Encapsulation, E.g., Encapsulation Layer, Coating (epo) Patents (Class 257/E21.502)
  • Patent number: 8697567
    Abstract: A method and structures are provided for implementing decoupling capacitors within a DRAM TSV stack. A DRAM is formed with a plurality of TSVs extending completely through the substrate and filled with a conducting material. A layer of glass is grown on both the top and bottom of the DRAM providing an insulator. A layer of metal is grown on each glass layer providing a conductor. The metal and glass layers are etched through to TSVs with a gap provided around the perimeter of via pads. A respective solder ball is formed on the TSVs to connect to another DRAM chip in the DRAM TSV stack. The metal layers are connected to at least one TSV by one respective solder ball and are connected to a voltage source and a dielectric is inserted between the metal layers in the DRAM TSV stack to complete the decoupling capacitor.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joab D. Henderson, Kyu-hyoun Kim, Warren E. Maule, Kenneth L. Wright
  • Patent number: 8698291
    Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
  • Patent number: 8698298
    Abstract: A laminate electronic device comprises a first semiconductor chip, the first semiconductor chip defining a first main face and a second main face opposite to the first main face, and having at least one electrode pad on the first main face. The laminate electronic device further comprises a carrier having a first structured metal layer arranged at a first main surface of the carrier. The first structured metal layer is bonded to the electrode pad via a first bond layer of a conductive material, wherein the first bond layer has a thickness of less than 10 ?m. A first insulating layer overlies the first main surface of the carrier and the first semiconductor chip.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 15, 2014
    Assignee: Infineon Technologies AG
    Inventors: Ewe Henrik, Joachim Mahler, Anton Prueckl, Ivan Nikitin
  • Patent number: 8699232
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; mounting an interposer having a top interposer surface over the substrate; attaching an interposer pad extension to the top interposer surface, the interposer pad extension having an extension contact surface and a lower contact surface, the surface area of the extension contact surface being smaller than the surface area of the lower contact surface; and forming a package encapsulation on the substrate, the interposer, and the interposer pad extension, the package encapsulation having a recess exposing the top interposer surface, the interposer pad extension embedded only in the package encapsulation.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: A Leam Choi, DeokKyung Yang, JoHyun Bae
  • Publication number: 20140097536
    Abstract: A two-sided-access (TSA) eWLB is provided that makes it possible to easily access electrical contact pads disposed on both the front and rear faces of the die(s) of the eWLB package. When fabricating the IC die wafer, metal stamps are formed in the IC die wafer in contact with the rear faces of the IC dies. When the IC dies are subsequently reconstituted in an artificial wafer, portions of the metal stamps are exposed through the mold of the artificial wafer. When the artificial wafer is sawed to singulate the TSA eWLB packages and the packages are mounted on PCBs, any electrical contact pad that is disposed on the rear face of the IC die can be accessed via the respective metal stamp of the IC die.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventor: Nikolaus W. Schunk
  • Patent number: 8692365
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; attaching a package stack assembly, having a contact pad, on the base substrate; applying an encapsulation having a cavity with a tapered side directly over the package stack assembly, the contact pad exposed in the cavity; attaching a recessed circuitry unit in the cavity and on the contact pad, a chamber of the cavity formed by the recessed circuitry unit and the tapered side of the cavity; and mounting a thermal structure over the recessed circuitry unit, the cavity, and the encapsulation.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 8, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: DongSoo Moon, Taewoo Lee, Soo-San Park, SooMoon Park, Sang-Ho Lee
  • Patent number: 8691625
    Abstract: The present invention relates to a method for making a chip package. The method includes the following steps: (a) providing a substrate having at least one conductive via; (b) disposing the substrate on a carrier; (c) removing part of the substrate, so as to expose the conductive via, and form at least one through via; (d) disposing a plurality of chips on a surface of the substrate, wherein the chips are electrically connected to the through via of the substrate; (e) forming an encapsulation; (f) removing the carrier; (g) conducting a flip-chip mounting process; (h) removing the encapsulation; and (i) forming a protective material. Whereby, the carrier and the encapsulation can avoid warpage of the substrate during the manufacturing process.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 8, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Meng-Jen Wang
  • Patent number: 8692387
    Abstract: A semiconductor package and method of assembling a semiconductor package includes encapsulating a first pre-packaged semiconductor die stacked on top of and interconnected with a second semiconductor die. The first packaged semiconductor die is positioned and fixed relative to a lead frame with a temporary carrier such as tape. The second semiconductor die is attached and interconnected directly to the first packaged semiconductor die and lead frame. The interconnected first packaged die and second semiconductor die, and lead frame are encapsulated to form the semiconductor package. Different types of semiconductor packages such as quad flat no-lead (QFN) and ball grid array (BGA) may be formed, which provide increased input/output (I/O) count and functionality.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 8, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Shunan Qiu, Guoliang Gong, Xuesong Xu, Xingshou Pang, Beiyue Yan, Yinghui Li
  • Publication number: 20140093999
    Abstract: Electronic assemblies including substrates and their manufacture are described. One assembly includes a die embedded in a dielectric layer in a multilayer substrate, and a dielectric region embedded in the dielectric layer in the multilayer substrate. The multilayer substrate includes a die side and a land side, with the first dielectric region and the dielectric layer extending to the die side. A plurality of vias are positioned within the first dielectric region, the vias extending to pads on the die side. Other embodiments are described and claimed.
    Type: Application
    Filed: September 29, 2012
    Publication date: April 3, 2014
    Inventors: Weng Hong TEH, Vinodhkumar RAGHUNATHAN
  • Publication number: 20140091471
    Abstract: A component package and a method of forming are provided. A first component package may include a first semiconductor device having a pair of interposers attached thereto on opposing sides of the first semiconductor device. Each interposer may include conductive traces formed therein to provide electrical coupling to conductive features formed on the surfaces of the respective interposers. A plurality of through vias may provide for electrically connecting the interposers to one another. A first interposer may provide for electrical connections to a printed circuit board or subsequent semiconductor device. A second interposer may provide for electrical connections to a second semiconductor device and a second component package. The first and second component packages may be combined to form a Package-on-Package (“PoP”) structure.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140091454
    Abstract: A semiconductor device includes a semiconductor die. An encapsulant is formed around the semiconductor die. A build-up interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A first supporting layer is formed over a second surface of the semiconductor die as a supporting substrate or silicon wafer disposed opposite the build-up interconnect structure. A second supporting layer is formed over the first supporting layer an includes a fiber enhanced polymer composite material comprising a footprint including an area greater than or equal to an area of a footprint of the semiconductor die. The semiconductor die comprises a thickness less than 450 micrometers (?m). The thickness of the semiconductor die is at least 1 ?m less than a difference between a total thickness of the semiconductor device and a thickness of the build-up interconnect structure and the second supporting layer.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu
  • Patent number: 8686547
    Abstract: Embodiments of the present disclosure describe a packaged semiconductor device that reduces stress on a semiconductor device caused by thermal expansion of the insulating material used in the packaged semiconductor device. In one embodiment, an inactive semiconductor device is coupled to the top of active semiconductor device. Both the inactive and active devices are encapsulated by the insulating material. The configuration of the inactive device is selected based on its ability to absorb the expansion of the insulating material at operating temperature.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 1, 2014
    Assignee: Marvell International Ltd.
    Inventors: Huahung Kao, Thomas Ngo, Shiann-Ming Liou
  • Patent number: 8686550
    Abstract: A pressure sensor package is provided that reduces the occurrence of micro gaps between molding material and metal contacts that can store high-pressure air. The present invention provides this capability by reducing or eliminating interfaces between package molding material and metal contacts. In one embodiment, a control die is electrically coupled to a lead frame and then encapsulated in molding material, using a technique that forms a cavity over a portion of the control die. The cavity exposes contacts on the free surface of the control die that can be electrically coupled to a pressure sensor device using, for example, wire bonding techniques. In another embodiment, a region of a substrate can be encapsulated in molding material, using a technique that forms a cavity over a sub-portion of the substrate that includes contacts. A pressure sensor device can be electrically coupled to the exposed contacts.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, Alexander M. Arayata, Philip H. Bowles, Stephen R. Hooper
  • Patent number: 8685790
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alan J. Magnus, Carl E. D. Acosta, Douglas G. Mitchell, Justin E. Poarch
  • Publication number: 20140085601
    Abstract: Contact lenses and methods of manufacture are provided. In one aspect, a method includes: positioning components in predefined locations on a first surface; applying pressure on the components employing a second surface; providing molten material between the first surface and the second surface and around the components; embedding the components in a substrate by cooling the molten material and causing the molten material to harden, the substrate being a substantially solid form of molten material; and removing the first surface and the second surface after embedding the components in the substrate. The method can also include: providing, on or within a contact lens, one of the components and the substrate into which the component is embedded. The first surface can include molds sized to receive and maintain the components at the predefined locations. The first surface and/or the second surface can be pre-treated with a non-stick coating such as Polytetrafluoroethylene.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Inventor: GOOGLE INC.
  • Publication number: 20140084425
    Abstract: One embodiment of a perimeter trench sensor array package can include a thinned substrate device that includes a perimeter trench formed near the edges of the device that can be configured to be thinner than a central portion of the thinned substrate device. The perimeter trench can include bond pads that can couple to electrical elements included in the thinned substrate device. The thinned substrate device can be attached to a core layer that can in turn support one or more resin layers. The core layer and the resin layers can form a printed circuit board assembly, a flex cable assembly or a stand-alone module.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Matthew E. LAST
  • Publication number: 20140077355
    Abstract: A semiconductor package device that includes an integrated circuit device package having a storage circuitry is disclosed. In an implementation, the semiconductor package device includes a semiconductor substrate having a first surface and a second surface. The semiconductor substrate includes one or more integrated circuits formed proximal to (e.g., adjacent to, in, or on) the first surface. The semiconductor package device also includes an integrated circuit device disposed over the second surface, the integrated circuit device including storage circuitry for storing sensitive data. In one or more implementations, the semiconductor package device includes a through-substrate via that furnishes an electrical connection to the integrated circuit package. The semiconductor package device also includes an encapsulation structure disposed over the second surface and at least substantially encapsulates the integrated circuit device package.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Peter R. Harper, Arkadii V. Samoilov, Don Dias
  • Patent number: 8673690
    Abstract: A method for manufacturing a semiconductor device according to one embodiment of the present invention includes a step of covering a plurality of base plates in which respective semiconductor chips are mounted, by means of a sealing resin such that a plurality of base plates are spaced apart from each other, and a step of cutting the sealing resin between a plurality of base plates.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitsune Iijima
  • Patent number: 8673684
    Abstract: A disclosed semiconductor device includes a wiring board, a semiconductor element mounted on a principal surface of the wiring board with flip chip mounting, a first conductive pattern formed on the principal surface along at least an edge portion of the semiconductor element, a second conductive pattern formed on the principal surface along the first conductive pattern and away from the first conductive pattern, a passive element bridging between the first conductive pattern and the second conductive pattern on the principal surface of the wiring board, and a resin layer filling a space between the wiring board and the semiconductor chip, wherein the resin layer extends between the semiconductor element and the first conductive pattern on the principal surface of the wiring board.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takumi Ihara
  • Patent number: 8674462
    Abstract: A sensor package is disclosed. One embodiment provides a sensor device having a carrier, a semiconductor sensor mounted on the carrier and an active surface. Contact elements are electrically connecting the carrier with the semiconductor sensor. A protective layer made of an inorganic material covers at least the active surface and the contact elements.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: March 18, 2014
    Assignee: Infineon Technologies AG
    Inventors: Ralf Wombacher, Horst Theuss
  • Publication number: 20140070415
    Abstract: Embodiments of a microelectronic package including at least one trench via are provided, as are embodiments of a method for fabricating such a microelectronic package. In one embodiment, the method includes the step of depositing a dielectric layer over a first microelectronic device having a plurality of contact pads, which are covered by the dielectric layer. A trench via is formed in the dielectric layer to expose the plurality of contact pads therethrough. The trench via is formed to include opposing crenulated sidewalls having a plurality of recesses therein. The plurality of contact pads exposed through the trench via are then sputter etched. A plurality of interconnect lines is formed over the dielectric layer, each of which is electrically coupled to a different one of the plurality of contact pads.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Michael B. Vincent, Zhiwei Gong (Tony), Scott M. Hayes, Douglas Mitchell
  • Publication number: 20140070403
    Abstract: Packaging methods and packaged devices are disclosed. In one embodiment, a method of packaging a semiconductor device includes forming a first redistribution layer (RDL) over a carrier, and forming a plurality of through assembly vias (TAVs) over the first RDL. An integrated circuit die is coupled over the first RDL, and a molding compound is formed over the first RDL, the TAVs, and the integrated circuit die. A second RDL is formed over the molding compound, the TAVs, and the integrated circuit die.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo Lung Pan, Ming Hung Tseng, Chen-Shien Chen
  • Publication number: 20140070397
    Abstract: A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Inventors: Lakshminarayan Viswanathan, Scott M. Hayes, Scott D. Marshall, Mahesh K. Shah
  • Patent number: 8669137
    Abstract: A method comprises forming semiconductor flip chip interconnects where the flip chip comprises a wafer and a substrate having electrical connecting pads and electrically conductive posts operatively associated with the pads and extending away from the pads to terminate in distal ends. Solder bumping the distal ends by injection molding solder onto the distal ends produces a solder bumped substrate. Another embodiment comprises providing the substrate having the posts on the pads with a mask having a plurality of through hole reservoirs and aligning the reservoirs in the mask to be substantially concentric with the distal ends. This is followed by injecting liquid solder into the reservoirs to provide a volume of liquid solder on the distal ends, cooling the liquid solder in the reservoirs to solidify the solder, removing the mask to expose the solidified solder after the cooling and thereby provide a solder bumped substrate.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 8669655
    Abstract: A chip package is provided, the chip package including: a chip including at least one contact pad formed on a chip front side; an encapsulation material at least partially surrounding the chip and covering the at least one contact pad; and at least one electrical interconnect formed through the encapsulation material, wherein the at least one electrical interconnect is configured to electrically redirect the at least one contact pad from a chip package first side at the chip front side to at least one solder structure formed over a chip package second side at a chip back side.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Ottmar Geitner, Walter Hartner, Maciej Wojnowski, Ulrich Wachter, Michael Bauer, Andreas Stueckjuergen
  • Publication number: 20140061896
    Abstract: A method of attaching an IC wafer having a plurality of copper pillars (“CuP's) projecting from one face thereof to a substrate having a plurality of contact pads on one face thereof including applying a film having a substantial amount of filler particles therein to the one face of the wafer; applying an a-stage resin having substantially no filler particles therein to the one face of the substrate; and interfacing the film with the a-stage resin.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Kurt Peter Wachtler
  • Publication number: 20140061894
    Abstract: A packaged semiconductor device, comprising a package substrate, an integrated circuit (IC) die mounted on the package substrate, and a heat spreader mounted on the package substrate. The heat spreader surrounds at least a portion of the IC die and includes a lid with a plurality of openings. An inner portion of the heat spreader includes a plurality of thermally conductive protrusions adjacent the die.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Sheila F. Chopin, Varughese Mathew
  • Publication number: 20140061883
    Abstract: A leadframe (e.g., incorporated in a device package) includes a feature (e.g., a die pad or lead) with a vent hole formed between first and second opposed surfaces. The cross-sectional area of the vent hole varies substantially between the surfaces (e.g., the vent hole has a constricted portion). The vent hole may be formed from a first opening extending from the first surface toward the second surface to a first depth that is less than a thickness of the leadframe feature, and a second opening extending from the second surface toward the first surface to a second depth that is less than the thickness of the leadframe feature, but that is large enough for the second opening to intersect the first opening. Vertical central axes of the openings are horizontally offset from each other, and the constricted portion of the vent hole corresponds to the intersection of the openings.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: PHILIP H. BOWLES, Stephen R. Hooper
  • Publication number: 20140061932
    Abstract: A package-on-package (“PoP”) structure and a method of forming are provided. The PoP structure may be formed by forming a first set of electrical connections on a first substrate. A first material may be applied to the first set of electrical connections. A second substrate may be provided having a second set of electrical connections formed thereon. The first set of electrical connections of the first substrate having the epoxy flux applied may be contacted to the second electrical connections of the second substrate. A reflow process may be performed to electrically connect the first substrate to the second substrate. The epoxy flux applied to the first electrical connections of the first substrate may prohibit electrical bridges or shorts from forming during the reflow process.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Tse Chen, Yi-Da Tsai, Xi-Hong Chen, Tao-Hua Lee, Wei-Yu Chen, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20140061879
    Abstract: One embodiment is a packaged device having multiple layers. Another embodiment is a method of forming a packaged device having multiple layers. Conductive layers and insulating layers can be formed with openings exposing semiconductor devices. The semiconductor devices can be wire-bonded to the conductive layers. In some embodiments, parasitic effects and a relative footprint of the packaged device can be reduced.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Inventors: Kaushik Rajashekara, Ruxi Wang, Zheng Chen, Dushan Boroyevich
  • Patent number: 8664762
    Abstract: In one embodiment, a semiconductor package may include a semiconductor chip having a chip pad formed on a first surface thereof, a sealing member for sealing the semiconductor chip and exposing the first surface of the semiconductor chip, a conductive wiring overlying a part of the first surface of the semiconductor chip and directly contacting a part of an upper surface of the sealing member. The conductive wiring further contacts the pad. The semiconductor package may also include an encapsulant covering the conductive wiring and having openings for exposing parts of the conductive wiring.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: March 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-gi Lee, Sang-wook Park, Ji-seok Hong
  • Patent number: 8664043
    Abstract: A method of manufacturing a laminate electronic device is disclosed. One embodiment provides a carrier, the carrier defining a first main surface and a second main surface opposite to the first main surface. The carrier has a recess pattern formed in the first main surface. A first semiconductor chip is attached on one of the first and second main surface. A first insulating layer overlying the main surface of the carrier on which the first semiconductor chip is attached and the first semiconductor chip is formed. The carrier is then separated into a plurality of parts along the recess pattern.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Henrik Ewe, Joachim Mahler, Anton Prueckl, Stefan Landau
  • Publication number: 20140057394
    Abstract: A manufacturing process includes forming a reconstituted wafer, including embedding semiconductor dice in a molding compound layer and forming through-wafer vias in the layer. A fan-out redistribution layer is formed on a front side of the wafer, with electrical traces interconnecting the dice, through-wafer vias, and contact pads positioned on the redistribution layer. Solder balls are positioned on the contact pads and a molding compound layer is formed on the redistribution layer, reinforcing the solder balls. A second fan-out redistribution layer is formed on a back side of the wafer, with electrical traces interconnecting back ends of the through-wafer vias and contact pads positioned on a back face of the second redistribution layer. Flip-chips and/or surface-mounted devices are coupled to the contact pads of the second redistribution layer and encapsulated in an underfill layer formed on the back face of the second redistribution layer.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicants: STMicroelectronics Pte Ltd., STMicroelectronics (Grenoble 2) SAS
    Inventors: Anandan Ramasamy, Yonggang Jin, Yun Liu, Eric Saugier, Romain Coffy, How Yuan Hwang
  • Publication number: 20140057396
    Abstract: A method of manufacturing a component is disclosed. An embodiment of the method comprises dicing a carrier in a plurality of components, the carrier being disposed on a support carrier, after dicing, placing a connection layer on the carrier and removing the components from the support carrier.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Behrens, Joachim Mahler, Ivan Nikitin
  • Patent number: 8659127
    Abstract: A semiconductor device includes a wiring substrate, and a semiconductor chip, wherein the wiring substrate includes a glass plate having an opening portion penetrating through a first surface of the glass plate to a second surface of the glass plate, a resin portion penetrating through the first surface to the second surface, and a through wiring penetrating through the resin portion from the first surface to the second surface to electrically connect a first wiring layer formed on a side of the first surface with a third wiring layer formed on a side of the second surface, wherein the semiconductor chip is accommodated inside the opening portion.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Naoyuki Koizumi, Akihiko Tateiwa
  • Patent number: 8659162
    Abstract: A semiconductor device includes a substrate and a via extending through the substrate. A first insulating layer is disposed on sidewalls of the via. An electrically conductive material is disposed in the via over the first insulating layer to form a TSV. A first interconnect structure is disposed over a first side of the substrate. A semiconductor die or a component is mounted to the first interconnect structure. An encapsulant is disposed over the first interconnect structure and semiconductor die or component. A second interconnect structure is disposed over the second side of the substrate. The second interconnect structure is electrically connected to the TSV. The second interconnect structure includes a second insulating layer disposed over the second surface of the substrate and TSV, and a first conductive layer disposed over the TSV and in contact with the TSV through the second insulating layer.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 25, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Nathapong Suthiwongsunthorn, Pandi C. Marimuthu, Jae Hun Ku, Glenn Omandam, Hin Hwa Goh, Kock Liang Heng, Jose A. Caparas
  • Patent number: 8658468
    Abstract: A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 25, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Gottfried Beer, Irmgard Escher-Poeppel
  • Patent number: 8659113
    Abstract: An embedded semiconductor die package is made by mounting a frame carrier to a temporary carrier with an adhesive. The frame carrier includes die mounting sites each including a leadframe interconnect structure around a cavity. A semiconductor die is disposed in each cavity. An encapsulant is deposited in the cavity over the die. A package interconnect structure is formed over the leadframe interconnect structure and encapsulant. The package interconnect structure and leadframe interconnect structure are electrically connected to the die. The frame carrier is singulated into individual embedded die packages. The semiconductor die can be vertically stacked or placed side-by-side within the cavity. The embedded die packages can be stacked and electrically interconnected through the leadframe interconnect structure. A semiconductor device can be mounted to the embedded die package and electrically connected to the die through the leadframe interconnect structure.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 25, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Il Kwon Shim, Seng Guan Chow, Heap Hoe Kuan
  • Publication number: 20140048934
    Abstract: A semiconductor device assembly includes a substrate having an area of the surface treated to form a surface roughness. A die is mounted on the substrate by a plurality of coupling members. An underfill substantially fills a gap disposed between the substrate and the die, wherein a fillet width of the underfill is substantially limited to the area of surface roughness.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Tse Chen, Jung Wei Cheng, Chun-Cheng Lin, Yu-Peng Tsai, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20140048958
    Abstract: A method of making contact pad sidewall spacer and pad sidewall spacers are disclosed. An embodiment includes forming a plurality of contact pads on a substrate, each contact pad having sidewalls, forming a first photoresist over the substrate, and removing the first photoresist from the substrate thereby forming sidewall spacers along the sidewalls of the plurality of the contact pads.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Johann Gatterbauer
  • Publication number: 20140049923
    Abstract: A method of preparing a surface for deposition of a thin film thereon, wherein the surface including a plurality of protrusions extending therefrom and having shadowed regions, includes locally treating at least one of the protrusions.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: UNIVERSAL DISPLAY CORPORATION
    Inventors: Ruiqing Ma, Chuanjun Xia, Prashant Mandlik
  • Patent number: 8653673
    Abstract: A package and method for packaging a semiconductor device formed in a surface portion of a semiconductor wafer. The package includes: a dielectric layer disposed on the surface portion of the semiconductor wafer having a device exposing opening to expose one of the devices and an electrical contacts pad opening to expose an electrical contact pad; and a porous material in the device exposing opening over said one of the devices.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 18, 2014
    Assignee: Raytheon Company
    Inventors: Robert B. Hallock, William J. Davis, Yiwen Zhang, Ward G. Fillmore, Susan C. Trulli, Jason G. Milne
  • Patent number: 8652880
    Abstract: To provide a technique that can improve the data retention characteristic of an MRAM device by improving the resistance against an external magnetic field in a semiconductor device including the MRAM device. A first magnetic shield material is disposed over a die pad via a first die attach film. Then, a semiconductor chip is mounted over the first magnetic shield material via a second die attach film. Furthermore, a second magnetic shield material is disposed over the semiconductor chip via a third die attach film. That is, the semiconductor chip is disposed so as to be sandwiched by the first magnetic shield material and the second magnetic shield material. At this time, while the planar area of the second magnetic shield material is smaller than that of the first magnetic shield material, the thickness of the second magnetic shield material is thicker than that of the first magnetic shield material.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: February 18, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Koji Bando, Kazuyuki Misumi, Tatsuhiko Akiyama, Naoki Izumi, Akira Yamazaki
  • Patent number: 8653674
    Abstract: A redistribution pattern is formed on active surfaces of electronic components while still in wafer form. The redistribution pattern routes bond pads of the electronic components to redistribution pattern terminals on the active surfaces of the electronic components. The bond pads are routed to the redistribution pattern terminals while still in wafer form, which is a low cost and high throughput process, i.e., very efficient process.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: February 18, 2014
    Inventors: Robert Francis Darveaux, Brett Arnold Dunlap, Ronald Patrick Huemoeller
  • Patent number: 8653661
    Abstract: A package structure having an MEMS element is provided, which includes: a protection layer having openings formed therein; conductors formed in the openings, respectively; conductive pads formed on the protection layer and the conductors; a MEMS chip disposed on the conductive pads; and an encapsulant formed on the protection layer for encapsulating the MEMS chip. By disposing the MEMS chip directly on the protection layer to dispense with the need for a carrier, such as a wafer or a circuit board that would undesirably add to the thickness, the present invention reduces the overall thickness of the package to thereby achieve miniaturization.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Yueh Chan, Chien-Ping Huang, Chun-Chi Ke, Shih-Kuang Chiu
  • Patent number: 8648470
    Abstract: A semiconductor device has a first semiconductor die including TSVs mounted to a carrier with a thermally releasable layer. A first encapsulant having a first coefficient of thermal expansion CTE is deposited over the first semiconductor die. The first encapsulant includes an elevated portion in a periphery of the first encapsulant that reduces warpage. A surface of the TSVs is exposed. A second semiconductor die is mounted to the surface of the TSVs and forms a gap between the first and second semiconductor die. A second encapsulant having a second CTE is deposited over the first and second semiconductor die and within the gap. The first CTE is greater than the second CTE. In one embodiment, the first and second encapsulants are formed in a chase mold. An interconnect structure is formed over the first and second semiconductor die.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jose Alvin Caparas, Kang Chen, Hin Hwa Goh
  • Patent number: 8648456
    Abstract: A embedded integrated circuit package is provided, the embedded integrated circuit package including: at least one chip arranged over a chip carrier, the at least one chip including a plurality of chip contact pads; encapsulation material formed over the chip carrier and at least partially surrounding the at least one chip; a plurality of electrical interconnects formed through the encapsulation material, wherein each electrical interconnect is electrically connected to a chip contact pad; and a structure formed between the electrical interconnects of the embedded integrated circuit package, wherein the structure increases the creepage resistance between the electrical interconnects.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Khalil Hosseini, Georg Meyer-Berg
  • Publication number: 20140035154
    Abstract: A chip package is provided, the chip package including: a chip including at least one contact pad formed on a chip front side; an encapsulation material at least partially surrounding the chip and covering the at least one contact pad; and at least one electrical interconnect formed through the encapsulation material, wherein the at least one electrical interconnect is configured to electrically redirect the at least one contact pad from a chip package first side at the chip front side to at least one solder structure formed over a chip package second side at a chip back side.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Applicant: Infineon Technologies AG
    Inventors: Ottmar Geitner, Walter Hartner, Maciej Wojnowski, Ulrich Wachter, Michael Bauer, Andreas Stueckjuergen
  • Publication number: 20140035156
    Abstract: A method of fabricating a semiconductor package is provided, including: disposing a semiconductor element on a carrier; forming an encapsulant on the carrier to encapsulant the semiconductor element; forming at least one through hole penetrating the encapsulant; forming a hollow conductive through hole in the through hole and, at the same time, forming a circuit layer on an active surface of the semiconductor element and the encapsulant; forming an insulating layer on the circuit layer; and removing the carrier. By forming the conductive through hole and the circuit layer simultaneously, the invention eliminates the need to form a dielectric layer before forming the circuit layer and dispenses with the conventional chemical mechanical polishing (CMP) process, thus greatly improving the fabrication efficiency.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 6, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Hsi-Chang Hsu, Hsin-Hung Chou, Hung-Wen Liu, Hsin-Yi Liao, Chiang-Cheng Chang
  • Patent number: 8642394
    Abstract: An electronic device and method of manufacturing. One embodiment includes attaching a first semiconductor chip to a first metallic clip. The first semiconductor chip is placed over a leadframe after the attachment of the first semiconductor chip to the first metallic clip.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Abdul Rahman Mohamed, Stanley Job Doraisamy, Tien Lai Tan, Ralf Otremba