Comprising Combination Of Vertical And Lateral Transistors (epo) Patents (Class 257/E21.609)
  • Patent number: 8921194
    Abstract: Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: David L. Harame, Qizhi Liu
  • Patent number: 8912569
    Abstract: A hybrid transistor (58) has a substrate (42) with a first (e.g., P type) well region (46) and a second (e.g., N type) well region (44) with an NP or PN junction (43) therebetween. A MOS portion (70-3) of the hybrid transistor (58) has an (e.g., N type) source region (48) in the first well region (46) and a gate conductor (52) overlying and insulated from the well regions (46, 44) that extends laterally at least to the junction (43). A drain or anode (D/A) portion (71-3) in the second well region (44) collects current 56 from the source region (48), and includes a bipolar transistor (78) having an (e.g., N+) emitter region (64), a (e.g., P type) base region (59) and a (e.g., N type) collector region (62) laterally separated from the junction (43). Different LDMOS-like or IGBT-like properties are obtained depending on whether the current 56 is extracted from the hybrid transistor (58) via the bipolar transistor (78) base (59) or emitter (64) or both.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: December 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Vishal P. Trivedi
  • Publication number: 20130328170
    Abstract: A semiconductor element, a manufacturing method thereof and an operating method thereof are provided. The semiconductor element includes a substrate, a first well, a second well, a third well, a fourth well, a bottom layer, a first heavily doping region, a second heavily doping region, a third heavily doping region and a field plane. The first well, the bottom layer and the second well surround the third well for floating the third well and the substrate. The first, the second and the third heavily doping regions are disposed in the first, the second and the third wells respectively. The field plate is disposed above a junction between the first well and the fourth well.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chih-Ling Hung, Chien-Wen Chu, Hsin-Liang Chen, Wing-Chor Chan
  • Publication number: 20130119516
    Abstract: Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. Harame, Qizhi Liu
  • Patent number: 8435852
    Abstract: A heterojunction bipolar transistor is formed with an emitter electrode that comprises an emitter epitaxy underlying an emitter metal cap and that has horizontal dimensions that are substantially equal to the emitter metal cap.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 7, 2013
    Assignee: HRL Laboratories, LLC
    Inventor: Charles H. Fields, Jr.
  • Patent number: 7968416
    Abstract: An integrated circuit arrangement and fabrication method is provided. The integrated circuit arrangement contains an NPN transistor and a PNP transistor. The PNP transistor contains an emitter connection region and a cutout. The cutout delimits the width of the emitter connection region. The electrically conductive material of the connection region laterally overlaps the cutout.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thomas Böttner, Stefan Drexl, Thomas Huttner, Martin Seck
  • Patent number: 7569910
    Abstract: A semiconductor structure is fabricated with two different portions. The first portion forms a first transistor, while the second portion forms a second transistor. Notably, portions of the first transistor also a make up portions of the second transistor. That is, both the first transistor and the second transistor are made of portions of the same structure.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 4, 2009
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Mauchung (Frank) Chang, Peiming (Daniel) Chow, Liyang Zhang
  • Patent number: 7521327
    Abstract: A high fT and fmax bipolar transistor includes an emitter, a base, and a collector. The emitter has a lower portion and an upper portion that extends beyond the lower portion. The base includes an intrinsic base and an extrinsic base. The intrinsic base is located between the lower portion of the emitter and the collector. The extrinsic base extends from the lower portion of the emitter beyond the upper portion of the emitter and includes a continuous conductor that extends from underneath the upper portion of the emitter and out from underneath the upper portion of the emitter. The continuous conductor provides a low electrical resistance path from a base contact (not shown) to the intrinsic base. The transistor may include a second conductor that does not extend underneath the upper portion of the emitter, but which further reduces the electrical resistance through the extrinsic base.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Alvin Jose Joseph, Qizhi Liu
  • Patent number: 7446012
    Abstract: The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P? collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: November 4, 2008
    Assignee: BCD Semiconductor Manufacturing Limited
    Inventors: Chong Ren, Xian-Feng Liu, Bin Qiu
  • Patent number: 7238576
    Abstract: A semiconductor device comprises a drain layer of first conductivity type, drift layers of first and second conductivity types on the drain layer, an insulating film between the drift layers and contacting the drift layers, a first base layer of second conductivity type on a surface of the drift layer of first conductivity type, a source layer of first conductivity type selectively provided on a surface of the first base layer of second conductivity type, a gate insulating film on the first base layer of second conductivity type between the source layer and the drift layer, a gate electrode on the gate insulating film, a second base layer of second conductivity type on a surface of the drift layer, a first main electrode on the drain layer, and a second main electrode on the source layer, the first base layer and the second base layer.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: July 3, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamaguchi, Ichiro Omura, Wataru Saito, Takashi Shinohe, Hiromichi Ohashi
  • Patent number: 7119384
    Abstract: The invention relates to a field effect transistor in which the planar channel region on the upper surface of the elevation is extended in width by means of additional vertical channel regions on the lateral surfaces of the elevation. Said additional vertical channel regions connect directly to the planar channel region (vertical extended channel regions). Said field effect transistor has the advantage that a significant increase in the effective channel width for the current flow ION can be guaranteed relative to conventional transistor structures used up until the present, without having to accept a reduction in the achievable integration density. Said field effect transistor furthermore has a low reverse current IOFF. The above advantages are achieved without the thickness of the gate insulators up to the region of the charge transfer tunnels having to be reduced or a reduced stability.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: October 10, 2006
    Assignee: Infineon Technologies AG
    Inventors: Martin Popp, Frank Richter, Dietmar Temmler, Andreas Wich-Glasen