Right-up Bonding (epo) Patents (Class 257/E21.512)
  • Patent number: 9484223
    Abstract: A coreless packaging substrate includes: a circuit buildup structure having at least a dielectric layer, a wiring layer and a plurality of conductive elements, a plurality of electrical pads embedded in the dielectric layer of the circuit buildup structure, a plurality of metal bumps formed on the wiring layer of the circuit buildup structure, and a dielectric passivation layer formed on the surface of the circuit buildup structure and the metal bumps with the metal bumps exposed from the dielectric passivation layer. The metal bumps each have a metal column portion and a wing portion integrally connected to the metal column portion, such that the bonding force between the metal bumps and a semiconductor chip can be enhanced by the entire top surface of the wing portions of the metal bumps being completely exposed.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: November 1, 2016
    Assignee: UNIMICRON TECHNOLOGY CORP.
    Inventors: Tzyy-Jang Tseng, Chung-W. Ho
  • Patent number: 8828805
    Abstract: The formation of a void is suppressed in the assembly of a semiconductor device. An MCU chip and an AFE chip are mounted over a die pad formed of a quadrangle having a pair of first sides and a pair of second sides. After wire bonding is carried out on the MCU chip and the AFE chip, resin is supplied from the side of one second side of the two second sides to the side of the other second side. The resin is thereby passed through the opening between a first pad group and a second pad group over the MCU chip to fill the area between the chips and thus the formation of a void is suppressed in the area between the chips.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Masato Numazaki
  • Patent number: 8778737
    Abstract: Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, James S. Dunn, Dale W. Martin, Charles F. Musante, BethAnn Rainey, Leathen Shi, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 8772134
    Abstract: A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: July 8, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventors: Vincent Jarry, Patrick Hougron, Dominique Touzet, José Mendez
  • Patent number: 8558396
    Abstract: A semiconductor device is provided and includes a semiconductor die, and a plurality of bond pads having exposed surfaces arranged in an alternating interleaved pattern on the semiconductor die. Each of the surfaces of the bond pads have a first bond placement area that overlaps with a second bond placement area, with the first bond placement area having a major axis that is orthogonal to a major axis of the second bond placement area. A connecting bond is located at an intersection of the major axes of the first bond placement area and the second bond placement area on one or more of the bond pads.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Nikhil Vishwanath Kelkar, Sagar Pushpala, Seshasayee sS. Ankireddi
  • Patent number: 8399992
    Abstract: Provided are a semiconductor package and a method for fabricating the same. The semiconductor package includes a lower package comprising a lower substrate, a lower semiconductor chip mounted on the lower substrate and comprising a redistribution, and a molding layer molding the lower semiconductor chip, an upper package comprising an upper substrate and an upper semiconductor chip mounted on the upper substrate, with the upper package being stacked on the lower package. The semiconductor package further includes an electrical interconnector extending from the upper substrate into the molding layer and connected to the redistribution to electrically connect the upper and lower packages to each other, and a dummy interconnector extending from the upper substrate into the molding layer to physically couple the upper and lower packages to each other.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Kyu Park, Tae-Sung Park, Kyung-Man Kim, Hye-Jin Kim
  • Patent number: 8383461
    Abstract: A method for manufacturing a semiconductor package includes the steps of forming first circuit patterns on an upper surface of a carrier substrate. Bumps are formed in recesses defined on the upper surface of the carrier substrate. An insulation layer is formed on the upper surface of the carrier substrate to cover the first circuit patterns. Second circuit patterns are formed on an upper surface of the insulation layer so as to be electrically connected with the first circuit patterns. The carrier substrate is then separated from the insulation layer.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 26, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Yong Lee, Seung Kweon Ha
  • Patent number: 8354298
    Abstract: A semiconductor device of the present invention comprises a substrate and a first semiconductor element. The substrate comprises an inner layer conductor and a cavity comprising the bottom surface on which a part of the inner layer conductor is exposed. The first semiconductor element contacts, in the cavity, the inner layer conductor directly or via a good heat conductor material.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 15, 2013
    Assignee: NEC Corporation
    Inventor: Shinji Tanaka
  • Patent number: 8263439
    Abstract: A semiconductor device has a carrier for supporting the semiconductor device. A first semiconductor die is mounted over the carrier. A first dummy die having a first through-silicon via (TSV) is mounted over the carrier. The first semiconductor die and the first dummy die are encapsulated using a wafer molding material. The carrier is removed. A first redistribution layer (RDL) is formed over a first surface of the first semiconductor die and a first surface of the first dummy die to electrically connect the first TSV and a contact pad of the first semiconductor die. An insulation layer is formed over the first RDL. A second RDL is formed over a second surface of the first dummy die opposite the first surface of the first dummy die and electrically connected to the first TSV. A semiconductor package is connected to the second RDL.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 11, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Pandi Chelvam Marimuthu, Nathapong Suthiwongsunthorn, Il Kwon Shim, Kock Liang Heng
  • Patent number: 8242543
    Abstract: A semiconductor manufacturing process for wafer-to-wafer stacking of a reconstituted wafer with a second wafer creates a stacked (3D) IC. The reconstituted wafer includes dies, die interconnects and mold compound. When stacked, the die interconnects of the reconstituted wafer correspond to die interconnects on the second wafer. Wafer-to-wafer stacking improves throughput of the manufacturing process. The reconstituted wafer may include dies of different sizes than those in the second wafer. Also, the dies of the reconstituted wafer may be singulated from a wafer having a different size than the second wafer. Thus, this wafer-to-wafer manufacturing process may combine dies and/or wafers of dissimilar sizes.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 14, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Arvind Chandrasekaran, Brian M. Henderson
  • Patent number: 8138594
    Abstract: A semiconductor device of the present invention comprises a substrate and a first semiconductor element. The substrate comprises an inner layer conductor and a cavity comprising the bottom surface on which a part of the inner layer conductor is exposed. The first semiconductor element contacts, in the cavity, the inner layer conductor directly or via a good heat conductor material.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventor: Shinji Tanaka
  • Patent number: 8093104
    Abstract: A multi-chip stacking method to reduce voids between stacked chips is revealed. A first chip is disposed on a substrate, and a plurality of first bonding wires are formed by wire bonding to electrically connect the first chip and the substrate. A second chip is disposed on an active surface of the first chip where a dielectric layer and a FOW adhesive (film over wire) adhesive are attached onto a back surface of the second chip. The FOW adhesive partially encapsulates the first bonding wires and adheres to the active surface of the first chip. Then, the substrate is placed in a pressure oven to provide a positive pressure greater than one atm during thermally curing the FOW adhesive with exerted pressures. Accordingly, voids can be reduced inside the FOW adhesive during the multi-chip stacked processes where issues of poor adhesion and popcorn between chips can be avoided.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: January 10, 2012
    Assignee: Walton Advanced Engineering, Inc.
    Inventors: Kuo-Yuan Lee, Yung-Hsiang Chen, Wen-Chun Chiu
  • Publication number: 20110304058
    Abstract: A semiconductor device has a semiconductor die having a plurality of bumps formed over a surface of the semiconductor die. The bumps can include a fusible portion and non-fusible portion. Conductive traces are formed over the substrate with interconnect sites having an exposed sidewall and sized according to a design rule defined by SRO+2*SRR?2X, where SRO is an opening over the interconnect site, SRR is a registration for the manufacturing process, and X is a function of a thickness of the exposed sidewall of the contact pad. The bumps are misaligned with the interconnect sites by a maximum distance of X which ranges from 5 to 20 microns. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 15, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 8048721
    Abstract: A method for filling multi-layer chip-stacked gaps is revealed, primarily comprising the steps as below. Firstly, a chip-stacked assembly is provided, comprising a substrate and a plurality of chips vertically stacked on the substrate where at least a first underfilling gap is formed between each two adjacent ones of the stacked chips with a height difference from the substrate. Then, the chip-stacked assembly is flipped and dipped into an underfilling material where the underfilling material is disposed in a storage tank in a flowing state to completely fill the first underfilling gap. Then, the chip-stacked assembly is taken out. Finally, the chip-stacked assembly is heated to cure the underfilling material filled in the first underfilling gap. Accordingly, multi-layer chip-stacked gaps with different heights can be simultaneously filled at one single step. The conventional underfilling difficulty of multi-layer chip-stacked gaps can be solved leading to higher productivity.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 1, 2011
    Assignee: Powertech Technology Inc.
    Inventors: Hung-Hsin Hsu, Wei-Chih Chien
  • Patent number: 8003438
    Abstract: A circuit module includes an electronic component, a ceramic multilayer substrate and a resin wiring substrate. The ceramic multilayer substrate is provided with a wiring layer disposed on top thereof and a cavity in which the electronic component is mounted, wherein a space between the electronic component and the cavity is filled with a thermosetting resin and a surface of the filled cavity is planarized. The resin wiring substrate has an insulating adhesive layer disposed at one side thereof and provided with at least one opening filled with a conductive resin. The ceramic multilayer substrate and the resin wiring substrate are bonded by the insulating adhesive layer, and the wiring layer on the ceramic multilayer substrate is electrically connected with the conductive resin.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Panasonic Corporation
    Inventors: Kenji Morimoto, Shigetoshi Segawa
  • Patent number: 8004091
    Abstract: A semiconductor package includes one or more semiconductor chips to form a semiconductor package. The semiconductor package may include a first semiconductor chip package having a first substrate including a first surface having a center portion on which a first semiconductor chip is mounted, at least one first boundary portion on which a plurality of conductive connection pad groups are formed, and/or a molding member including a body that covers the first semiconductor chip and at least one extension that extends from the body. The extension extends while avoiding the conductive connection pad group. The semiconductor package may further include a second semiconductor chip package stacked on the first semiconductor chip package and including a second substrate on which at least one second semiconductor chip that is electrically connected to the conductive connection pad group may be mounted.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-yeol Yang, Sang-wook Park, Seung-jae Lee, Min-young Son
  • Patent number: 7993972
    Abstract: A method of manufacturing a semiconductor device includes providing a wafer for supporting the semiconductor device. An insulation layer is disposed over a top surface of the wafer. The method includes forming a first interconnect structure over the top surface of the wafer with temperatures in excess of 200° C., forming a metal pillar over the wafer in electrical contact with the first interconnect structure, connecting a semiconductor component to the first interconnect structure, and forming encapsulant over the semiconductor component. The encapsulant is etched to expose a portion of the metal pillar. A buffer layer is optionally formed over the encapsulant. The method includes forming a second interconnect structure over the encapsulant in electrical contact with the metal pillar with temperatures below 200° C., and removing a portion of a backside of the wafer opposite the top surface of the wafer.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: August 9, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao
  • Publication number: 20110049694
    Abstract: A semiconductor manufacturing process for wafer-to-wafer stacking of a reconstituted wafer with a second wafer creates a stacked (3D) IC. The reconstituted wafer includes dies, die interconnects and mold compound. When stacked, the die interconnects of the reconstituted wafer correspond to die interconnects on the second wafer. Wafer-to-wafer stacking improves throughput of the manufacturing process. The reconstituted wafer may include dies of different sizes than those in the second wafer. Also, the dies of the reconstituted wafer may be singulated from a wafer having a different size than the second wafer. Thus, this wafer-to-wafer manufacturing process may combine dies and/or wafers of dissimilar sizes.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Arvind Chandrasekaran, Brian M. Henderson
  • Patent number: 7871860
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a chip and a substrate. The method also includes bonding the chip to the substrate. The method also includes, after the bonding the chip, dispensing a sealing material between the chip and the substrate. In accordance with the method, the chip and the substrate are maintained within a temperature range from the bonding the chip to the dispensing the sealing material, and wherein a lower limit of the temperature range is approximately twice a room temperature.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: January 18, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Ping Pu, Tsung-Shu Lin, Chen-Shien Chen
  • Patent number: 7863759
    Abstract: A package structure and method for preventing gold bonding wires from collapsing are disclosed. The structure is especially useful for those chips whose two n×1 arrays of bonding pads are on the chip center to be packaged on a BGA substrate. According to the first preferred embodiment, two dies having a redistribution layer formed thereon are introduced outer the bonding pad array on the chip so that the gold bonding wires can be divided into two sections each to connect the bonding pads with the redistribution layer and the redistribution layer with the gold fingers on the BGA substrate. According to the second embodiment, the gold bonding wires are fixed by the epoxy strips on the chips after bonding the bonding pads to the gold fingers but before pouring liquid encapsulated epoxy into a mold.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 4, 2011
    Assignee: Integrated Circuit Solution Inc.
    Inventor: Ming-Feng Wu
  • Patent number: 7847382
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an encapsulation surrounding an integrated circuit having an inactive side and an active side exposed; forming a hole through the encapsulation with the hole not exposing the integrated circuit; forming a through conductor in the hole; and mounting a substrate with the integrated circuit surrounded by the encapsulation with the active side facing the substrate.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 7, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Reza Argenty Pagaila, Byung Tai Do
  • Publication number: 20100258932
    Abstract: A method of forming a semiconductor device may include, but is not limited to, the following processes. A supporting substrate is prepared. The supporting substrate has a chip mounting area, and a plurality of penetrating slits around the chip mounting area. At least a stack of semiconductor chips is formed over the chip mounting area. A first sealing member is formed, which seals the stack of semiconductor chips without the first sealing member filling the plurality of penetrating slits.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 14, 2010
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Masanori Yoshida, Katsumi Sugawara
  • Patent number: 7759221
    Abstract: Methods for packaging microelectronic devices and microelectronic devices formed using such methods are disclosed herein. One aspect of the invention is directed toward a method for packaging a microelectronic device that includes coupling an active side of a microelectronic die to a surface of a support member. The microelectronic die can have a backside opposite the active side, a peripheral side extending at least part way between the active side and the backside, and at least one through-wafer interconnect. The method can further include applying an encapsulant to cover a portion of the surface of the support member so that a portion of the encapsulant is laterally adjacent to the peripheral side, removing material from a backside of the microelectronic die to expose a portion of at least one through-wafer interconnect, and applying a redistribution structure to the backside of the microelectronic die.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Choon Kuan Lee, Chin Hui Chong, David J. Corisis
  • Patent number: 7691672
    Abstract: The present invention provides a substrate treating method including the steps of joining a one-side surface of a substrate to be treated to a support substrate, treating the substrate to be treated in the condition where the substrate to be treated is supported by the support substrate, and removing the support substrate from the substrate to be treated. The step of joining the substrate to be treated to the support substrate includes melting a joint bump formed on the substrate to be treated so as to join the substrate to be treated to the support substrate, and the step of removing the support substrate from the substrate to be treated includes polishing the support substrate so as to remove the support substrate.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: April 6, 2010
    Assignee: Sony Corporation
    Inventors: Masaki Hatano, Hiroshi Asami
  • Publication number: 20100072601
    Abstract: A semiconductor device of the present invention comprises a substrate and a first semiconductor element. The substrate comprises an inner layer conductor and a cavity comprising the bottom surface on which a part of the inner layer conductor is exposed. The first semiconductor element contacts, in the cavity, the inner layer conductor directly or via a good heat conductor material.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 25, 2010
    Inventor: Shinji Tanaka
  • Publication number: 20090325343
    Abstract: A method of forming a bonded semiconductor structure circuit includes providing a support substrate which carries a first semiconductor circuit and providing a first interconnect region carried by the support substrate. The method includes providing a bonded semiconductor substrate which is bonded to the first interconnect region through a bonding interface and forming a second semiconductor circuit which is carried by the first bonded semiconductor substrate.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Inventor: Sang-Yun Lee
  • Patent number: 7601559
    Abstract: A semiconductor device with a semiconductor die thereon and a contactor board are electrically coupled when the electrically conductive elements on the semiconductor device and the contactor board are in physical contact. A continuous electrically conductive path is formed with electrically conductive elements involving both the semiconductor device and the contactor board. A complete electrical circuit involving both the semiconductor device and the contactor board is formed only when the relative orientation of the semiconductor device and the contactor board have predetermined relationship and the electrically conductive elements of the two boards are in good physical contact.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Carlos E. Cisneros, James L. Barnett, Charles R. Engle, Maria D. Evans
  • Patent number: 7595545
    Abstract: An anodic bonding apparatus includes a first electrode and a second electrode. The first electrode has a first surface, and the second electrode has a second surface facing the first surface. The first surface includes a first central area; a first substrate placing area for placing a laminated substrate; and a first peripheral area surrounding the first substrate placing area. The second surface includes a second central area corresponding to the first central area; a second substrate placing area surrounding the second central area; and a second peripheral area corresponding to the first peripheral area and surrounding the second substrate placing area. Further, the second electrode includes a curved portion curved toward the first electrode, so that a distance between the first central area and the second central area becomes smaller than a distance between the first peripheral area and the second peripheral area.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 29, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Shinichi Sueyoshi
  • Publication number: 20090224402
    Abstract: A semiconductor wafer is made by forming a first conductive layer over a sacrificial substrate, mounting a semiconductor die to the sacrificial substrate, depositing an insulating layer over the semiconductor die and first conductive layer, exposing the first conductive layer and contact pad on the semiconductor die, forming a second conductive layer over the insulating layer between the first conductive layer and contact pad, forming solder bumps on the second conductive layer, depositing an encapsulant over the semiconductor die, first conductive layer, and interconnect structure, and removing the sacrificial substrate after forming the encapsulant to expose the conductive layer and semiconductor die. A portion of the encapsulant is removed to expose a portion of the solder bumps. The solder bumps are sized so that each extends the same outside the encapsulant. The semiconductor die are stacked by electrically connecting the solder bumps.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 10, 2009
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Patent number: 7582965
    Abstract: An electronic device (1) has a base plate (2) and an electronics housing (3) connected thereto, with a bonding contact terminal (5). The latter is supported relative to the base plate (2) via a supporting body (6) in such a manner that the supporting body (6) exerts a pre-stressing force onto the bonding contact terminal (5). Due to this support of the bonding contact terminal (5), its position is well defined during the bonding procedure. A secure bond is the result.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: September 1, 2009
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Herbert Handl, Alexander Wenk, Matthias Wieczorek
  • Publication number: 20090194873
    Abstract: An integrated circuit device comprises a first semiconductor chip on a first substrate and a second semiconductor chip on a second substrate. A side surface of the first semiconductor chip is facing a side surface of the second semiconductor chip. At least one electric cable is provided to be connecting the first substrate to the second substrate.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 6, 2009
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Chee Chian Lim
  • Patent number: 7563650
    Abstract: A method for manufacturing a circuit board (7); in which, an electronic component is injected into a resin substrate at a low temperature, and then the resin substrate is improved in its heat withstanding property. The manufacturing method comprises the steps of softening by heat a resin substrate which contains a thermoplastic component and a chemical cross-link component and then injecting an electronic component (1) into the resin substrate; curing the resin substrate by bridging the chemical cross-link component of the resin substrate, making the resin substrate into a heat-withstanding substrate (70); and forming an electric wiring pattern (6) on the heat-withstanding substrate (70) for connection with a protruding electrode (2) of the electronic component (1). The circuit board (7) maintains the high dimensional accuracy throughout the manufacturing process. Thus, the present invention offers a superior circuit board, which is thin and compact in size and has a small thermal deformation rate.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: July 21, 2009
    Assignee: Panasonic Corporation
    Inventor: Kazuhiro Nishikawa
  • Publication number: 20090140392
    Abstract: A semiconductor package and a method for manufacturing the same is provided for minimizing or preventing warpage and twisting of semiconductor chip bodies as a result of thinning them during gringing. The semiconductor package includes a semiconductor chip body and a substrate. The semiconductor chip body has a first surface, a second surface facing away from the first surface, through-electrodes which pass through the semiconductor chip body and project from the second surface, and a warpage prevention part which projects in the shape of a fence along an edge of the second surface. The substrate has a substrate body and connection pads which are formed on an upper surface of the substrate body, facing the second surface, and which are connected with the projecting through-electrodes.
    Type: Application
    Filed: March 7, 2008
    Publication date: June 4, 2009
    Inventor: Chang Jun PARK
  • Patent number: 7511365
    Abstract: A thermal enhanced low profile package structure and a method for fabricating the same are provided. The package structure typically includes a metallization layer with an electronic component thereon which is between two provided dielectric layers. The metallization layer as well as the electronic component is embedded and packaged while the substrates are laminated via a lamination process. The fabricated package structure performs not only a superior electric performance, but also an excellent enhancement in thermal dissipation.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: March 31, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Enboa Wu, Shou-Lung Chen
  • Patent number: 7495276
    Abstract: A radio frequency arrangement is disclosed, having a first semiconductor body with an integrated circuit formed therein and also with first and second terminal locations. A second semiconductor body with a charge store integrated therein and with a first and second contact locations is arranged with its contact locations mutually facing the terminal locations of the first semiconductor body. The first terminal and the first contact location and also the second terminal and the second contact location are coupled to one another in order thus to form an integrated circuit and also a charge store for supplying the integrated circuit. Realizing the integrated circuit and the charge store separately enables a simple and cost-effective manufacturing procedure for the individual components.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: February 24, 2009
    Assignee: Infineon Technologies AG
    Inventor: Josef Fenk
  • Publication number: 20090042336
    Abstract: The fabrication method of an organic substrate having embedded active-chips such as semiconductor chips is disclosed. The present invention previously applies the conductive adhesives in a wafer state, makes them in a B-stage state, obtains individual semiconductor chips through dicing, and positions the individual semiconductor chips previously applied with the conductive adhesives in the cavities, making it possible to simultaneously obtain an electrical connection and a physical adhesion of the substrate and the semiconductor chips by means of a method of applying heat and pressure and stack the copper clad laminates on the upper portion of the substrate to which the semiconductor chips are connected. The present invention has advantages in processes such as a lead-free process, an environmental-friendly fluxless process, a low temperature process, ultra-fine pitch applications, etc., by mounting the active-chips through the flip chip interconnection using the non-solder bumps and the conductive adhesives.
    Type: Application
    Filed: January 30, 2008
    Publication date: February 12, 2009
    Inventors: Kyung-Wook Paik, Ho-Young Son
  • Publication number: 20090014891
    Abstract: This invention provides a substrate having at least one bottom electrode formed therein. A plurality of dice each having at least one opening formed therein are vertically stacked together one by one by a polymer insulating layer acting as an adhering layer between them, along with the openings thereof aligned to each other to form a through hole passing through said dice. The stacked dice are joined to a bottom of the substrate with the polymer insulating layer acting as an adhering layer, making the bottom electrode of the substrate contact the through hole. An electroplating process is performed with the bottom electrode serving as an electroplating electrode to form a conductive contact passing through the dice.
    Type: Application
    Filed: June 9, 2008
    Publication date: January 15, 2009
    Inventors: Hsiang-Hung Chang, Shu-Ming Chang
  • Patent number: 7456502
    Abstract: The invention provides a wiring board (2,15) to which a semiconductor chip (3) is to be bonded while directing a surface of the semiconductor chip toward the wiring board. The wiring board includes a connection electrode (14) that is formed on a bonding surface (2a, 15a) to which the semiconductor chip is to be bonded and that is used to make a connection with the semiconductor chip, an insulating film (6) that is formed on the bonding surface and that has an opening (6a) to expose the connection electrode, and a low-melting-point metallic part (16) that is provided on the connection electrode in the opening and that is made of a low-melting-point metallic material whose solidus temperature is lower than that of the connection electrode.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: November 25, 2008
    Assignee: Rohm Co., Ltd.
    Inventors: Kazumasa Tanida, Osamu Miyata
  • Patent number: 7456091
    Abstract: A semiconductor device of the present invention includes a chip which has a pad; a bump electrode formed on the pad; and a wire whose stitch bonding is made on the bump electrode. The wire satisfies a condition: (modulus-of-elasticity/breaking strength per unit area) ?400.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: November 25, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Hidetoshi Kuraya, Hideyuki Arakawa, Fumiaki Aga
  • Publication number: 20080261339
    Abstract: A packaging method to manufacture a package for a high-power light emitting diode (LED) has steps of (a) obtaining a metal board, (b) treating the metal board, (c) molding a cell matrix with multiple reflective bases, (d) attaching LED chips onto the dissipating boards and bonding conductive wires in each corresponding reflective base of the cell matrix, (e) encapsulating the LED chips and conductive wires in the reflective base of the cell matrix to form a after-packaging board and (f) cutting off the after-packaging board to form multiple individual high-power LED packages. Most heat from the LED chips is conducted via the dissipating board thereby improving thermal conduction efficiency and allowing more powerful and numerous LED chips to operate per package so increasing applications of LEDs. Therefore, the present invention provides different pass ways for conducting heat and electricity to improve heat conduction of the LED.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 23, 2008
    Inventors: Chia-Yin KOUNG, Wen LIN
  • Publication number: 20080254574
    Abstract: By preparing a package substrate which has a plurality of lands of NSMD structure, and the output wiring and dummy wiring which were connected to each of the lands, and have been arranged mutually in the location of 180° symmetry, and printing solder by a printing method to the lands after the package assembly, the variation in the height of the solder coat between lands can be reduced, and improvement in the mountability of LGA (semiconductor device) is achieved.
    Type: Application
    Filed: June 17, 2008
    Publication date: October 16, 2008
    Inventors: Takashi KIKUCHI, Koichi Kanemoto, Michiaki Sugiyama, Hiroshi Kawakukbo
  • Publication number: 20080237889
    Abstract: Provided is a semiconductor package, which may include a plurality of semiconductor chips to form a multi-stack semiconductor package (MSP), a method of fabricating the semiconductor package and the MSP, and a semiconductor package mold for fabricating the semiconductor package. The semiconductor package may include a first semiconductor chip package having a first substrate including a first surface having a center portion on which a first semiconductor chip is mounted, and at least one first boundary portion on which a plurality of conductive connection pad groups are formed, and a molding member including a body that covers the first semiconductor chip, and at least one extension that extends from the body towards a corner portion of the first surface of the first substrate, wherein the extension extends while avoiding the conductive connection pad group.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 2, 2008
    Inventors: Seung-yeol Yang, Sang-wook Park, Seung-jae Lee, Min-young Son
  • Publication number: 20080206926
    Abstract: A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
    Type: Application
    Filed: April 22, 2008
    Publication date: August 28, 2008
    Applicant: IBIDEN CO., LTD.
    Inventors: Hajime SAKAMOTO, Dongdong WANG
  • Publication number: 20080203511
    Abstract: The present invention provides a sensor-type semiconductor package and a method for fabricating the same. The method includes the steps of: providing a wafer having a plurality of sensor chips for mounting the wafer on a carrier board having an insulation layer, a plurality of conductive traces, and a substrate; forming a plurality of grooves among the solder pads on the active surfaces of the adjacent sensor chips, so as to expose the conductive traces and form a metal layer in the grooves, to electrically connect to the solder pads on the active surfaces of the adjacent sensor chips and the conductive traces; disposing a transparent medium on the wafer to cover the sensing areas of the sensor chips; removing the substrate, so as to expose the conductive traces and the insulation layer; and cutting the sensor chips along the borders to form a plurality of sensor-type semiconductor packages.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Cheng-Yi Chang, Chang-Yueh Chan
  • Publication number: 20080185720
    Abstract: A package structure and method for preventing gold bonding wires from collapsing are disclosed. The structure is especially useful for those chips whose two n×1 arrays of bonding pads are on the chip center to be packaged on a BGA substrate. According to the first preferred embodiment, two dies having a redistribution layer formed thereon are introduced outer the bonding pad array on the chip so that the gold bonding wires can be divided into two sections each to connect the bonding pads with the redistribution layer and the redistribution layer with the gold fingers on the BGA substrate. According to the second embodiment, the gold bonding wires are fixed by the epoxy strips on the chips after bonding the bonding pads to the gold fingers but before pouring liquid encapsulated epoxy into a mold.
    Type: Application
    Filed: January 9, 2008
    Publication date: August 7, 2008
    Inventor: Ming-Feng Wu
  • Publication number: 20080174005
    Abstract: An electronic device has a substrate that has first and second peripheral portions. The first peripheral portion provides a shearing position for separation. The electronic device has a plurality of wiring layers one of which forms a functional surface wiring on the substrate, an electronic element mounted on the substrate, and an encapsulation member formed over the substrate and the electronic element. The surface wiring is selectively disposed under the encapsulation member and in an area adjacent to the second peripheral portion.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 24, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Yoshihiro Kubota, Shirou Youda, Kazuto Tsuji
  • Patent number: 7352054
    Abstract: A semiconductor device includes a base plate, at least one first conductive layer carried by the base plate, and a semiconductor constructing body formed on or above the base plate, and having a semiconductor substrate and a plurality of external connecting electrodes formed on the semiconductor substrate. An insulating layer is formed on the base plate around the semiconductor constructing body. A plurality of second conductive layers are formed on the insulating layer and electrically connected to the external connecting electrodes of the semiconductor constructing body. A vertical conducting portion is formed on side surfaces of the insulating film and base plate, and electrically connects the first conductive layer and at least one of the second conductive layers.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: April 1, 2008
    Assignee: Casio Computer Co., Ltd.
    Inventor: Hiroyasu Jobetto
  • Publication number: 20080017973
    Abstract: There is disclosed a semiconductor device comprising at least one semiconductor element, one chip mounting base being provided at least one first interconnection on one major surface thereof and at least one second interconnection on the other major surface thereof, and the semiconductor element being electrically connected to at least the one first interconnection and mounted on the one major surface, a sealing member being provided on the one major surface of the chip mounting base and covering the semiconductor element and the first interconnection, at least one third interconnection being provided on a surface of the sealing member, and at least one fourth interconnection being provided in the sealing member and the chip mounting base, and electrically connected to the first interconnection, the second interconnection, and the third interconnection.
    Type: Application
    Filed: August 8, 2007
    Publication date: January 24, 2008
    Inventors: Takashi Imoto, Chiaki Takubo
  • Patent number: 7285856
    Abstract: To prevent the occurrence of stress in the junction portion between the semiconductor element and the semiconductor package mounting the semiconductor element, so that cracks will not occur even when there is mounted a semiconductor element having a small strength. A package for semiconductor devices is formed as a laminate (20) of many layers including a plurality of conducting layers and insulating resin layers that are alternately laminated one upon other and having, on one surface of the laminate, a portion for mounting a semiconductor element. The whole regions or some regions of the insulating resin layers (20d to 20f) of the laminate, including at least the portion for mounting the semiconductor element and the peripheries thereof, are constituted by a prepreg obtained by impregnating a woven fabric of a liquid crystal polymer with an insulating resin.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 23, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Kazuhiko Ooi, Tadashi Kodaira, Eisaku Watari, Jyunichi Nakamura, Shunichiro Matsumoto
  • Patent number: RE41369
    Abstract: A semiconductor device includes at least one semiconductor structure having a plurality of external connection portions on an upper surface, and an insulating member which is made of a resin containing reinforcing materials and arranged on a side of the semiconductor structure. An insulating film is formed on the upper surface of the semiconductor structure, except the external connection portions, and on an upper surface of the insulating member. A plurality of upper wirings each of which has a connection pad portion are located on an upper side of the insulating film and electrically connected to a corresponding one of the external connection portions of the semiconductor structure. The connection pad portion of at least one of the upper wirings is arranged above an upper surface of the insulating member.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: June 8, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Hiroyasu Jobetto