Comprising Charge Trapping Insulator (epo) Patents (Class 257/E21.21)
  • Patent number: 7538046
    Abstract: A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 26, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-su Ha, Yoon-bon Koo, Hyun-seok Lim, Cheon-su Han, Seung-cheol Choi
  • Publication number: 20090117725
    Abstract: A method of manufacturing a flash memory device includes forming a line pattern over a semiconductor substrate, and then forming a first dielectric spacer having a vertically extending portion formed on sidewalls of the line pattern and a horizontally extending portion formed over and contacting the semiconductor substrate, and then removing the horizontally extending portion of the first dielectric spacer, and then forming a second dielectric spacer layer on the sidewall of the vertically extending portion of the first dielectric spacer and on the area of the semiconductor substrate where the horizontally extending portion of the first dielectric spacer was removed.
    Type: Application
    Filed: November 2, 2008
    Publication date: May 7, 2009
    Inventor: Jong-Won Sun
  • Publication number: 20090114977
    Abstract: Disclosed herein is a nonvolatile memory device having a charge trapping layer and a method of making the same. The nonvolatile memory device includes a substrate, a tunneling layer disposed on the substrate, a charge trapping layer disposed on the tunneling layer, a first blocking layer disposed on the charge trapping layer, a second blocking layer disposed on the first blocking layer, and a control gate electrode disposed on the second blocking layer. A first band gap between the first blocking layer and the charge trapping layer is larger than a second band gap between the second blocking layer and the charge trapping layer.
    Type: Application
    Filed: June 26, 2008
    Publication date: May 7, 2009
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Ki Seon Park, Moon Sig Joo, Yong Top Kim, Jae Young Park, Ki Hong Lee
  • Patent number: 7528425
    Abstract: A semiconductor memory having a multitude of memory cells (21-1), the semiconductor memory having a substrate (1), at least one wordline (5-1), a first (15-1) and a second line (15-2; 16-1), wherein each of the multitude of memory cells (21-1) comprises a first doping region (6) disposed in the substrate (1), a second doping region (7) disposed in the substrate (1), a channel region (22) disposed in the substrate (1) between the first doping region (6) and the second doping region (7), a charge-trapping layer stack (2) disposed on the substrate (1), on the channel region (22), on a portion of the first doping region (6) and on a portion of the second doping region (7). Each memory cell (21-1) further comprises a conductive layer (3) disposed on the charge-trapping layer stack (2), wherein the conductive layer (3) is electrically floating. A dielectric layer (4) is disposed on a top surface of the conductive layer (3) and on sidewalls (23) of the conductive layer (3).
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: May 5, 2009
    Assignee: Infineon Technologies AG
    Inventors: Michael Specht, Wolfgang Roesner, Franz Hofmann
  • Publication number: 20090108334
    Abstract: A charge trapping device includes a plurality of isolation layers, a plurality of charge trapping layers, a blocking layer, and a control gate electrode. The isolation layers define active regions, and the isolation layers and active regions extend as respective stripes along a first direction on a semiconductor substrate. The charge trapping layers are disposed on the active regions in island forms where the charge trapping layers are separated from each other in the first direction and disposed on the respective active regions between the isolation layers in a second direction perpendicular to the first direction. The blocking layer is disposed on the isolation layers and the charge trapping layers. The control gate electrode is disposed on the charge trapping layer.
    Type: Application
    Filed: June 30, 2008
    Publication date: April 30, 2009
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Moon Sig Joo, Seung Ho Pyi, Ki Seon Park, Yong Top Kim, Jae Young Park, Ki Hong Lee
  • Publication number: 20090097309
    Abstract: According to an aspect of the present invention, there is provided, a nonvolatile semiconductor storage device including: a substrate; a stacked portion that includes a plurality of conductor layers and a plurality of insulation layers alternately stacked on the substrate, at least one layer of the plurality of conductor layers and the plurality of insulation layers forming a marker layer; a charge accumulation film that is formed on an inner surface of a memory plug hole that is formed in the stacked portion from a top surface to a bottom surface thereof; and a semiconductor pillar that is formed inside the memory plug hole through the charge accumulation film.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 16, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Mizukami, Fumitaka Arai
  • Publication number: 20090090959
    Abstract: A first lamination part includes: a charge accumulation layer provided on the respective sidewalls of laminated first conductive layers and accumulating charges; and a first semiconductor layer provided in contact with the fourth insulation layer and formed to extend to the lamination direction. A second lamination part includes a second semiconductor layer provided in contact with the first semiconductor layer. A third lamination part includes: a plurality of first contact layers formed in contact with the respective second lamination part, extending to a first direction perpendicular to the lamination direction, and in line with each other along a second direction perpendicular to the first direction; and a plurality of contact plug layers formed in contact with any one of the first contact layers and extending to the lamination direction. The contact plug layers are arranged at different positions relative to each other in the first direction.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kiyohito Nishihara, Fumitaka Arai
  • Publication number: 20090093096
    Abstract: To provide a nonvolatile memory having an excellent data holding property and a technique for manufacturing the memory, a polycrystalline silicon film 7 and an insulating film 8 are sequentially stacked on a gate insulating film 6, then the polycrystalline silicon film 7 and the insulating film 8 are patterned to form gate electrodes 7A, 7B, and then sidewall spacers 12 including a silicon oxide film are formed on sidewalls of the gate electrodes 7A, 7B. After that, a silicon nitride film 19 is deposited on a substrate 1 by a plasma enhanced CVD process so that the gate electrodes 7A, 7B are not directly contacted to the silicon nitride film 19.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 9, 2009
    Inventor: KAZUYOSHI SHIBA
  • Patent number: 7510937
    Abstract: The fabrication method for a nonvolatile semiconductor memory device having a memory cell area including memory cells and a peripheral circuit area adjacent to the memory cell area and including peripheral transistors, the method including the steps of: (1) forming a first active region in the memory cell area and a second active region in the peripheral circuit area in a substrate by forming isolation insulating films in the memory cell area and the peripheral circuit area so as to be away from a boundary therebetween; (2) forming a bottom insulating film and an intermediate charge trap film sequentially over the entire surface of the substrate; (3) removing a portion of the intermediate charge trap film formed in the peripheral circuit area using a first mask film; (4) forming a gate insulating film in the peripheral circuit area and also at least part of a top insulating film in the memory cell area; (5) forming a gate electrode film on the top insulating film and the gate insulating film; and (6) forming
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: March 31, 2009
    Assignee: Panasonic Corporation
    Inventor: Keita Takahashi
  • Publication number: 20090078989
    Abstract: Provided are a method of forming silicon nitride at a low temperature, a charge trap memory device including crystalline nano dots formed by using the same, and a method of manufacturing the charge trap memory device. The method of forming silicon nitride includes loading a substrate into a chamber of a silicon nitride deposition device comprising a filament; increasing a temperature of the filament to a temperature whereby a reactant gas to be injected into the chamber may be dissociated; and injecting the reactant gas into the chamber so as to form a crystalline silicon nitride film or crystalline silicon nitride nano dots on the substrate. In the method, the temperature of the filament may be maintained at 1,400° C.˜2,000° C., and a pressure in the chamber may be maintained at several to several ten torr when the reactant gas in injected into the chamber.
    Type: Application
    Filed: June 18, 2008
    Publication date: March 26, 2009
    Inventors: Kwang-soo Seol, Nong-moon Hwang, Chan-soo Kim, Dong-kwon Lee, Woong-kyu Youn, Sang-moo Choi
  • Publication number: 20090072297
    Abstract: A memory device comprises a cantilever electrode comprising a first portion that is supported by a pad electrode, and that extends from the pad electrode, and further comprising a second portion that arches over an upper part of the lower word line, wherein a lower void is between the second portion of the cantilever electrode and the lower word line, and wherein the second portion of the cantilever electrode, in a first position, is curved, wherein a trap site extends above the cantilever electrode, the trap site separated from the cantilever electrode by an upper void, and wherein an upper word line on the trap site receives a charge that enables the second portion of the cantilever electrode, in a second position, to be curved toward the trap site.
    Type: Application
    Filed: May 23, 2008
    Publication date: March 19, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ji-Myoung Lee, Min-Sang Kim, Eun-Jung Yun, Sung-Young Lee, In-Hyuk Choi
  • Publication number: 20090072296
    Abstract: A multibit electro-mechanical memory device capable of increasing an integrated level of memory devices, and a method of manufacturing the same, are provided. The memory device includes a substrate, a bit line in a first direction on the substrate, a lower word line insulated from the bit line and in a second direction intersecting the first direction, a pad electrode isolated from a sidewall of the lower word line and connected to the bit line, a cantilever electrode expending in the first direction over the lower word line with a lower void therebetween, and connected to the pad electrode and curved in a third direction vertical to the first and second direction by an electrical field induced by a charge applied to the lower word line, a trap site expending in the second direction over the cantilever electrode with an upper void therebetween, and an upper word line to which a charge to curve the cantilever electrode in a direction of the trap site is applied, the upper word line on the trap site.
    Type: Application
    Filed: May 23, 2008
    Publication date: March 19, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ji-Myoung Lee, Min-Sang Kim, Eun-Jung Yun, Sung-Young Lee, In-Hyuk Choi
  • Publication number: 20090065848
    Abstract: A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atoms or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.
    Type: Application
    Filed: August 5, 2008
    Publication date: March 12, 2009
    Inventors: Hirotaka HAMAMURA, Itaru YANAGI, Toshiyuki MINE
  • Publication number: 20090065849
    Abstract: To improve a charge retention characteristic of a nonvolatile memory transistor. A first insulating film, a charge trapping film, and a second insulating film are formed between a semiconductor substrate and a conductive film. The charge trapping film is formed of a silicon nitride film including an upper region having a low concentration of hydrogen and a lower region having a high concentration of hydrogen. Such a silicon nitride film is formed in such a manner that a silicon nitride film including 15 atomic % or more hydrogen is formed by a chemical vapor deposition method and an upper portion of the silicon nitride film is nitrided. The nitridation treatment is performed by nitriding the silicon nitride film by nitrogen radicals produced in plasma of a nitrogen gas.
    Type: Application
    Filed: August 22, 2008
    Publication date: March 12, 2009
    Inventor: Kosei Noda
  • Patent number: 7498228
    Abstract: A method for fabricating a SONOS memory is disclosed. First, a semiconductor substrate is provided and a SONOS memory cell is formed on said semiconductor substrate. A passivation layer is deposited on the SONOS memory cell and a contact pad is formed on the passivation layer. Subsequently, an ultraviolet treatment is performed and an annealing process is conducted thereafter.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: March 3, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Tzu-Ping Chen, Chien-Hung Chen, Pei-Chen Kuo, Shen-De Wang
  • Patent number: 7498217
    Abstract: In a method of manufacturing a semiconductor device such as a SONOS type semiconductor device, a trench is formed on a substrate. An isolation layer protruding from the substrate is formed to fill the trench. After a first layer is formed on the substrate, a preliminary second layer pattern is formed on the first layer. The preliminary second layer pattern has an upper face substantially lower than or substantially equal to an upper face of the isolation layer. A third layer is formed on the preliminary second layer and the isolation layer. A fourth layer is formed on the third layer. The fourth layer, the third layer, the preliminary second layer pattern and the first layer are partially etched to form a gate structure on the substrate. Source/drain regions are formed at portions of the substrate adjacent to the gate structure.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Kun-Tack Lee, Dae-Hyuk Kang, Woo-Gwan Shim, Jong-Won Lee
  • Publication number: 20090045455
    Abstract: Example embodiments relate to nonvolatile semiconductor memory devices using an electric charge storing layer as a storage node and fabrication methods thereof. An electric charge trap type nonvolatile memory device may include a tunneling film, an electric charge storing layer, a blocking insulation film, and a gate electrode. The blocking insulation film may be an aluminum oxide having an energy band gap larger than that of a ?-phase aluminum oxide film. An ?-phase crystalline aluminum oxide film as a blocking insulation film may have an energy band gap of about 7.0 eV or more along with fewer defects. The crystalline aluminum oxide film may be formed by providing a source film (e.g., AlF3 film) on or within a preliminary blocking insulation film (e.g., amorphous aluminum oxide film) and performing a heat treatment. Alternatively, an aluminum compound (e.g., AlF3) may be introduced into the preliminary blocking insulation film by other diffusion methods or ion implantation.
    Type: Application
    Filed: July 23, 2008
    Publication date: February 19, 2009
    Inventors: Kwang-soo Seol, Sang-jin Park, Sang-moo Choi, Hyo-sug Lee, Jung-hun Sung
  • Publication number: 20090032864
    Abstract: Devices and methods for forming self-aligned charge storage regions are disclosed. In one embodiment, a method for manufacturing a semiconductor device comprises forming a layer of a nitride film stacked between two oxide films on a semiconductor substrate, and forming a gate electrode on the layer of the nitride film stacked between the two oxide films. In addition, the method comprises removing side portions of the nitride film such that a central portion of the nitride film below a center portion of the gate electrode remains, oxidizing the central portion of the nitride film, and forming charge storage layers in the side portions of the nitride film, where the charge storage layers are separated by the central portion of the nitride film.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 5, 2009
    Inventor: Fumihiko INOUE
  • Patent number: 7485533
    Abstract: A non-volatile memory cell is provided. The non-volatile memory includes a substrate, a gate stacked layer, an isolation layer and a conductive layer. The gate stacked layer includes a tunneling layer, a charge trapping layer, a barrier layer and a control gate layer sequentially stacked over the substrate, and the stacked gate layer has an opening therein through these layers. The isolation layer is located on the surface of the opening. The conductive layer is disposed in the opening to cover the isolation layer.
    Type: Grant
    Filed: October 14, 2006
    Date of Patent: February 3, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Tzyh-Cheang Lee
  • Publication number: 20090023278
    Abstract: A method of manufacturing a flash memory device that may include forming a dielectric film pattern on a semiconductor substrate; etching the semiconductor substrate using the dielectric film pattern as a mask to form a trench; forming a first dielectric film on the semiconductor substrate including the trench; performing a wet etching process on the semiconductor substrate formed with the first dielectric film; forming a second dielectric film on the semiconductor substrate; performing a planarization process on the first and second dielectric films; and removing the dielectric film pattern. Therefore, a generation of void may be prevented when forming a device isolation film and also when forming an interlayer dielectric film.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 22, 2009
    Inventor: Sung-Jin Kim
  • Publication number: 20090011609
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes providing a substrate having a charge-trapping layer disposed thereon. A portion of the charge-trapping layer is then oxidized to form a blocking dielectric layer above the charge-trapping layer by exposing the charge-trapping layer to a radical oxidation process.
    Type: Application
    Filed: August 25, 2008
    Publication date: January 8, 2009
    Inventors: Krishnaswamy Ramkumar, Sagy Levy, Jeong Byun
  • Publication number: 20090011586
    Abstract: A nonvolatile semiconductor memory device includes a first insulating film provided on a surface of a semiconductor substrate, a charge accumulation layer provided on the first insulating film, a second insulating film provided above the charge accumulation layer and contains silicon and nitrogen, a third insulating film provided on the second insulating film, and composed of a single-layer insulating film containing oxygen or a plural-layer stacked insulating film at least whose films on a top layer and a bottom layer contain oxygen, relative dielectric constant thereof being larger than it of a silicon oxide film, a fourth insulating film provided on the third insulating film and contains silicon and nitrogen, a control gate provided above the fourth insulating film, and a fifth insulating film provided between the charge accumulation layer and the second insulating film or between the fourth insulating film and the control gate, and contains silicon and oxygen.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 8, 2009
    Inventors: Hiroshi Akahori, Wakako Takeuchi, Yoshio Ozawa
  • Patent number: 7473589
    Abstract: A manufacturing method for stacked, non-volatile memory device provides a plurality of bitline layers and wordline layers with charge trapping structures. The bitline layers have a plurality of bitlines formed on an insulating layer, such as silicon on insulator technologies. The wordline layers are patterned with respective pluralities of wordlines and charge trapping structures, orthoganal to the bitlines.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: January 6, 2009
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh Kun Lai, Hang-Ting Lue, Kuang Yeu Hsieh
  • Publication number: 20090004838
    Abstract: A method for manufacturing a semiconductor device includes the steps of: forming an etching layer (17) formed of silicon on a semiconductor substrate (10); forming a mask layer (20) with a pattern on the etching layer (17), which includes an intermediate layer (22) as a silicon oxide film and a top layer (24) as a polysilicon; and etching the etching layer (17) using the mask layer (20) as a mask, and eliminating the top layer (24).
    Type: Application
    Filed: May 30, 2008
    Publication date: January 1, 2009
    Applicant: SPANSION LLC
    Inventors: Fumihiko INOUE, Junpei YAMAMOTO, Suguru SASSA
  • Publication number: 20080318403
    Abstract: A method for fabricating a semiconductor transistor which eliminates device defects generated during an etching process for forming gates. The method may include laminating an ONO layer on and/or over a semiconductor substrate, and then coating a polysilicon layer on and/or over the ONO layer, and then forming a photoresist pattern on and/or over the polysilicon layer, and then sequentially performing a first etching of the polysilicon layer using the photoresist pattern as an etching mask so as to maintain a predetermined thickness of the polysilicon layer and then a second etching to remove the polysilicon layer remaining from the first etching.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 25, 2008
    Inventor: Jeong-Yel Jang
  • Publication number: 20080315292
    Abstract: There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within a ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; forming a first dielectric layer to cover the discrete compound monolayer; forming a second third monolayer above first dielectric layer; and forming a second discrete compound monolayer; and forming a second dielectric layer to cover the second discrete compound monolayer above the first dielectric layer. There is also provided a semiconductor device formed by the ALD method.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 25, 2008
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hua Ji, Min-Hwa Chi, Fumitake Mieno, Seanfuxiong Zhang
  • Patent number: 7462912
    Abstract: Provided is a semiconductor memory device using a layout scheme where a bottom conductive layer in a peripheral circuit region, which is simultaneously formed with a self-align contact, is connected to one electrode of a power decoupling capacitor. Predetermined capacitors selected among a plurality of capacitors are connected to each other in parallel by using a conductive layer that is simultaneously formed with the self-align contact in a cell array region. Herein, the conductive layer and the self-align contact may be made of the same material. It is possible to embody the decoupling capacitor of a single stage cell type by connecting the conductive layer to a top interconnection layer. In addition, other embodiments implement the decoupling capacitor in a two-stage cell type by connecting a plurality of decoupling capacitors in series by means of the conductive layer in the peripheral circuit region.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 9, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soon-Hong Ahn, Jung-Hwa Lee
  • Publication number: 20080265310
    Abstract: In one aspect, a memory cell includes a plurality of dielectric layers located within a charge storage gate structure. At least one of the dielectric layers includes an dielectric material including oxygen, and nano regions including oxygen embedded in the dielectric material, where an oxygen concentration of the dielectric material is the greater than an oxygen concentration of the nano regions. In another aspect, at least one of the dielectric layers includes a dielectric material and nano regions embedded in the dielectric material, where an atomic composition of the dielectric material is the same as the atomic composition of the nano regions, and a density of the dielectric material is the greater than a density of the nano regions.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 30, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sun-Jung Kim, Young-Sun Kim, Se-Hoon Oh, Eun-Ha Lee, Young-Su Chung
  • Publication number: 20080265308
    Abstract: A FinFET includes a fin that is on a substrate and extends away from the substrate. A device isolation layer is disposed on the substrate on both sides of the fin. An insulating layer is between the fin and the substrate. The insulating layer is directly connected to the device isolation layer and has a different thickness than the device isolation layer. A gate electrode crosses over the fin. A gate insulating layer is between the gate electrode and the fin. Source and drain regions are on the fins and on opposite sides of the gate electrode. Related nonvolatile memory devices that include FinFETs and methods of making FinFETs and nonvolatile memory devices are also disclosed.
    Type: Application
    Filed: July 10, 2008
    Publication date: October 30, 2008
    Inventor: Chang-Hyun Lee
  • Publication number: 20080224275
    Abstract: A semiconductor device includes bit lines provided in a semiconductor substrate; an ONO film that is provided along the surface of the semiconductor substrate and is made of a tunnel oxide film, a trap layer, and a top oxide film; and an oxide film that is provided on the surface of the semiconductor substrate in the middle between the bit lines and contacts the side face of the ONO film, in which the film thickness of the oxide film is larger than the sum of the thicknesses of the tunnel oxide film and the top oxide film, and smaller than the thickness of the ONO film.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 18, 2008
    Applicant: SPANSION LLC
    Inventors: Yukio Hayakawa, Yukihiro Utsuno
  • Patent number: 7416940
    Abstract: Methods for fabricating a flash memory device are provided. A method comprises forming a plurality of gate stacks overlying a substrate. Each gate stack comprises a charge trapping layer and a control gate. The control gate is a first distance from the substrate. Adjacent gate stacks are a second distance apart. A cell spacer material layer is deposited and is etched to form a spacer about sidewalls of each gate stack. A source/drain impurity doped region is formed adjacent a first gate stack and a last gate stack. The first distance and the second distance are such that, when a voltage is applied to a gate stack during a READ operation, a fringing field is created between the control gate of the gate stack and the substrate and is sufficient to invert a portion of the substrate between the gate stack and an adjacent gate stack.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: August 26, 2008
    Assignee: Spansion LLC
    Inventors: Satoshi Torii, Hidehiko Shiraiwa, Youseok Suh, Lei Xue
  • Publication number: 20080197367
    Abstract: The present invention provides a method of super flat chemical mechanical polishing (SF-CMP) technology, which is a method characterized in replacing laser lift-off in a semiconductor fabricating process. SF-CMP has a main step of planting a plurality of polishing stop points before polishing the surface, which is characterized by hardness of the polishing stop points material being larger than hardness of the surface material. Therefore, the present method can achieve super flat polishing surface without removing polishing stop points.
    Type: Application
    Filed: August 10, 2007
    Publication date: August 21, 2008
    Applicant: Hong Kong Applied Science and Technology Research Institute Co. Ltd.
    Inventors: Yong Cai, Hung-Shen Chu
  • Publication number: 20080191321
    Abstract: The present invention provides a semiconductor device and a method of manufacturing the semiconductor device, the semiconductor device including: ONO films that are formed on a semiconductor substrate and include trapping layers; word lines that are formed on the ONO films; and silicon oxide layers that are formed at portions on the semiconductor substrate, the portions being located between the word lines, the silicon oxide layers being located between the trapping layers.
    Type: Application
    Filed: December 21, 2007
    Publication date: August 14, 2008
    Applicant: SPANSION LLC
    Inventors: Kenichi FUJII, Masatomi OKANISHI
  • Patent number: 7402492
    Abstract: In a method of manufacturing a memory device having improved erasing characteristics, the method includes sequentially forming a tunneling oxide layer, a charge storing layer, and a blocking oxide layer on a semiconductor substrate; annealing the semiconductor substrate including the tunneling oxide layer, the charge storing layer, and the blocking oxide layer under a gas atmosphere so that the blocking oxide layer has a negative fixed oxide charge; forming a gate electrode on the blocking oxide layer with the negative fixed oxide charge and etching the tunneling oxide layer, the charge storing layer, and the blocking oxide layer to form a gate structure; and forming a first doped region and a second doped region in the semiconductor substrate at sides of the gate structure by doping the semiconductor substrate with a dopant.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: July 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-hun Jeon, Kyu-sik Kim, Chung-woo Kim, Sung-ho Park, Yo-sep Min, Jeong-hee Han
  • Patent number: 7391078
    Abstract: A non-volatile memory is provided. A substrate having a plurality of trenches and a plurality of select gates is provided. The trenches are arranged in parallel and extend in a first direction. Each of the select gates is disposed on the substrate between two adjacent trenches respectively. A plurality of select gate dielectric layers are disposed between the select gates and the substrate. A plurality of composite layers are disposed over the surface of the trenches and each composite layer has a charge trapping layer. A plurality of word lines are arranged in parallel in a second direction, wherein each of the word lines fills the trenches between adjacent select gates and is disposed over the composite layers.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: June 24, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wei-Zhe Wong, Ching-Sung Yang
  • Patent number: 7371694
    Abstract: The flatness of the surface of a Si substrate is requested as the present gate length is miniaturized. The present invention is a semiconductor device fabrication method for flattening a silicon surface by continuously supplying a high-temperature fluoride ammonium solution to the surface a silicon substrate in which at least the silicon surface is locally exposed.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: May 13, 2008
    Assignee: Elpida Memory Inc.
    Inventors: Ken Sasaki, Hiroyuki Sakaue, Takayuki Takahagi
  • Patent number: 7368356
    Abstract: A transistor and method of manufacture thereof. A semiconductor workpiece is doped before depositing a gate dielectric material. Using a separate anneal process or during subsequent anneal processes used to manufacture the transistor, dopant species from the doped region of the workpiece are outdiffused into the gate dielectric, creating a doped gate dielectric. The dopant species fill vacancies in the atomic structure of the gate dielectric, resulting in a transistor having increased speed, reduced power consumption, and improved voltage stability.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: May 6, 2008
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 7365729
    Abstract: In a liquid crystal display device, a field sequential liquid crystal display device includes a liquid crystal panel having an upper substrate, a lower substrate and a liquid crystal layer therebetween; a backlight device under the liquid crystal panel for irradiating light to the liquid crystal panel and having three color light sources; and an image signal processor controlling a sequential lighting order and combination of the three color light sources.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: April 29, 2008
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Hyung-Ki Hong
  • Patent number: 7307280
    Abstract: The present memory device includes first and second electrodes, an active layer; and a passive layer, the active and passive layers being between the first and second electrodes, with at least one of the active layer and passive layer being a doped a sol-gel.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: December 11, 2007
    Assignee: Spansion LLC
    Inventors: Xiaobo Shi, Richard Kingsborough
  • Patent number: 7285463
    Abstract: A method of fabricating a non-volatile memory is described. A plurality of first memory units having gaps between each other is formed over a substrate. Insulating spacers are formed on the sidewalls of the first memory units. A composite layer is formed on the substrate and the gaps between the first memory units are filled with a doped polysilicon layer. Thereafter, a portion of the doped polysilicon layer is removed to form trenches. After that, a metallic layer fills the trenches. A portion of the metallic layer is removed to form a plurality of gates. The gates and the composite layer together form a plurality of second memory units. The second memory units and the first memory units together constitute a memory cell column. Then, a source region and a drain region are formed in the substrate adjacent to the two sides of the memory cell column.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: October 23, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chien-Lung Chu, Saysamone Pittikoun, Houng-Chi Wei, Wei-Chung Tseng
  • Patent number: 7238599
    Abstract: An array of NROM flash memory cells configured to store at least two bits per four F2. Split vertical channels are generated along each side of adjacent pillars. A single control gate is formed over the pillars and in the trench between the pillars. The split channels can be connected by an n+ region at the bottom of the trench or the channel wrapping around the trench bottom. Each gate insulator is capable of storing a charge that is adequately separated from the other charge storage area due to the increased channel length.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: July 3, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7229888
    Abstract: The present invention relates to a capacitor having a hafnium oxide and aluminum oxide alloyed dielectric layer and a method for fabricating the same. The capacitor includes: a lower electrode; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer, wherein a portion of the dielectric layer contacting one of the lower electrode and the upper electrode is formed by alloying hafnium oxide and aluminum oxide together.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: June 12, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Deok-Sin Kil, Jae-Sung Roh, Hyun-Chul Sohn
  • Patent number: 7196008
    Abstract: For fabricating a memory device, spacers are formed to sides of word-line gates. In addition, aluminum oxide is formed as one of a liner layer or a cover layer to the spacers. The aluminum oxide has a chemical composition of Al2O3 for example. Such aluminum oxide may be used as an etch stop layer in a periphery region, a metal silicide block, and a hydrogen block for enhanced performance of the memory device.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: March 27, 2007
    Assignee: Spansion LLC
    Inventors: Hidehiko Shiraiwa, Satoshi Torii, Jaeyong Park, Joong Jeon
  • Patent number: 7192830
    Abstract: Silicon nanocrystals are applied as storage layer (6) and removed using spacer elements (11) laterally with respect to the gate electrode (5). By means of an implantation of dopant, source/drain regions (2) are fabricated in a self-aligned manner with respect to the storage layer (6). The portions of the storage layer (6) are interrupted by the gate electrode (5) and the gate dielectric (4), so that a central portion of the channel region (3) is not covered by the storage layer (6). This memory cell is suitable as a multi-bit flash memory cell in a virtual ground architecture.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: March 20, 2007
    Assignee: Infineon Technologies AG
    Inventors: Matthias Goldbach, Thomas Mikolajick, Albert Birner
  • Patent number: 7141512
    Abstract: A semiconductor device fabrication apparatus is cleaned after a conductive layer is formed on a metal oxide layer of a substrate. The substrate is disposed on a heater in a process chamber of the apparatus, and the conductive layer is formed by introducing source gases into the chamber. Then the substrate is transferred out of the process chamber. At least one by-product of a reaction between the source gases and the metal oxide layer adheres to a surface inside the chamber, such as to a region or regions of the heater. Once the semiconductor substrate has been transferred outside the process chamber of the semiconductor fabrication apparatus, the by-product(s) is/are removed by evaporation. The by-product(s) can be evaporated using gas, such as one of the source gases, so that the process chamber can remain closed.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: November 28, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-su Ha, Yoon-bon Koo, Hyun-seok Lim, Cheon-su Han, Seung-cheol Choi
  • Patent number: 7132302
    Abstract: A method of increasing the cell retention capacity of a silicon nitride read-only-memory on a wafer. The method includes carrying out a baking process after performing the last plasma treatment of the wafer but before a wafer sort test.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: November 7, 2006
    Assignee: Macronix International Co., Ltd.
    Inventors: Kuen-Chi Chuang, Chen-Chin Liu, Jiong-Zhong Chen
  • Patent number: 7129135
    Abstract: A first conductive film for forming a plurality of word lines is formed in a memory cell array formation region of a semiconductor substrate for a nonvolatile semiconductor memory device, and a second conductive film is formed in a semiconductor device formation region of the semiconductor substrate. Next, openings are formed in the first conductive film by a first dry etching process such that the word lines in the memory cell array formation region are located apart from one another. Thereafter, sidewall insulating films for the word lines are formed in the openings. Next, parts of the sidewall insulating films located adjacent to the ends of the word lines are removed by wet etching. Next, a part of the first conductive film located around a word line formation region is removed by a second dry etching process.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: October 31, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yoshinori Odake
  • Patent number: 7109078
    Abstract: A method of making an n-channel metal-insulator-semiconductor field-effect transistor (MISFET) that uses charge trapping for altering channel conductivity characteristics is disclosed. Other suitable and conventional processing steps are used to finalize completion of the fabrication of the charge trapping device so that the entire process is compatible and achieved with CMOS processing techniques, and so that non-charge trapping devices can be formed at the same time in a common sequence of manufacturing operations.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: September 19, 2006
    Assignee: Progressant Technologies, Inc.
    Inventors: Tsu-Jae King, David K. Y. Liu