Of Electrically Inactive Species In Silicon To Make Buried Insulating Layer (epo) Patents (Class 257/E21.339)
  • Patent number: 9953831
    Abstract: Device structures for field-effect transistors and methods of forming device structures for a field-effect transistor. A first dielectric layer is formed on a semiconductor layer and nitrided. A nitrogen-enriched layer is formed at a first interface between the first dielectric layer and the semiconductor layer. Another nitrogen-enriched layer is formed at a second interface between the semiconductor layer and a second dielectric layer. Device structures may include field-effect transistors that include one, both, and/or neither of the nitrogen-enriched layers.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: April 24, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Steven Shank, Randall Brault, Jay Burnham, John J. Ellis-Monaghan
  • Patent number: 9929040
    Abstract: A process is used for fabricating a final structure comprising in succession a useful semiconductor layer, a dielectric layer and a carrier substrate. The process comprises providing an intermediate structure including an upper layer, the dielectric layer and the carrier substrate, and finishing the intermediate structure to form the final structure by performing a treatment nonuniformly modifying the thickness of the dielectric layer following a predetermined dissolution profile. The dielectric layer of the intermediate structure has a thickness profile complementary to the predetermined dissolution profile.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: March 27, 2018
    Assignee: Soitec
    Inventors: Carole David, Anne-Sophie Cocchi
  • Patent number: 9837334
    Abstract: Cooling devices for SOI wafers and methods for forming the devices are presented. A substrate having a top surface layer, a support substrate and an insulator layer isolating the top surface layer from the support substrate is provided. At least one device is disposed in the top surface layer of the substrate. The IC includes a cooling device. The cooling device includes a doped layer which is disposed in a top surface of the support substrate, and a RDL layer disposed within the support substrate below the doped layer for providing connections to hotspots in the doped layer to facilitate thermoelectric conduction of heat in the hotspots away from the hotspots.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: December 5, 2017
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Kheng Chok Tee, Juan Boon Tan, Wei Liu, Kam Chew Leong
  • Patent number: 8883616
    Abstract: In an implementation, a Germanium on insulator apparatus is fabricated by forming a patterned masking layer on a Silicon on insulator (SOI) layer that leaves a portion of the SOI layer exposed, implanting Germanium onto the exposed portion of the SOI layer to form a Silicon-Germanium island, depositing amorphous Germanium over the Silicon-Germanium island and the patterned masking layer, removing the patterned masking layer and the amorphous Germanium that was deposited onto the patterned masking layer to produce a Silicon-Germanium composite stripe, and annealing the Silicon-Germanium composite stripe to crystallize the amorphous Germanium in the Silicon-Germanium composite stripe.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Leonid Tsybeskov
  • Patent number: 8680576
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first region and a second region. The semiconductor device further includes a first buffer layer formed over the substrate and between first and second isolation regions in the first region and a second buffer layer formed over the substrate and between first and second isolation regions in the second region. The semiconductor device further includes a first fin structure formed over the first buffer layer and between the first and second isolation regions in the first region and a second fin structure formed over the second buffer layer and between the first and second isolation regions in the second region. The first buffer layer includes a top surface different from a top surface of the second buffer layer.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Shi Ning Ju, Cary Chia-Chiung Lo, Huicheng Chang, Chun Chung Su
  • Patent number: 8558332
    Abstract: A method of fabricating a spin-current switched magnetic memory element includes providing a wafer having a bottom electrode, forming a plurality of layers, such that interfaces between the plurality of layers are formed in situ, in which the plurality of layers includes a plurality of magnetic layers, at least one of the plurality of magnetic layers having a perpendicular magnetic anisotropy component and including a current-switchable magnetic moment, and at least one barrier layer formed adjacent to the plurality of magnetic layers, lithographically defining a pillar structure from the plurality of layers, and forming a top electrode on the pillar structure.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Zanhong Sun, Rolf Allenspach, Stuart Stephen Papworth Parkin, John Casimir Slonczewski, Bruce David Terris
  • Patent number: 8551845
    Abstract: A method and structure are disclosed for increasing strain in a device, specifically an n-type field effect transistor (NFET) complementary metal-oxide-semiconductor (CMOS) device. Embodiments of this invention include growing an epitaxial layer, performing a cold carbon or cluster carbon pre-amorphization implantation to implant substitutional carbon into the epitaxial layer, forming a tensile cap over the epitaxial layer, and then annealing to recrystallize the amorphous layer to create a stress memorization technique (SMT) effect. The epitaxial layer will therefore include substitutional carbon and have a memorized tensile stress induced by the SMT. Embodiments of this invention can also include a lower epitaxial layer under the epitaxial layer, the lower epitaxial layer comprising for example, a silicon carbon phosphorous (SiCP) layer.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Abhishek Dube, Viorel C. Ontalus
  • Patent number: 8530343
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 10, 2013
    Assignee: SemEquip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Patent number: 8097529
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: January 17, 2012
    Assignee: Semequip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Publication number: 20110212579
    Abstract: An integrated circuit comprises a substrate and a buried dielectric formed in the substrate. The buried dielectric has a first thickness in a first region, a second buried dielectric thickness in a second region, and a step between the first and second regions. A semiconductor layer overlies the buried dielectric.
    Type: Application
    Filed: May 4, 2011
    Publication date: September 1, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yu Chen, Chang-Yun Chang, Di-Hong Lee, Fu-Liang Yang
  • Patent number: 7977200
    Abstract: A semiconductor device including at least one capacitor formed in wiring levels on a silicon-on-insulator (SOI) substrate, wherein the at least one capacitor is coupled to an active layer of the SOI substrate. A method of fabricating a semiconductor structure includes forming an SOI substrate, forming a BOX layer over the SOI substrate, and forming at least one capacitor in wiring levels on the BOX layer, wherein the at least one capacitor is coupled to an active layer of the SOI substrate.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Stephen E. Luce
  • Publication number: 20110159672
    Abstract: This invention disclosed a manufacturing approach of collector and buried layer of a bipolar transistor. One aspect of the invention is that a pseudo buried layer, i.e, collector buried layer, is manufactured by ion implantation and thermal anneal. This pseudo buried layer has a small area, which makes deep trench isolation to divide pseudo buried layer unnecessary in subsequent process. Another aspect is, the doped area, i.e, collector, is formed by ion implantation instead of high cost epitaxy process. This invention simplified the manufacturing process, as a consequence, saved manufacturing cost.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Inventors: Tzuyin CHIU, TungYuan Chu, YungChieh Fan, Wensheng Qian, Fan Chen, Jiong Xu, Haifang Zhang
  • Patent number: 7919402
    Abstract: A method of semiconductor manufacturing is disclosed in which doping is accomplished by the implantation of ion beams formed from ionized molecules, and more particularly to a method in which molecular and cluster dopant ions are implanted into a substrate with and without a co-implant of non-dopant cluster ion, such as a carbon cluster ion, wherein the dopant ion is implanted into the amorphous layer created by the co-implant in order to reduce defects in the crystalline structure, thus reducing the leakage current and improving performance of the semiconductor junctions. These compounds include co-implants of carbon clusters with implants of monomer or cluster dopants or simply implanting cluster dopants. In particular, the invention described herein consists of a method of implanting semiconductor wafers implanting semiconductor wafers with carbon clusters followed by implants of boron, phosphorus, or arsenic, or followed with implants of dopant clusters of boron, phosphorus, or arsenic.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: April 5, 2011
    Assignee: SemEquip, Inc.
    Inventors: Dale C. Jacobson, Thomas N. Horsky, Wade A. Krull, Karuppanan Sekar
  • Patent number: 7875560
    Abstract: A semiconductor having an optimized insulation structure which is simple and inexpensive to produce and can be made smaller than LOCOS insulation structures is disclosed. An implantation mask on a surface of a semiconductor substrate is used to implant elements into the semiconductor substrate, which elements, on thermal activation, form an insulation region together with the further elements of the semiconductor substrate. The thermal activation is effected by means of laser irradiation, during which the semiconductor substrate is briefly melted and then recrystallizes during the subsequent cooling, so that the implanted elements form the insulation region together with the further elements of the semiconductor substrate.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: January 25, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Norbert Krischke
  • Patent number: 7781302
    Abstract: Methods of fabricating a semiconductor device include forming a mask pattern on a semiconductor substrate and which exposes defined regions of the semiconductor substrate. Oxygen ions are implanted into the defined regions of the semiconductor substrate using the mask pattern as an ion implantation mask. The oxygen ion implanted regions of the semiconductor substrate are annealed at one or more temperatures in a range that is sufficiently high to form silicon oxide substantially throughout the oxygen ion implanted regions by reacting the implanted oxygen ions with silicon in the oxygen ion implanted regions, and that is sufficiently low to substantially prevent oxidation of the semiconductor substrate adjacent to the oxygen ion implanted regions.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Won Cha, Dae-Lok Bae
  • Patent number: 7691734
    Abstract: A far subcollector, or a buried doped semiconductor layer located at a depth that exceeds the range of conventional ion implantation, is formed by ion implantation of dopants into a region of an initial semiconductor substrate followed by an epitaxial growth of semiconductor material. A reachthrough region to the far subcollector is formed by outdiffusing a dopant from a doped material layer deposited in the at least one deep trench that adjoins the far subcollector. The reachthrough region may be formed surrounding the at least one deep trench or only on one side of the at least one deep trench. If the inside of the at least one trench is electrically connected to the reachthrough region, a metal contact may be formed on the doped fill material within the at least one trench. If not, a metal contact is formed on a secondary reachthrough region that contacts the reachthrough region.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bradley A. Orner, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
  • Patent number: 7666771
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: February 23, 2010
    Assignee: Semequip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Patent number: 7608506
    Abstract: A semiconductor structure for a dynamic random access memory (DRAM) cell array that includes a plurality of vertical memory cells built on a semiconductor-on-insulator (SOI) wafer and a body contact in the buried dielectric layer of the SOI wafer. The body contact electrically couples a semiconductor body with a channel region of the access device of one vertical memory cell and a semiconductor substrate of the SOI wafer. The body contact provides a current leakage path that reduces the impact of floating body effects upon the vertical memory cell. The body contact may be formed by an ion implantation process that modifies the stoichiometry of a region of the buried dielectric layer so that the modified region becomes electrically conductive with a relatively high resistance.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis Lu-Chen Hsu, Jack Allan Mandelman
  • Patent number: 7560330
    Abstract: A CIS and a method of manufacturing the same are provided. The CIS includes a device isolation layer formed on a device isolation region of a substrate of a first conductive type, the substrate including an active region and the device isolation region, the active region including a photodiode region and a transistor region; a high-concentration diffusion region of the first conductive type formed around the device isolation layer; a gate electrode formed on the active region of the substrate with a gate insulation layer interposed therebetween; a low-concentration diffusion region of a second conductive type formed on the photodiode region and spaced a predetermined distance apart from the device isolation layer; and a high-concentration diffusion region of a second conductive type formed on the transistor region.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: July 14, 2009
    Assignee: Dongbu Electronics, Co., Ltd.
    Inventor: Joon Hwang
  • Patent number: 7524744
    Abstract: The present invention provides a method of producing an SOI wafer, comprising at least steps of forming an oxygen ion-implanted layer by implanting oxygen ions into a silicon wafer from one main surface thereof, subjecting the silicon wafer to oxide film-forming heat treatment to convert the oxygen ion-implanted layer into a buried oxide film, and thereby producing an SOI wafer having an SOI layer on the buried oxide film, wherein when the buried oxide film is formed in the silicon wafer, the buried oxide film is formed so that a thickness thereof is thicker than a thickness of the buried oxide film which the SOI wafer to be produced has, and thereafter the silicon wafer in which the thicker buried oxide film is formed is subjected to a heat treatment to reduce the thickness of the buried oxide film.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: April 28, 2009
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Isao Yokokawa, Hiroji Aga, Kiyotaka Takano, Kiyoshi Mitani
  • Publication number: 20090004822
    Abstract: A method of manufacturing a semiconductor substrate is demonstrated, which enables the formation of a single crystal semiconductor layer on a substrate having an insulating surface. The manufacturing method includes the steps of: ion irradiation of a surface of a single-crystal semiconductor substrate to form a damaged region; laser light irradiation of the single-crystal semiconductor substrate; formation of an insulating layer on the surface of the single-crystal semiconductor substrate; bonding the insulating layer with a substrate having an insulating surface; separation of the single-crystal semiconductor substrate at the damaged region, resulting in a thin single-crystal semiconductor layer on the surface of the substrate having the insulating surface; and laser light irradiation of the surface of the single-crystal semiconductor layer which is formed on the substrate having the insulating surface.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 1, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Murakami, Hiromichi Godo, Atsuo Isobe
  • Publication number: 20080268613
    Abstract: Hetero-semiconductor structures possessing an SOI structure containing a silicon-germanium mixed crystal are produced at a low cost and high productivity. The semiconductor substrates comprise a first layer formed of silicon having germanium added thereto, a second layer formed of an oxide and adjoined to the first layer, and a third layer derived from the same source as the first layer, but having an enriched content of germanium as a result of thermal oxidation and thinning of the third layer.
    Type: Application
    Filed: May 14, 2008
    Publication date: October 30, 2008
    Applicant: Siltronic AG
    Inventors: Josef Brunner, Hiroyuki Deai, Atsushi Ikari, Martin Grassl, Atsuki Matsumura, Wilfried von Ammon
  • Patent number: 7358147
    Abstract: There is provided a process for producing an SOI wafer in which, when producing an SOI wafer using Smart Cut technology, the surface can be smoothed after cleaving, the thickness of the SOI layer can be reduced, and the film thickness of the SOI wafer can be made uniform. In this process for producing an SOI wafer, hydrogen gas ions are implanted via an oxide film in a silicon wafer that is to be used for an active layer, so that an ion implanted layer is formed in the silicon bulk. Next, this active layer silicon wafer is bonded via an insulating film to a base wafer. By heating this base wafer, a portion thereof can be cleaved using the ion implanted layer as a boundary, thereby forming an SOI wafer. After the cleaving has been performed using the ion implanted layer as a boundary, the SOI wafer undergoes oxidization processing in an oxidizing atmosphere. This oxide film is then removed by, for example, HF solution.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: April 15, 2008
    Assignee: Sumco Corporation
    Inventors: Nobuyuki Morimoto, Hideki Nishihata
  • Patent number: 6967376
    Abstract: A method of fabricating a silicon-on-insulator (SOI) having a superficial Si-containing layer that has a reduced number of tile and divot defects is provided. The method includes the steps of: implanting oxygen ions into a surface of a Si-containing substrate, the implanted oxygen ions having a concentration sufficient to form a buried oxide region during a subsequent annealing step; and annealing the substrate containing implanted oxygen ions under conditions wherein the implanted oxygen ions form a buried oxide region which electrically isolates a superficial Si-containing layer from a bottom Si-containing layer. Moreover, the annealing conditions employed are capable of reducing the number of tile or divot defects present in the superficial Si-containing layer so as to allow optical detection of any other defect that has a lower density than the tile or divot defect. The present invention also relates to the SOI substrate that is produced using the inventive method.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: November 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephen R. Fox, Neena Garg, Kenneth J. Giewont, Junedong Lee, Devendra K. Sadana