota Fujitsuka, Yoshio Ozawa, Katsuaki Natori, Takashi Nakao
  • Publication number: 20090273018
    Abstract: A nonvolatile memory device with a blocking layer controlling the transfer of electric charges in a charge storage layer includes the blocking layer having a first blocking layer in contact with the charge storage layer and a second blocking layer over the first blocking layer, wherein the first blocking layer has a greater energy band gap than the second blocking layer and the second blocking layer has a greater permittivity than the first blocking layer.
    Type: Application
    Filed: April 27, 2009
    Publication date: November 5, 2009
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Heung-Jae CHO, Moon-Sig JOO, Yong-Soo KIM, Won-Joon CHOI
  • Publication number: 20090267135
    Abstract: A non-volatile semiconductor storage device includes a first layer and a second layer. The first layer includes: a plurality of first conductive layers extending in parallel to a substrate and laminated in a direction perpendicular to the substrate; a first insulation layer formed on an upper layer of the plurality of first conductive layers; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and a charge accumulation layer formed between the first conductive layers and the first semiconductor layer. Respective ends of the first conductive layers are formed in a stepwise manner in relation to each other in a first direction.
    Type: Application
    Filed: March 20, 2009
    Publication date: October 29, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroyasu Tanaka, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Hideaki Aochi, Megumi Ishiduki, Yasuyuki Matsuoka
  • Publication number: 20090267138
    Abstract: A charge trap type non-volatile memory device has memory cells formed on a silicon substrate at a predetermined interval via an element isolation trench along a first direction in which word lines extend. Each of the memory cells has a tunnel insulating film formed on the silicon substrate, a charge film formed on the tunnel insulating film, and a common block film formed on the charge film. The common block film is formed in common with the memory cells along first direction. An element isolation insulating film buried in the element isolation trench has an upper portion of a side wall of the element isolation insulating film which contacts with a side wall of the charge film in each of the memory cells and a top portion of the element isolation insulating film which contacts with the common block film. A control electrode film is formed on the common block film.
    Type: Application
    Filed: April 8, 2009
    Publication date: October 29, 2009
    Inventor: Tadashi IGUCHI
  • Publication number: 20090269919
    Abstract: Embodiments relate to a gate structure of a split gate-type non-volatile memory device and a method of manufacturing the same. In embodiments, the split gate-type non-volatile memory device may include a device isolation layer formed on a semiconductor substrate in the direction of a bit line to define an active region, a pair of first conductive layer patterns formed on the active region, a charge storage layer interposed between the pair of first conductive layer patterns and the active region, a pair of second conductive layer pattern formed on the active region and extended along the one sidewalls of the pair of first conductive layer patterns in the direction parallel to a word line, and a gate insulating layer interposed between the pair of second conductive layer patterns and the active region. The pair of second conductive layer patterns may be formed on one sidewalls of the pair of first conductive layer patterns in the form of spacers.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Inventor: Chul-Jin Yoon
  • Publication number: 20090261403
    Abstract: A semiconductor device includes a memory cell transistor including a first lower insulating film provided on a semiconductor substrate, a first intermediate insulating film provided on the first lower insulating film, a first upper insulating film provided on the first intermediate insulating film, and a first gate electrode provided on the first upper insulating film, and a select transistor including a second lower insulating film provided on the semiconductor substrate, a second intermediate insulating film provided on the second lower insulating film, a second upper insulating film provided on the second intermediate insulating film, and a second gate electrode provided on the second upper insulating film, wherein trap density of the second intermediate insulating film is lower than that of the first intermediate insulating film.
    Type: Application
    Filed: March 18, 2009
    Publication date: October 22, 2009
    Inventors: Katsuyuki SEKINE, Yoshio OZAWA
  • Publication number: 20090261402
    Abstract: A semiconductor charge storage device includes a semiconductor substrate having a surface region. The semiconductor substrate is characterized by a first conductivity type. A charge trapping material overlies and is in contact with at least a portion of the surface region of the semiconductor substrate. The charge trapping material is characterized by a first dielectric constant and by a first charge trapping capability. The first dielectric constant is higher than a dielectric constant associated with silicon oxide. A dielectric material overlies and is in contact with at least a portion of the charge trapping material. The dielectric material is formed using a conversion of a portion of the charge trapping material for providing a second charge trapping capability. The device also includes a conductive material overlying the second dielectric. The conductive material is capable of receiving an electrical signal to cause electrical charges being trapped in the semiconductor charge storage device.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: Macronix International Co., Ltd.
    Inventor: Chao-I Wu
  • Publication number: 20090258479
    Abstract: A nonvolatile semiconductor memory device is provided in such a manner that a semiconductor layer is formed over a substrate, a charge accumulating layer is formed over the semiconductor layer with a first insulating layer interposed therebetween, and a gate electrode is provided over the charge accumulating layer with a second insulating layer interposed therebetween. The semiconductor layer includes a channel formation region provided in a region overlapping with the gate electrode, a first impurity region for forming a source region or drain region, which is provided to be adjacent to the channel formation region, and a second impurity region provided to be adjacent to the channel formation region and the first impurity region. A conductivity type of the first impurity region is different from that of the second impurity region.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 15, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tamae TAKANO, Shunpei YAMAZAKI
  • Publication number: 20090242962
    Abstract: A blocking layer of a non-volatile charge trap memory device is formed by oxidizing a portion of a charge trapping layer of the memory device. In one embodiment, the blocking layer is grown by a radical oxidation process at temperature below 500° C. In accordance with one implementation, the radical oxidation process involves flowing hydrogen (H2) and oxygen (O2) gas mixture into a process chamber and exposing the substrate to a plasma. In a preferred embodiment, a high density plasma (HDP) chamber is employed to oxidize a portion of the charge trapping layer. In further embodiments, a portion of a silicon-rich silicon oxynitride charge trapping layer is consumptively oxidized to form the blocking layer and provide an increased memory window relative to oxidation of a nitrogen-rich silicon oxynitride layer.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Krishnaswamy Ramkumar, Sagy Levy, Jeong Byun
  • Publication number: 20090242969
    Abstract: A semiconductor storage device including a semiconductor substrate including an upper surface having a plurality of trenches formed into the upper surface; a plurality of element isolation insulating films filled in each of the trenches so as to protrude upward from the upper surface of the semiconductor substrate, the element isolation insulating films containing an oxide material; a tunnel insulating film formed on the semiconductor substrate situated between the element isolation insulating films; a charge storing layer comprising a first nitride film and being formed on the tunnel insulating film; a block film formed across an upper surface of the charge storing layer and an upper surface of the element isolation insulating film to prevent charge transfer; a gate electrode formed on the block film; and a barrier layer containing a second nitride film formed between the element isolation insulating film and the block film.
    Type: Application
    Filed: March 27, 2009
    Publication date: October 1, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masayuki TANAKA
  • Patent number: 7592222
    Abstract: The present invention relates to a method of fabricating a flash memory device. According to a method of fabricating a flash memory device in accordance with an aspect of the present invention, a semiconductor substrate over which a tunnel insulating layer and a first conductive layer are formed is provided. A first oxide layer is formed on the first conductive layer using a plasma oxidization process in a state where a back bias voltage is applied. A nitride layer is formed on the first oxide layer. A second oxide layer is formed on the nitride layer. A second conductive layer is formed on the second oxide layer.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: September 22, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Eun Shil Park, Kwon Hong, Jae Hong Kim, Jae Hyoung Koo
  • Publication number: 20090230458
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series. Each of the memory strings includes: a columnar semiconductor layer extending in a direction perpendicular to a substrate; a plurality of conductive layers formed at a sidewall of the columnar semiconductor layer via memory layers; and interlayer insulation layers formed above of below the conductive layers. A sidewall of the conductive layers facing the columnar semiconductor layer is formed to be inclined such that the distance thereof from a central axis of the columnar semiconductor layer becomes larger at lower position thereof than at upper position thereof. While, a sidewall of the interlayer insulation layers facing the columnar semiconductor layer is formed to be inclined such that the distance thereof from a central axis of the columnar semiconductor layer becomes smaller at lower position thereof than at upper position thereof.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 17, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Megumi ISHIDUKI, Hideaki Aochi, Ryota Katsumata, Hiroyasu Tanaka, Masaru Kidoh, Masaru Kito, Yoshiaki Fukuzumi, Yosuke Komori, Yasuyuki Matsuoka
  • Publication number: 20090230462
    Abstract: Each of the memory strings includes: a first columnar semiconductor layer extending in a vertical direction to a substrate; a plurality of first conductive layers formed to sandwich an insulation layer with a charge trap layer and expand in a two-dimensional manner; a second columnar semiconductor layer formed in contact with the top surface of the first columnar semiconductor layer and extending in a vertical direction to the substrate; and a plurality of second conductive layers formed to sandwich an insulation layer with the second columnar semiconductor layer and formed in a stripe pattern extending in a first direction orthogonal to the vertical direction.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 17, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Masaru Kidoh, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Hideaki Aochi, Yasuyuki Matsuoka
  • Publication number: 20090221140
    Abstract: A non-volatile memory device prevents charge spreading. The non-volatile memory device includes an isolation trench in a semiconductor substrate, an isolation layer partially filling the isolation trench between first and second fins defined by the isolation trench, a control gate electrode crossing the first and second fins, a first charge trap pattern between the first fin and the control gate electrode, and a second charge trap pattern between the second fin and the control gate electrode.
    Type: Application
    Filed: May 11, 2009
    Publication date: September 3, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Wan Lim, Hyun-Seok Jang, Byung-Hong Chung, Ki-Hyun Hwang, Sang-Ryol Yang
  • Publication number: 20090212349
    Abstract: A semiconductor device includes a semiconductor substrate, and a nonvolatile memory cell provided on the semiconductor substrate, the nonvolatile memory cell including a tunnel insulating film provided on a surface of the semiconductor substrate, the tunnel insulating film including semiconductor grains, the semiconductor grains included in both end portions of the tunnel insulating film having smaller grain size than the semiconductor grains included in other portions of the tunnel insulating film, a charge storage layer provided on the tunnel insulating film, an insulating film provided on the charge storage layer, and a control gate electrode provided on the insulating film.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 27, 2009
    Inventors: Tetsuya Kai, Ryuji Ohba, Yoshio Ozawa
  • Publication number: 20090215243
    Abstract: A method of manufacturing a semiconductor device includes forming an isolation region defining an active region in a semiconductor substrate, forming a first insulating film over the semiconductor substrate, forming a second insulating film having etching properties different from those of the first insulating film over the first insulating film, selectively removing the second insulating film from a first region over the active region and the isolation region by dry etching using a fluorocarbon-based etching gas, removing a residual film formed by the dry etching over the first insulating film by exposure in an atmosphere containing oxygen, and selectively removing the first insulating film from the first region by wet etching.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 27, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Jusuke Ogura, Hikaru Kokura, Hideyuki Kojima, Toru Anezaki, Hiroyuki Ogawa, Junichi Ariyoshi
  • Publication number: 20090212350
    Abstract: A nonvolatile semiconductor storage device has a plurality of memory strings in which a plurality of electrically rewritable memory cells are connected in series. The memory string has a columnar semiconductor layer extending in a direction perpendicular to a substrate; a conductive layer formed so as to sandwich a charge storing layer in cooperation with the columnar semiconductor layer; and a metal layer formed so as to be in contact with the top face of the conductive layer.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 27, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masaru KIDOH, Masaru Kito, Ryota Katsumata, Yoshiaki Fukuzumi, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Hideaki Aochi, Akihiro Nitayama, Hitoshi Ito, Yasuyuki Matsuoka
  • Publication number: 20090212347
    Abstract: Method of manufacturing a non-volatile memory device on a semiconductor substrate in a memory area, said non-volatile memory device comprising a cell stack of a first semiconductor layer, a charge trapping layer and an electrically conductive layer, the charge trapping layer being the intermediate layer between the first semiconductor layer and the electrically conductive layer, the charge trapping layer comprising at least a first insulating layer; the method comprising:—providing the substrate having the first semiconductor layer;—depositing the charge trapping layer;—depositing the electrically conductive layer; —patterning the cell stack to form at least two non-volatile memory cells, and—creating a shallow trench isolation in between said at least two non-volatile memory cells.
    Type: Application
    Filed: September 13, 2005
    Publication date: August 27, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Pierre Goarin, Robertus Theodorus Fransiscus Van Schaijk
  • Publication number: 20090212352
    Abstract: A semiconductor memory device has a semiconductor substrate, a plurality of word lines formed at predetermined intervals on the semiconductor substrate, each word line having a gate insulating film, a charge storage layer, a first insulating film, and a controlling gate electrode which are stacked in order, and including a metal oxide layer above the level of the gate insulating film, a second insulating film covering a side of the word line and a surface of the semiconductor substrate between the word lines, and having a film thickness of 15 nm or less, and a third insulating film formed between the word lines adjacent to each other such that a region below the level of the metal oxide layer has a cavity.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 27, 2009
    Inventors: Kenji AOYAMA, Eiji Ito, Masahiro Kiyotoshi, Tadashi Iguchi, Moto Yabuki
  • Publication number: 20090206393
    Abstract: A nonvolatile memory element includes a semiconductor region, a source region and a drain region provided in the semiconductor region, a tunnel insulating layer provided on the semiconductor region between the source region and the drain region, a charge storage layer provided on the tunnel insulating layer, a block insulating layer provided on the charge storage layer, and a control gate electrode provided on the block insulating layer. The charge storage layer includes one of an oxide, a nitride and an oxynitride, which contains at least one material selected from the group consisting of Hf, Al, Zr, Ti and a rare-earth metal, and is entirely or partially crystallized. The block insulating layer includes one of an oxide, an oxynitride, a silicate and an aluminate, which contains at least one rare-earth metal.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 20, 2009
    Inventors: Keiko Ariyoshi, Akira Takashima, Shoko Kikuchi, Koichi Muraoka
  • Patent number: 7576386
    Abstract: A non-volatile memory (NVM) cell includes a silicon substrate having a main surface, a source region in a portion of the silicon substrate, a drain region in a portion of the silicon substrate, and a well region disposed in a portion of the silicon substrate between the source and drain regions The cell includes a bottom oxide layer formed on the main surface of the substrate. The bottom oxide layer is disposed on a portion of the main surface proximate the well region. The cell includes a charge storage layer disposed above the bottom oxide layer, a dielectric tunneling layer disposed above the charge storage layer and a control gate formed above the dielectric tunneling layer. The dielectric tunneling layer includes a first oxide layer, a nitride layer and a second oxide layer. Erasing the NVM cell includes applying a positive gate voltage to inject holes from the gate.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: August 18, 2009
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Erh-Kun Lai
  • Publication number: 20090200599
    Abstract: A semiconductor device and a method for manufacturing thereof are provided. The semiconductor device includes two epitaxial semiconductor layers formed on a semiconductor substrate, bit lines formed on upper portions of the two epitaxial semiconductor layers, and a charge storage layer formed on the semiconductor substrate between the two epitaxial semiconductor layers.
    Type: Application
    Filed: August 15, 2008
    Publication date: August 13, 2009
    Inventors: Masatomi OKANISHI, Yoshihiro MIKASA, Hiroshi Murai
  • Patent number: 7566660
    Abstract: A method for manufacturing a semiconductor device includes the steps of: forming a gate on a semiconductor substrate; sequentially stacking a first oxide layer, a nitride layer and a second oxide layer on the semiconductor substrate including the gate; forming a first photoresist layer pattern on the second oxide layer; forming a second oxide layer pattern by wet etching the second oxide layer by using the first photoresist layer pattern as a mask; forming a nitride layer pattern by dry etching the nitride layer using the second oxide layer pattern as a mask; and forming a first oxide layer pattern by etching the first oxide layer using the nitride layer pattern as a mask.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 28, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Keun Soo Park
  • Publication number: 20090181531
    Abstract: Methods of manufacturing non-volatile memory devices that can reduce or prevent loss of charges stored in a charge storage layer and/or that can improve charge storage capacity by neutral beam irradiation of an insulating layer are disclosed. The methods include forming a tunneling insulating layer on a substrate, forming a charge storage layer on the tunneling insulating layer, forming a blocking insulating layer on the charge storage layer, irradiating the blocking insulating layer and/or the tunneling insulating layer with a neutral beam, and forming a gate conductive layer on the blocking insulating layer.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 16, 2009
    Inventors: Soo-doo Chae, Chung-woo Kim, Choong-man Lee, Yung-hee Lee, Chan-jin Park, Sung-wook Hwang, Jeong-hee Han, Do-haing Lee, Jin-seok Lee
  • Publication number: 20090176358
    Abstract: A discrete trap memory, comprising a silicon substrate layer, a bottom oxide layer on the silicon substrate layer, a Fullerene layer on the bottom oxide layer, a top oxide layer on the Fullerene layer, and a gate layer on the top oxide layer; wherein the Fullerene layer comprises spherical, elliptical or endohedral Fullerenes that act as charge traps.
    Type: Application
    Filed: March 12, 2009
    Publication date: July 9, 2009
    Inventors: Gerhard Poeppel, Georg Tempel
  • Publication number: 20090166715
    Abstract: A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 2, 2009
    Applicant: INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC)
    Inventors: Bogdan Govoreanu, Stefan De Gendt, Sven Van Elshocht, Tom Schram
  • Patent number: 7553720
    Abstract: A non-volatile memory device includes a buffer oxide film on a substrate; a polysilicon layer on the buffer oxide film; a silicon oxy-nitride (SiON) layer on the polysilicon layer, a first insulator layer on the SiON layer, a nitride film on the first insulator, a second insulator layer on the nitride film, an electrode on the second insulator, and a source/drain in the polysilicon layer.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: June 30, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung Deog Choi, Ki Yong Lee, Ho Kyoon Chung, Jun Sin Yi, Sung Wook Jung, Hyun Min Kim, Jun Sik Kim
  • Publication number: 20090163013
    Abstract: Provided is a method for forming a gate of a non-volatile memory device. A tunneling layer, a charge trapping layer, a blocking layer, and a control gate layer are formed on a semiconductor substrate. A hard mask is formed on the control gate layer. The hard mask defines a region on which a gate is formed. A gate pattern is formed by etching the control gate layer, the blocking layer, the charge trapping layer, and the tunneling layer. A damage compensation layer on a side of the gate pattern is formed using ultra low pressure plasma of a pressure range from approximately 1 mT to approximately 100 mT.
    Type: Application
    Filed: June 2, 2008
    Publication date: June 25, 2009
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Seok Pyo Song, Dong Sun Sheen, Seung Ho Pyi, Ki Seon Park, Sun Hwan Hwang, Mi Ri Lee, Gil Jae Park
  • Publication number: 20090155992
    Abstract: A memory device may include a source region and a drain region formed in a substrate and a channel region formed in the substrate between the source and drain regions. The memory device may further include a first oxide layer formed over the channel region, the first oxide layer having a first dielectric constant, and a charge storage layer formed upon the first oxide layer. The memory device may further include a second oxide layer formed upon the charge storage layer, a layer of dielectric material formed upon the second oxide layer, the dielectric material having a second dielectric constant that is greater than the first dielectric constant, and a gate electrode formed upon the layer of dielectric material.
    Type: Application
    Filed: January 9, 2009
    Publication date: June 18, 2009
    Applicant: SPANSION LLC
    Inventors: Wei ZHENG, Mark RANDOLPH, Hidehiko SHIRAIWA
  • Publication number: 20090152618
    Abstract: A nonvolatile semiconductor memory device includes a semiconductor substrate, a first insulation layer formed on the semiconductor substrate, a charge storage layer formed on the first insulation layer, a second insulation layer formed on the charge storage layer, a control electrode formed on the second insulation layer. The second insulation layer includes a first silicon oxide film, an intermediate insulating film formed on the first silicon oxide film and having a relative permittivity of not less than 7, and a second silicon oxide film formed on the intermediate insulating film. A charge trap layer is formed at least in either first or second silicon oxide film or a boundary between the first silicon oxide film and the intermediate insulating film or a boundary between the second silicon oxide film and the intermediate insulating film.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 18, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuhiro Matsuo, Masayuki Tanaka, Takeo Furuhata, Koji Nakahara
  • Patent number: 7544564
    Abstract: A method for forming a semiconductor device includes forming a gate dielectric layer over a substrate; forming a first conductive layer over the substrate; forming a dielectric layer over the first conductive layer; forming a second conductive layer over the dielectric layer; forming a sacrificial layer over the second conductive layer; patterning the sacrificial and other layers to form a plurality of gate electrode patterns; forming a buried oxide layer over and between the gate electrode patterns; and removing the sacrificial layer to form a plurality of trenches surrounded by the buried oxide layer. A metal layer is formed within the trench to form a plurality of metal gate structures, the metal layer contacting the second conductive layer that is exposed by the removal of the sacrificial layer.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: June 9, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Hoon Lee
  • Publication number: 20090140316
    Abstract: A semiconductor memory device includes an insulating film formed on a semiconductor substrate, a plurality of active areas formed on the insulating film from a semiconductor layer which is formed integrally with the substrate through openings of the insulating film, the active areas being formed by being divided into a striped shape by a plurality of trenches reaching an upper surface of the insulating film, the active areas having upper surfaces and sides respectively, a first gate insulating film formed so as to cover the upper surfaces and sides of the active areas, a charge trap layer having a face located on the first gate insulating film and confronting the upper surfaces and the sides of the active areas with the first gate insulating film being interposed therebetween, a second gate insulating film formed on the charge trap layer, and a gate electrode formed on the second gate insulating film.
    Type: Application
    Filed: November 25, 2008
    Publication date: June 4, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takashi Sugihara, Minori Kajimoto
  • Publication number: 20090140312
    Abstract: A semiconductor storage device include a semiconductor substrate, an insulating layer provided on the semiconductor substrate and having an opening, a semiconductor layer provided on the insulating layer, the semiconductor layer having a recess at a center of a surface thereof above the opening, a memory cell unit provided on the semiconductor layer and including a plurality of memory cells, current paths of the memory cells being connected in series, a selecting transistor adjacent to the memory cell unit and arranged on a region of the semiconductor layer including the recess, the selecting transistor including a gate insulating film provided on the region of the semiconductor layer including the recess and a gate electrode provided on the gate insulating film.
    Type: Application
    Filed: November 24, 2008
    Publication date: June 4, 2009
    Inventor: Kiyohito NISHIHARA
  • Patent number: 7541233
    Abstract: A semiconductor device comprises a semiconductor substrate, and a non-volatile memory cell provided on the semiconductor substrate, the non-volatile memory cell comprising a tunnel insulating film having a film thickness periodically and continuously changing in a channel width direction of the non-volatile memory cell, a floating gate electrode provided on the tunnel insulating film, a control gate electrode provided above the floating gate electrode, and an interelectrode insulating film provided between the control gate electrode and the floating gate electrode.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: June 2, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Shigehiko Saida, Yuji Takeuchi, Masanobu Saito
  • Publication number: 20090134453
    Abstract: A non-volatile memory device having a control gate on top of the second dielectric (interpoly or blocking dielectric), at least a bottom layer of the control gate in contact with the second dielectric being constructed in a material having a predefined high work-function and showing a tendency to reduce its work-function when in contact with a group of certain high-k materials after full device fabrication. At least a top layer of the second dielectric, separating the bottom layer of the control gate from the rest of the second dielectric, is constructed in a predetermined high-k material, chosen outside the group for avoiding a reduction in the work-function of the material of the bottom layer of the control gate. In the manufacturing method, the top layer is created in the second dielectric before applying the control gate.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 28, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Samsung Electronics Co. Ltd.
    Inventors: Bogdan Govoreanu, HongYu Yu, Hag-ju Cho