Using Cavities Formed By Inert Gas Ion Implantation, E.g., Hydrogen, Noble Gas (epo) Patents (Class 257/E21.319)
-
Patent number: 10777652Abstract: A manufacturing method of a semiconductor device includes forming a plurality of flash memory structures on a semiconductor substrate, wherein each of the flash memory structures includes a floating gate formed on the semiconductor substrate and a control gate formed on the floating gate; forming at least one pseudo contact between the plurality of flash memory structures; forming a liner film conformally on a surface of the pseudo contact; forming an interlayer dielectric layer on the whole semiconductor substrate to cover the pseudo contact and form at least one air gap between the pseudo contact and the flash memory structure; planarizing the interlayer dielectric layer until the top of the pseudo contact is exposed; removing the pseudo contact to form a contact opening; and forming a conductive material in the contact opening.Type: GrantFiled: March 26, 2019Date of Patent: September 15, 2020Assignee: Powerchip Semiconductor Manufacturing CorporationInventors: Hung-Kwei Liao, Chen-Chiang Liu, Kuo-Sheng Shih, Yung-Yao Shih, Ming-Tsung Hsu
-
Patent number: 10446505Abstract: A method for fabricating a transistor device involves providing a substrate, forming an oxide layer over at least a portion of the substrate, forming a transistor over at least a portion of the oxide layer, and removing at least a portion of a backside of the substrate to form an opening providing radio-frequency isolation for the transistor.Type: GrantFiled: June 19, 2018Date of Patent: October 15, 2019Assignee: Skyworks Solutions, Inc.Inventors: Jerod F. Mason, Dylan Charles Bartle, David Scott Whitefield
-
Patent number: 9564405Abstract: Radio-frequency (RF) devices are fabricated by providing a field-effect transistor (FET) formed over an oxide layer, forming one or more electrical connections to the FET, forming one or more dielectric layers over at least a portion of the electrical connections, electrically coupling an electrical element to the FET via the one or more electrical connections, disposing a handle wafer layer on at least a portion of the one or more dielectric layers, the handle wafer layer being at least partially over the electrical element; and removing at least a portion of the handle wafer layer to form an opening exposing at least a portion of the electrical element.Type: GrantFiled: May 13, 2016Date of Patent: February 7, 2017Assignee: Skyworks Solutions, Inc.Inventors: Jerod F. Mason, Dylan Charles Bartle, David Scott Whitefield
-
Patent number: 9040424Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.Type: GrantFiled: March 9, 2012Date of Patent: May 26, 2015Assignee: MICRON TECHNOLOGY, INC.Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
-
Patent number: 8999811Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.Type: GrantFiled: August 29, 2013Date of Patent: April 7, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
-
Patent number: 8969998Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor substrate, a plurality of element-separating insulators, and contacts. The plurality of element-separating insulators partition the upper layer portion into a plurality of active areas extending in a first direction. The contacts are connected to the active areas. A recess is made in a part in the first direction of an upper surface of each of the active areas. The recess is made across the entire active area in a second direction orthogonal to the first direction. Positions in the first direction of two of the contacts connected respectively to mutually-adjacent active areas are different from each other. One of the contacts is in contact with a side surface of the recess and not in contact with a bottom surface of the recess.Type: GrantFiled: September 6, 2011Date of Patent: March 3, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Kiyohito Nishihara
-
Patent number: 8927433Abstract: Provided is a technology for forming a conductive via hole to implement a three dimensional stacked structure of an integrated circuit. A method for forming a conductive via hole according to an embodiment of the present invention comprises: filling inside of a via hole structure that is formed in one or more of an upper portion and a lower portion of a substrate with silver by using a reduction and precipitation of silver in order to connect a plurality of stacked substrates by a conductor; filling a portion that is not filled with silver inside of the via hole structure by flowing silver thereinto; and sublimating residual material of silver oxide series, which is generated during the flowing, on an upper layer inside of the via hole structure filled with silver.Type: GrantFiled: December 15, 2010Date of Patent: January 6, 2015Assignee: Electronics and Telecommunications Research InstituteInventor: Jin-Yeong Kang
-
Patent number: 8906811Abstract: A silicon/carbon alloy may be formed in drain and source regions, wherein another portion may be provided as an in situ doped material with a reduced offset with respect to the gate electrode material. For this purpose, in one illustrative embodiment, a cyclic epitaxial growth process including a plurality of growth/etch cycles may be used at low temperatures in an ultra-high vacuum ambient, thereby obtaining a substantially bottom to top fill behavior.Type: GrantFiled: October 13, 2011Date of Patent: December 9, 2014Assignee: Advanced Micro Devices, Inc.Inventors: Thorsten Kammler, Andy Wei, Ina Ostermay
-
Patent number: 8906752Abstract: Ink compositions comprising polythiophenes and methicone that are formulated for inkjet printing the hole injecting layer (HIL) of an organic light emitting diode (OLED) are provided. Also provided are methods of inkjet printing the HILs using the ink compositions.Type: GrantFiled: December 4, 2013Date of Patent: December 9, 2014Assignee: Kateeva, Inc.Inventors: Inna Tregub, Rajsapan Jain, Michelle Chan
-
Patent number: 8895407Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.Type: GrantFiled: September 27, 2010Date of Patent: November 25, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
-
Patent number: 8884441Abstract: The present disclosure relates to an integrated chip (IC) having an ultra-thick metal layer formed in a metal layer trench having a rounded shape that reduces stress between an inter-level dielectric (ILD) layer and an adjacent metal layer, and a related method of formation. In some embodiments, the IC has an inter-level dielectric layer disposed above a semiconductor substrate. The ILD layer has a cavity with a sidewall having a plurality of sections, wherein respective sections have different slopes that cause the cavity to have a rounded shape. A metal layer is disposed within the cavity. The rounded shape of the cavity reduces stress between the ILD layer and the metal layer to prevent cracks from forming along an interface between the ILD layer and the metal layer.Type: GrantFiled: February 18, 2013Date of Patent: November 11, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chih-Hung Hsueh, Wei-Te Wang, Shao-Yu Chen, Chun-Liang Fan, Kuan-Chi Tsai
-
Patent number: 8883571Abstract: A method of manufacturing a transistor includes: forming an oxide semiconductor film and a gate electrode on a substrate, the oxide semiconductor film having a channel region, and the gate electrode facing the channel region; and forming an insulating film covering the gate electrode and the oxide semiconductor film. Infiltration of moisture from the insulating film into the oxide semiconductor film is suppressed by the substrate.Type: GrantFiled: February 19, 2013Date of Patent: November 11, 2014Assignee: Sony CorporationInventors: Narihiro Morosawa, Motohiro Toyota
-
Patent number: 8853090Abstract: A method for fabricating a through-silicon via comprises the following steps. Provide a substrate. Form a through silicon hole in the substrate having a diameter of at least 1 ?m and a depth of at least 5 ?m. Perform a first chemical vapor deposition process with a first etching/deposition ratio to form a dielectric layer lining the bottom and sidewall of the through silicon hole and the top surface of the substrate. Perform a shape redressing treatment with a second etching/deposition ratio to change the profile of the dielectric layer. Repeat the first chemical vapor deposition process and the shape redressing treatment at least once until the thickness of the dielectric layer reaches to a predetermined value.Type: GrantFiled: March 15, 2013Date of Patent: October 7, 2014Assignee: IPEnval Consultant Inc.Inventors: Chao-Yuan Huang, Yueh-Feng Ho, Ming-Sheng Yang, Hwi-Huang Chen
-
Patent number: 8841217Abstract: In one implementation, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A dielectric material defines an opening extending to the upper surface of the floating gate conductor. A conductive element on a sidewall of the opening and extending over an upper surface of the dielectric material.Type: GrantFiled: March 13, 2013Date of Patent: September 23, 2014Assignee: Life Technologies CorporationInventors: Keith Fife, James Bustillo, Jordan Owens
-
Patent number: 8841182Abstract: Methods of treating metal-containing thin films, such as films comprising titanium carbide, with a silane/borane agent are provided. In some embodiments a film including titanium carbide is deposited on a substrate by an atomic layer deposition (ALD) process. The process may include a plurality of deposition cycles involving alternating and sequential pulses of a first source chemical that includes titanium and at least one halide ligand, a second source chemical that includes metal and carbon, where the metal and the carbon from the second source chemical are incorporated into the thin film, and a third source chemical, where the third source chemical is a silane or borane that at least partially reduces oxidized portions of the titanium carbide layer formed by the first and second source chemicals. The treatment can form a capping layer on the metal carbide film.Type: GrantFiled: March 14, 2013Date of Patent: September 23, 2014Assignee: ASM IP Holding B.V.Inventors: Jerry Chen, Vladimir Machkaoutsan, Brennan Milligan, Jan Willem Maes, Suvi Haukka, Eric Shero, Tom E. Blomberg, Dong Li
-
Patent number: 8809132Abstract: A capping layer may be deposited over the active channel of a thin film transistor (TFT) in order to protect the active channel from contamination. The capping layer may affect the performance of the TFT. If the capping layer contains too much hydrogen, nitrogen, or oxygen, the threshold voltage, sub threshold slope, and mobility of the TFT may be negatively impacted. By controlling the ratio of the flow rates of the nitrogen, oxygen, and hydrogen containing gases, the performance of the TFT may be optimized. Additionally, the power density, capping layer deposition pressure, and the temperature may also be controlled to optimize the TFT performance.Type: GrantFiled: August 22, 2011Date of Patent: August 19, 2014Assignee: Applied Materials, Inc.Inventor: Yan Ye
-
Patent number: 8803296Abstract: A device has a microelectromechanical system (MEMS) component with at least one surface and a coating disposed on at least a portion of the surface. The coating has a compound of the formula M(CnF2n+1Or), wherein M is a polar head group and wherein n?2r. The value of n may range from 2 to about 20, and the value of r may range from 1 to about 10. The value of n plus r may range from 3 to about 30, and a ratio of n:r may have a value of about 2:1 to about 20:1.Type: GrantFiled: March 4, 2013Date of Patent: August 12, 2014Assignee: Texas Instruments IncorporatedInventors: William Robert Morrison, Mark Christopher Fisher, Murali Hanabe, Ganapathy Subramaniam Sivakumar, Simon Joshua Jacobs
-
Patent number: 8772129Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.Type: GrantFiled: September 27, 2010Date of Patent: July 8, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
-
Patent number: 8772826Abstract: It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.Type: GrantFiled: May 30, 2011Date of Patent: July 8, 2014Assignee: KYOCERA CorporationInventors: Hideaki Asao, Rui Kamada, Shuichi Kasai, Seiji Oguri, Isamu Tanaka, Nobuyuki Horiuchi, Kazumasa Umesato
-
Patent number: 8759233Abstract: A method for fabricating a semiconductor device includes forming a metal layer on a substrate, forming a plurality of layers of a magnetic tunnel junction (MTJ) element on the metal layer, forming a carbon layer including a hole, wherein the hole penetrates through the carbon layer, forming a metal pattern in the hole of the carbon layer, removing the carbon layer; and patterning the plurality of layers of the MTJ element using the metal pattern as an etching mask.Type: GrantFiled: June 21, 2012Date of Patent: June 24, 2014Assignee: Hynix Semiconductor Inc.Inventor: Sang Hoon Cho
-
Patent number: 8748285Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.Type: GrantFiled: November 28, 2011Date of Patent: June 10, 2014Assignee: International Business Machines CorporationInventors: Alan B. Botula, William F. Clark, Jr., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
-
Patent number: 8742544Abstract: A semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode, and the drain electrode, and a gate electrode over the gate insulating layer. The source electrode and the drain electrode include an oxide region formed by oxidizing a side surface thereof. Note that the oxide region of the source electrode and the drain electrode is preferably formed by plasma treatment with a high frequency power of 300 MHz to 300 GHz and a mixed gas of oxygen and argon.Type: GrantFiled: February 19, 2013Date of Patent: June 3, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Jun Koyama
-
Patent number: 8722481Abstract: When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.Type: GrantFiled: June 4, 2013Date of Patent: May 13, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stephan-Detlef Kronholz, Peter Javorka, Maciej Wiatr
-
Patent number: 8658508Abstract: The present invention provides a method for manufacturing an SOI substrate, to improve planarity of a surface of a single crystal semiconductor layer after separation by favorably separating a single crystal semiconductor substrate even in the case where a non-mass-separation type ion irradiation method is used, and to improve planarity of a surface of a single crystal semiconductor layer after separation as well as to improve throughput.Type: GrantFiled: March 5, 2012Date of Patent: February 25, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Takeshi Shichi, Junichi Koezuka, Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8629030Abstract: The present invention provides a method for manufacturing an SOI substrate, to improve planarity of a surface of a single crystal semiconductor layer after separation by favorably separating a single crystal semiconductor substrate even in the case where a non-mass-separation type ion irradiation method is used, and to improve planarity of a surface of a single crystal semiconductor layer after separation as well as to improve throughput.Type: GrantFiled: March 5, 2012Date of Patent: January 14, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Takeshi Shichi, Junichi Koezuka, Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8525304Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.Type: GrantFiled: May 18, 2011Date of Patent: September 3, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
-
Patent number: 8492248Abstract: A surface of a single crystal semiconductor substrate is irradiated with ions to form a damaged region, an insulating layer is formed over the surface of the single crystal semiconductor substrate, and a surface of a substrate having an insulating surface is made to be in contact with a surface of the insulating layer to bond the substrate having an insulating surface to the single crystal semiconductor substrate. Then, the single crystal semiconductor substrate is separated at the damaged region by performing heat treatment to form a single crystal semiconductor layer over the substrate having an insulating surface, and the single crystal semiconductor layer is patterned to form a plurality of island-shaped semiconductor layers. One of the island-shaped semiconductor layers is irradiated with a laser beam which is shaped to entirely cover the island-shaped semiconductor layer.Type: GrantFiled: March 4, 2011Date of Patent: July 23, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Koichiro Tanaka
-
Patent number: 8481381Abstract: When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.Type: GrantFiled: September 14, 2011Date of Patent: July 9, 2013Assignee: GLOBALFOUNDRIES Inc.Inventors: Stephan-Detlef Kronholz, Peter Javorka, Maciej Wiatr
-
Patent number: 8476719Abstract: Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.Type: GrantFiled: May 18, 2011Date of Patent: July 2, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
-
Patent number: 8410002Abstract: An object is to provide a semiconductor device with a novel structure and favorable characteristics. A semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode, and the drain electrode, and a gate electrode over the gate insulating layer. The source electrode and the drain electrode include an oxide region formed by oxidizing a side surface thereof. Note that the oxide region of the source electrode and the drain electrode is preferably formed by plasma treatment with a high frequency power of 300 MHz to 300 GHz and a mixed gas of oxygen and argon.Type: GrantFiled: November 12, 2010Date of Patent: April 2, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Jun Koyama
-
Patent number: 8377799Abstract: An object of the present invention is to provide an SOI substrate including a semiconductor layer which is efficiently planarized. A method for manufacturing an SOI substrate includes a step of irradiating a bond substrate with an accelerated ion to form an embrittlement region; a step of bonding the bond substrate and the base substrate with an insulating layer positioned therebetween; a step of splitting the bond substrate at the embrittlement region to leave a semiconductor layer bonded to the base substrate; a step of disposing the semiconductor layer in front of a semiconductor target containing the same semiconductor material as the semiconductor layer; and a step of alternately irradiating the surface of the semiconductor layer and the semiconductor target with a rare gas ion, so that the surface of the semiconductor layer is planarized.Type: GrantFiled: March 24, 2011Date of Patent: February 19, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Toru Takayama, Mizuho Sato, Noriaki Uto
-
Patent number: 8324084Abstract: An object is to provide a manufacturing method of a semiconductor substrate provided with a single crystal semiconductor layer with a surface having a high degree of flatness. Another object is to manufacture a semiconductor device with high reliability by using the semiconductor substrate provided with a single crystal semiconductor layer with a high degree of flatness. In a manufacturing process of a semiconductor substrate, a thin embrittled region containing a large crystal defect is formed in a single crystal semiconductor substrate at a predetermined depth by subjecting the single crystal semiconductor substrate to a rare gas ion irradiation step, a laser irradiation step, and a hydrogen ion irradiation step. Then, by performing a separation heating step, a single crystal semiconductor layer that is flatter on a surface side than the embrittled region is transferred to a base substrate.Type: GrantFiled: March 25, 2011Date of Patent: December 4, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Junichi Koezuka
-
Patent number: 8278187Abstract: Disclosed is a method for reprocessing a semiconductor substrate which is by-produced in manufacturing a silicon-on-insulator substrate. The method includes: forming an embrittlement layer in a single crystal semiconductor substrate; bonding the single crystal semiconductor substrate with a base substrate having an insulating surface; and separating the single crystal semiconductor substrate along the embrittlement layer to give a silicon-on-insulator substrate and a semiconductor substrate to be reprocessed. The above steps provide, in the peripheral portion on the semiconductor substrate, a projection comprising the embrittlement layer and a single crystal semiconductor layer over the embrittlement layer. The method is characterized by an etching step to selectively remove the projection without etching a portion where the projection is absent, which allows the semiconductor substrate to be reused for the production of another silicon-on-insulator substrate.Type: GrantFiled: June 10, 2010Date of Patent: October 2, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Kazuya Hanaoka
-
Patent number: 8168543Abstract: Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.Type: GrantFiled: September 18, 2009Date of Patent: May 1, 2012Assignee: Applied Materials, Inc.Inventors: Xinyu Fu, Keyvan Kashefizadeh, Ashish Subhash Bodke, Winsor Lam, Yiochiro Tanaka, Wonwoo Kim
-
Patent number: 8143134Abstract: The present invention provides a method for manufacturing an SOI substrate, to improve planarity of a surface of a single crystal semiconductor layer after separation by favorably separating a single crystal semiconductor substrate even in the case where a non-mass-separation type ion irradiation method is used, and to improve planarity of a surface of a single crystal semiconductor layer after separation as well as to improve throughput.Type: GrantFiled: September 28, 2009Date of Patent: March 27, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Takeshi Shichi, Junichi Koezuka, Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8119443Abstract: Provided is a method in which a photodiode layer is formed on a metal interconnection layer, and a hard mask layer is formed on the photodiode layer. Then, a photoresist pattern is formed on the hard mask layer to define a contact hole region, and a first hole is formed in the hard mask layer through an etching process. Next, an ion implantation etching layer is formed in the photodiode layer using the photoresist pattern as an ion implantation mask, and a second hole is formed by etching the ion implantation etching layer. A third hole is formed to expose the metal interconnection by etching a region of the metal interconnection layer corresponding to the second hole.Type: GrantFiled: July 13, 2009Date of Patent: February 21, 2012Assignee: Dongbu HiTek Co., Ltd.Inventor: Ji Hwan Park
-
Patent number: 8062964Abstract: The present disclosure passivates solar cell defects. Plasma immersion ion implantation (PIII) is used to repair the defects during or after making the solar cell. Hydrogen ion is implanted into absorption layer with different sums of energy to fill gaps of defects or surface recombination centers. Thus, solar cell defects are diminished and carriers are transferred with improved photovoltaic conversion efficiency.Type: GrantFiled: August 9, 2010Date of Patent: November 22, 2011Assignee: Atomic Energy CouncilInventors: Wen-Fa Tsai, Jyong-Fong Liao, Yen-Yu Chen, Chee Wee Liu, Chi-Fong Ai
-
Patent number: 8035131Abstract: A method for forming a nitride semiconductor laminated structure includes forming a first layer that is an n-type or i-type first layer composed of a group III nitride semiconductor using an H2 carrier gas; forming a second layer by laminating a p-type second layer composed of a group III nitride semiconductor and containing Mg on the first layer using an H2 carrier gas; and forming a third layer that is an n-type or i-type third layer composed of a group III nitride semiconductor on the second layer using an H2 carrier gas after forming the second layer. A method for manufacturing a nitride semiconductor device includes the method steps for forming the nitride semiconductor laminated structure.Type: GrantFiled: March 7, 2008Date of Patent: October 11, 2011Assignee: Rohm Co., Ltd.Inventors: Hirotaka Otake, Hiroaki Ohta, Shin Egami
-
Patent number: 8012818Abstract: A method of manufacturing a semiconductor device based on a SiC substrate involves forming an oxide layer on a Si-terminated face of the SiC substrate at an oxidation rate sufficiently high to achieve a near interface trap density below 5×1011 cm?2; and annealing the oxidized SiC substrate in a hydrogen-containing environment, to passivate deep traps formed in the oxide-forming step, thereby enabling manufacturing of a SiC-based MOSFET having improved inversion layer mobility and reduced threshold voltage. It has been found that the density of DTs increases while the density of NITs decreases when the Si-face of the SiC substrate is subject to rapid oxidation. The deep traps formed during the rapid oxidation can be passivated by hydrogen annealing, thus leading to a significantly decreased threshold voltage for a semiconductor device formed on the oxide.Type: GrantFiled: August 29, 2007Date of Patent: September 6, 2011Assignee: NXP B.V.Inventors: Thomas C. Roedle, Elnar O. Sveinbjornsson, Halldor O. Olafsson, Gudjon I. Gudjonsson, Carl F. Allerstam
-
Patent number: 7972941Abstract: A gate structure is formed on a substrate. An insulating interlayer is formed covering the gate structure. The substrate is heat treated while exposing a surface of the insulating interlayer to a hydrogen gas atmosphere. A silicon nitride layer is formed directly on the interlayer insulating layer after the heat treatment and a metal wiring is formed on the insulating interlayer. The metal wiring may include copper. Heat treating the substrate while exposing a surface of the interlayer insulating layer to a hydrogen gas atmosphere may be preceded by forming a plug through the first insulating interlayer that contacts the substrate, and the metal wiring may be electrically connected to the plug. The plug may include tungsten.Type: GrantFiled: July 1, 2008Date of Patent: July 5, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Jong-Won Hong, Gil-Heyun Choi, Jong-Myeong Lee, Geum-Jung Seong
-
Patent number: 7897489Abstract: A method of selectively attaching a capping agent to an H-passivated Si or Ge surface is disclosed. The method includes providing the H-passivated Si or Ge surface, the H-passivated Si or Ge surface including a set of covalently bonded Si or Ge atoms and a set of surface substitutional atoms, wherein the set of surface substitutional atoms includes at least one of boron atoms, aluminum atoms, gallium atoms, indium atoms, tin atoms, lead atoms, phosphorus atoms, arsenic atoms, sulfur atoms, and bismuth atoms. The method also includes exposing the set of surface functional atoms to a set of capping agents, each capping agent of the set of capping agents having a set of functional groups bonded to a pair of carbon atoms, wherein the pair of carbon atoms includes at least one pi orbital bond, and further wherein a covalent bond is formed between at least some surface substitutional atoms of the set of surface substitutional atoms and at least some capping agents of the set of capping agents.Type: GrantFiled: June 17, 2008Date of Patent: March 1, 2011Assignee: Innovalight, Inc.Inventor: Elena Rogojina
-
Patent number: 7892934Abstract: On the side of a surface (the bonding surface side) of a single crystal Si substrate, a uniform ion implantation layer is formed at a prescribed depth (L) in the vicinity of the surface. The surface of the single crystal Si substrate and a surface of a transparent insulating substrate as bonding surfaces are brought into close contact with each other, and bonding is performed by heating the substrates in this state at a temperature of 350° C. or below. After this bonding process, an Si—Si bond in the ion implantation layer is broken by applying impact from the outside, and a single crystal silicon thin film is mechanically peeled along a crystal surface at a position equivalent to the prescribed depth (L) in the vicinity of the surface of the single crystal Si substrate.Type: GrantFiled: November 1, 2006Date of Patent: February 22, 2011Assignee: Shin-Etsu Chemical Co., Ltd.Inventors: Makoto Kawai, Yoshihiro Kubota, Atsuo Ito, Koichi Tanaka, Yuuji Tobisaka, Shoji Akiyama
-
Patent number: 7875515Abstract: A method for manufacturing a capacitor of a semiconductor device includes: forming an interlayer insulating film including a contact plug over a semiconductor substrate; forming a first stack film including a capacitor oxide film and a nitride film over the interlayer insulating film; etching the first stack film to form a first stack pattern and a contact hole that exposes the contact plug; forming a lower electrode in the contact hole; forming a capping oxide film continuously over the first stack pattern to form a bridge connecting the neighboring first stack patterns; forming an etching barrier film including cavities over the capping oxide film; performing a blanket etching process onto the etching barrier film including cavities until the capacitor oxide film is exposed to form a nitride film pattern; and removing the exposed capacitor oxide film.Type: GrantFiled: June 30, 2008Date of Patent: January 25, 2011Assignee: Hynix Semiconductor Inc.Inventors: Sang Man Bae, Hyoung Ryeun Kim
-
Patent number: 7867920Abstract: There is provided a method for modifying a high-k dielectric thin film provided on the surface of an object using a metal organic compound material. The method includes a preparation process for providing the object with the high-k dielectric thin film formed on the surface thereof, and a modification process for applying UV rays to the highly dielectric thin film in an inert gas atmosphere while maintaining the object at a predetermined temperature to modify the high-k dielectric thin film. According to the above constitution, the carbon component can be eliminated from the high-k dielectric thin film, and the whole material can be thermally shrunk to improve the density, whereby the occurrence of defects can be prevented and the film density can be improved to enhance the specific permittivity and thus to provide a high level of electric properties.Type: GrantFiled: November 22, 2006Date of Patent: January 11, 2011Assignee: Tokyo Electron LimitedInventors: Kazuyoshi Yamazaki, Shintaro Aoyama, Koji Akiyama
-
Patent number: 7867836Abstract: A method for manufacturing a junction semiconductor device having a drain region including a low-resistance layer of a first conductive type formed on one surface of a semiconductor crystal, a source region including a low-resistance layer of a first conductive type formed on the other surface of the semiconductor crystal, a gate region of a second conductive type formed on the periphery of the source region, a high-resistance layer of a first conductive type between the source region and the drain region, and a recombination-inhibiting semiconductor layer of a second conductive type provided in the vicinity of the surface of the semiconductor crystal between the gate region and the source region.Type: GrantFiled: September 3, 2008Date of Patent: January 11, 2011Assignee: Honda Motor Co., Ltd.Inventors: Ken-ichi Nonaka, Hideki Hashimoto, Seiichi Yokoyama, Kensuke Iwanaga, Yoshimitsu Saito
-
Patent number: 7825014Abstract: A method for fabricating a semiconductor device includes forming a pattern including a first layer including tungsten, performing a gas flowing process on the pattern in a gas ambience including nitrogen, and forming a second layer over the pattern using a source gas including nitrogen, wherein the purge is performed at a given temperature for a given period of time in a manner that a reaction between the first layer and the nitrogen used when forming the second layer is controlled.Type: GrantFiled: June 30, 2008Date of Patent: November 2, 2010Assignee: Hynix Semiconductor Inc.Inventors: Min-Gyu Sung, Hong-Seon Yang, Tae-Kwon Lee, Won Kim, Kwan-Yong Lim, Seung-Ryong Lee
-
Patent number: 7820524Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.Type: GrantFiled: March 28, 2008Date of Patent: October 26, 2010Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
-
Patent number: 7820551Abstract: A line-form insulator is formed on a substrate and then the substrate is etched with the insulator used as a mask to form first trenches on both sides of the insulator. Side wall insulators are formed on the side walls of the first trenches, the substrate is etched with the insulator and side wall insulators used as a mask to form second trenches in the bottom of the first trenches. After, the substrate is oxidized with the insulator and side wall insulators used as an anti-oxidation mask to cause oxide regions formed on the adjacent side walls of the second trenches lying on both sides of the substrate to make contact with each other and the insulator and side wall insulators are removed. Then, a fin FET having a semiconductor region as a line-form fin is formed in the substrate.Type: GrantFiled: January 10, 2008Date of Patent: October 26, 2010Assignee: Kabushiki Kaisha ToshibaInventors: Atsushi Yagishita, Akio Kaneko
-
Patent number: 7811912Abstract: A method for manufacturing a semiconductor device includes the steps of forming a first insulation layer on a substrate; forming a damascene pattern in the first insulation layer; conducting a first process for forming metal lines in the damascene pattern; conducting a second process for forming a second insulation layer, having compressive stress greater than tensile stress of the metal lines, on the damascene pattern including the metal lines; forming a passivation layer on the substrate after multi-layered metal lines are formed by the first and second processes; and conducting an annealing process for the substrate including the passivation layer.Type: GrantFiled: June 27, 2008Date of Patent: October 12, 2010Assignee: Hynix Semiconductor Inc.Inventor: Young Geun Jang
-
Patent number: 7790563Abstract: A semiconductor device of the present invention is manufactured by the following steps: forming a single-crystal semiconductor layer over a substrate having an insulating surface; irradiating a region of the single-crystal semiconductor layer with laser light; forming a circuit of a pixel portion using a region of the single-crystal semiconductor layer which is not irradiated with the laser light; and forming a driver circuit for driving the circuit of the pixel portion using the region of the single-crystal semiconductor layer which is irradiated with the laser light. Thus, a semiconductor device using a single-crystal semiconductor layer which is suitable for a peripheral driver circuit region and a single-crystal semiconductor layer which is suitable for a pixel region can be provided.Type: GrantFiled: July 8, 2008Date of Patent: September 7, 2010Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Tetsuya Kakehata