Bipolar Technology (epo) Patents (Class 257/E21.608)
  • Patent number: 11837460
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. The structure includes: an extrinsic base region composed of semiconductor material; an emitter region on a first side of the extrinsic base region; a collector region on a second side of the extrinsic base region; and an extrinsic base contact wrapping around the semiconductor material of the extrinsic base region.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: December 5, 2023
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Jagar Singh, Alexander M. Derrickson, Alexander Martin
  • Patent number: 9362947
    Abstract: A sorting decoder captures the rank-order of a set of input analogue signals in the digital domain using simple logic components such as self-timed first state elements, without requiring conventional analogue-to-digital signal converters. The analogue signals are each compared against a monotonic dynamic reference and the resulting comparisons are snapshot by a self-timed first state element for each input signal, or the last member of a sorted collection of input signals, at the time when it reaches the reference signal, so that a different snapshot representing the signal value ranking relative to the other signal values is produced for each input signal. The resulting rank-order estimation snapshots are binary signals that can then be further processed by a simple sorting logic circuit based on elementary logic components.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: June 7, 2016
    Assignee: KANDOU LABS, S.A.
    Inventors: Harm Cronie, Brian Holden
  • Patent number: 8956945
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A first isolation structure is formed in a substrate to define a boundary for a device region. A collector is formed in the device region, and a second isolation structure is formed in the device region. The second isolation structure defines a boundary for the collector. The second isolation structure is laterally positioned relative to the first isolation structure to define a section of the device region between the first and second isolation structures.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Qizhi Liu
  • Patent number: 8853043
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Patent number: 8823140
    Abstract: An embodiment of a semiconductor device includes a III-nitride base structure of a first conductivity type, and a III-nitride emitter structure of a second conductivity type having a first surface and a second surface. The second surface is substantially opposite the first surface. The first surface of the III-nitride emitter structure is coupled to a surface of the III-nitride base structure. The semiconductor also includes a first dielectric layer coupled to the second surface of the III-nitride emitter structure, and a spacer coupled to a sidewall of the III-nitride emitter structure and the surface of the III-nitride base structure. The semiconductor also includes a base contact structure with a III-nitride material coupled to the spacer, the surface of the III-nitride base structure, and the first dielectric layer, such that the first dielectric layer and the spacer are disposed between the base contact structure and the III-nitride emitter structure.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: September 2, 2014
    Assignee: Avogy, Inc.
    Inventors: Hui Nie, Andrew Edwards, Isik Kizilyalli, Dave Bour
  • Patent number: 8772091
    Abstract: Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 8, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Javier A Salcedo, David Hall Whitney
  • Patent number: 8742499
    Abstract: In a semiconductor chip in which LDMOSFET elements for power amplifier circuits used for a power amplifier module are formed, a source bump electrode is disposed on an LDMOSFET formation region in which a plurality of source regions, a plurality of drain regions and a plurality of gate electrodes for the LDMOSFET elements are formed. The source bump electrode is formed on a source pad mainly made of aluminum via a source conductor layer which is thicker than the source pad and mainly made of copper. No resin film is interposed between the source bump electrode and the source conductor layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 3, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shizuki Nakajima, Hiroyuki Nagai, Yuji Shirai, Hirokazu Nakajima, Chushiro Kusano, Yu Hasegawa, Chiko Yorita, Yasuo Osone
  • Patent number: 8716096
    Abstract: A self-aligned bipolar transistor and method of fabricating the same are disclosed. In an embodiment, a substrate and an intrinsic base are provided, followed by a first oxide layer, and an extrinsic base over the first oxide layer. A first opening is formed, exposing a portion of a surface of the extrinsic base. Sidewall spacers are formed in the first opening, and a self-aligned oxide mask is selectively formed on the exposed surface of the extrinsic base. The spacers are removed, and using the self-aligned oxide mask, the exposed extrinsic base and the first oxide layer are etched to expose the intrinsic base layer, forming a first and a second slot. A silicon layer stripe is selectively grown on the exposed intrinsic and/or extrinsic base layers in each of the first and second slots, substantially filling the respective slot.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, David L. Harame, Russell T. Herrin, Qizhi Liu
  • Patent number: 8703571
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a first fin above a substrate, forming a first emitter region in a first portion of the first fin, forming a first collector region in a second portion of the first fin, and forming a first base region in a third portion of the first fin. The third portion of the first fin is disposed underneath a first gate electrode. The method further includes forming a second fin adjacent to the first fin and above the substrate. The second fin is composed of a semiconductor material. The method also includes forming a first base contact over the second fin. The first base contact is coupled to the first base region through the second fin, the substrate, and the first fin.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Yao Ke, Tao-Wen Chung, Shine Chung, Fu-Lung Hsueh
  • Patent number: 8697532
    Abstract: A wafer comprising at least one emitter-up Heterojunction Bipolar Transistor (HBT) and at least one emitter-down HBT on a common InP based semiconductor wafer. Isolation and N-type implants into the device layers differentiate an emitter-down HBT from an emitter-up HBT. The method for preparing a device comprises forming identical layers for all HBTs and performing ion implantation to differentiate an emitter-down HBT from an emitter-up HBT.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: April 15, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Mary Chen, Marko Sokolich
  • Patent number: 8648443
    Abstract: Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20140027815
    Abstract: Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Ti Su, Tzu-Heng Chang, Jen-Chou Tseng, Ming-Hsiang Song
  • Patent number: 8637959
    Abstract: The invention discloses a vertical parasitic PNP transistor in a BiCMOS process and manufacturing method of the same, wherein an active region is isolated by STIs. The transistor includes a collector region, a base region, an emitter region, pseudo buried layers, and N-type polysilicon. The pseudo buried layers, formed at the bottom of the STIs located on both sides of the collector region, extend laterally into the active region and contact with the collector region, whose electrodes are picked up through making deep-hole contacts in the STIs. The N-type polysilicon is formed on the base region and contacts with it, whose electrodes are picked up through making metal contacts on the N-type polysilicon. The transistors can be used as output devices in high-speed and high-gain circuits, efficiently reducing the transistors area, diminishing the collector resistance, and improving the transistors performance. The method can reduce the cost without additional technological conditions.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Shanghai Hua Hong NEC Electronics
    Inventors: Wensheng Qian, Donghua Liu, Jun Hu
  • Patent number: 8598008
    Abstract: An integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series is disclosed. Each bipolar transistor includes a breakdown inducing feature. The breakdown inducing features have reflection symmetry with respect to each other. A process for forming an integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series, with breakdown inducing features having reflection symmetry, is also disclosed.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Marie Denison, Yongxi Zhang
  • Patent number: 8592860
    Abstract: Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: November 26, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Javier A Salcedo, David Hall Whitney
  • Patent number: 8587224
    Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bongjun Kim
  • Publication number: 20130260526
    Abstract: A lateral heterojunction bipolar transistor is formed on a semiconductor-on-insulator substrate including a top semiconductor portion of a first semiconductor material having a first band gap and a doping of a first conductivity type. A stack of an extrinsic base and a base cap is formed such that the stack straddles over the top semiconductor portion. A dielectric spacer is formed around the stack. Ion implantation of dopants of a second conductivity type is performed to dope regions of the top semiconductor portion that are not masked by the stack and the dielectric spacer, thereby forming an emitter region and a collector region. A second semiconductor material having a second band gap greater than the first band gap and having a doping of the second conductivity type is selectively deposited on the emitter region and the collector region to form an emitter contact region and a collector contact region, respectively.
    Type: Application
    Filed: September 6, 2012
    Publication date: October 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Dae-Gyu Park
  • Patent number: 8502478
    Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 6, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Tak Kim, Bong Jun Kim
  • Patent number: 8450179
    Abstract: A method for fabricating a semiconductor device having a first and second bipolar devices of the same dopant type includes: depositing a dielectric layer over a semiconductor layer, depositing a gate conductor layer over the dielectric layer, defining base regions of both bipolar devices, removing the gate conductor layer and dielectric layer in the base regions, depositing a base layer on the gate conductor layer and on the exposed semiconductor layer in the base regions, depositing an insulating layer over the base layer, forming a photoresist layer and defining emitter regions of both bipolar devices, removing the photoresist layer in the emitter regions thereby forming two emitter windows, masking the emitter window of the first bipolar device and exposing the base layer in the base region of the second bipolar device to an additional emitter implant through the associated emitter window.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: May 28, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Badih El-Kareh, Hiroshi Yasuda, Scott Balster
  • Publication number: 20130127017
    Abstract: A Reverse Bipolar Junction Transistor (RBJT) integrated circuit comprises a bipolar transistor and a parallel-coupled distributed diode. The bipolar transistor involves many N-type collector regions. Each N-type collector region has a central hole so that P-type material from an underlying P-type region extends up into the hole. A collector metal electrode covers the central hole forming a diode contact at the top of the hole. When the distributed diode conducts, current flows from the collector electrode, down through the many central holes in the many collector regions, through corresponding PN junctions, and to an emitter electrode disposed on the bottom side of the IC. The RBJT and distributed diode integrated circuit has emitter-to-collector and emitter-to-base reverse breakdown voltages exceeding twenty volts. The collector metal electrode is structured to contact the collector regions, and to bridge over the base electrode, resulting in a low collector-to-emitter voltage when the RBJT is on.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 8410572
    Abstract: A base contact connection, an emitter structure and a collector structure are arranged on an n-layer, which can be provided for additional npn transistors. The collector structure is arranged laterally to the emitter structure and at least one of the emitter and collector comprises a Schottky contact on a surface area of the n-layer.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 2, 2013
    Assignee: EPCOS AG
    Inventor: Léon C. M. van den Oever
  • Patent number: 8390092
    Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
  • Patent number: 8343843
    Abstract: Provided are a monolithic microwave integrated circuit device and a method for forming the same. The method include: forming an HBT on a substrate; forming a wiring of the HBT and a bottom electrode of a capacitor on the substrate, with a first metal, the bottom electrode being spaced apart from the HBT; forming a first insulation layer on the substrate to cover the HBT and the bottom electrode; and forming a top electrode of the capacitor on the first insulation layer and forming a resistance pattern on the substrate, with a second metal, the resistance pattern being spaced apart from the capacitor, wherein an edge of the top electrode is spaced apart from an edge of the bottom electrode.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: January 1, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jongmin Lee
  • Publication number: 20120314485
    Abstract: An example embodiment is a memory cell including a SOI substrate. A first and second set of lateral bipolar transistors are fabricated on the SOI substrate. The first and second set of lateral bipolar transistors are electrically coupled to form two inverters. The inverters are cross coupled to form a memory element.
    Type: Application
    Filed: June 12, 2011
    Publication date: December 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Tak H. Ning
  • Publication number: 20120295414
    Abstract: Methods are provided for producing stacked electrostatic discharge (ESD) clamps. In one embodiment, the method includes providing a semiconductor substrate in which first and second serially-coupled transistors are formed. The first transistor includes a first well region having a first lateral edge partially forming the first transistor's base. The second transistor including a second well region having a second lateral edge partially forming the second transistor's base. Third and fourth well regions are formed in the first and second transistors, respectively, and extend a different distance into the substrate than do the well regions of the first and second transistors. The third well region has a third lateral edge separated from the first lateral edge by a first spacing dimension D1. The fourth well region has a fourth lateral edge separated from the second lateral edge by a second spacing dimension D2, which is different than D1.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Patent number: 8299579
    Abstract: An integrated power transistor includes emitter or source regions, and a comb-like patterned metal electrode structure interconnecting the emitter or source regions and defining at least one connection pad. The comb-like patterned metal electrode structure includes a plurality of fingers. A current sensing resistor produces a voltage drop representative of a current delivered to a load by the integrated power transistor. The current sensing resistor includes a portion of a current carrying metal track having a known resistance value and extending between one of the fingers and a connectable point along the current carrying metal track.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 30, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Davide Patti, Vincenzo Sciacca
  • Publication number: 20120264269
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a first fin above a substrate, forming a first emitter region in a first portion of the first fin, forming a first collector region in a second portion of the first fin, and forming a first base region in a third portion of the first fin. The third portion of the first fin is disposed underneath a first gate electrode. The method further includes forming a second fin adjacent to the first fin and above the substrate. The second fin is composed of a semiconductor material. The method also includes forming a first base contact over the second fin. The first base contact is coupled to the first base region through the second fin, the substrate, and the first fin.
    Type: Application
    Filed: June 27, 2012
    Publication date: October 18, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yao Ke, Tao-Wen Chung, Shine Chung, Fu-Lung Hsueh
  • Patent number: 8263470
    Abstract: There is provided a method of fabricating a semiconductor including: forming a first and a second bipolar transistors on a semiconductor substrate; forming a dummy layer on, or on the periphery of, at least one region of the emitter region, the base region, or the collector region of the second bipolar transistor and on an area surrounding a contact region for establishing an electrical connection to the outside in the at least one of the emitter region, the base region, or the collector region; forming an insulation layer so as to cover the first bipolar transistor, the second bipolar transistor, and the dummy layer; forming, together with the insulation layer and in a contact region of each region of the first bipolar transistor and the second bipolar transistor, a contact hole for establishing contact with each of those regions; and embedding a conductive member in the contact holes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 11, 2012
    Assignee: Lapis Semiconductor Co., Ltd.
    Inventor: Katsuhiro Yamaide
  • Publication number: 20120205714
    Abstract: Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 16, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, David Hall Whitney
  • Patent number: 8242566
    Abstract: A stacked electrostatic discharge (ESD) protection clamp (99, 100-104) for protecting associated devices or circuits (24) comprises two or more series coupled (stacked) bipolar transistors (70, 700) whose individual trigger voltages Vt1 depend on their base-collector spacing D. A first (70-1, 700-1) of the transistors (70, 700) has a spacing DZ1 chosen within a D range Z1 whose slope (?Vt1/?D) has a first value (?Vt1/?D)Z1, and a second (70-2, 700-2) of the transistors (70, 700) has a spacing value D(Z2 or Z3) chosen within a D range Z2 or Z3 whose slope (?Vt1/?D) has a second value (?Vt1/?D)(Z2 or Z3) less than the first value (?Vt1/?D)Z1. The sensitivity of the ESD stack trigger voltage Vt1STACK to base-collector spacing variations ?D during manufacture is much reduced, for example, by as much as 50% for a 2-stack and more for 3-stacks and beyond. A wide range of Vt1STACK values can be obtained that are less sensitive to unavoidable manufacturing spacing variations ?D.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: August 14, 2012
    Assignee: Freescale Semiconductors, Inc.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Publication number: 20120175681
    Abstract: A semiconductor device includes an etch-stop layer between a first layer of a field-effect transistor and a second layer of a bipolar transistor, each of which includes at least one arsenic-based semiconductor layer. A p-type layer is between the second layer and the etch-stop layer, and the device can include an n-type layer deposited between the etch-stop layer and p-type layer. The p-type layer provides an electric field that inhibits intermixing of the InGaP layer with layers in the first and second layers.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 12, 2012
    Applicant: Kopin Corporation
    Inventors: Kevin S. Stevens, Eric M. Rehder, Charles R. Lutz
  • Publication number: 20120132960
    Abstract: The present invention may provide an integrated device, which may include a substrate having first and second regions, the first region spaced apart from the second region, a first heterojunction bipolar transistor (HBT) device formed on the first region of the substrate, the first HBT device having a first collector layer formed above the first region of the substrate, the first collector layer having a first collector thickness and a first collector doping level, and a second HBT device formed on the second region of the substrate, the second HBT device having a second collector layer formed above the second region of the substrate, the second collector layer having a second collector thickness and a second collector doping level, the second collector thickness substantially greater than the first collector thickness, the second collector doping level lower than the first collector doping level.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Inventor: Miguel E. Urteaga
  • Publication number: 20120122308
    Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 17, 2012
    Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
  • Patent number: 8178948
    Abstract: An electrostatic discharge (ESD) protection circuit includes a substrate, and a plurality of unit bipolar transistors formed in the substrate. Each of the plurality of unit bipolar transistors may include a first-conductivity-type buried layer formed in the substrate, a first-conductivity-type well formed over the first-conductivity-type buried layer, a second-conductivity-type well formed in the first-conductivity-type well, a first-conductivity-type vertical doping layer vertically formed from the surface of the substrate to the first-conductivity-type buried layer so as to surround the first-conductivity-type well, and a first-conductivity-type doping layer and a second conductivity-type doping layer formed in the second-conductivity-type well. The first-conductivity-type doping layer of any one of the adjacent unit bipolar transistors and the first-conductivity-type vertical doping layer of another one of the adjacent unit bipolar transistors may be connected to each other.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 15, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Jae-Young Park, Jong-Kyu Song, San-Hong Kim
  • Publication number: 20120097974
    Abstract: A method and apparatus for achieving high current gain, and low on-resistance, from a Bipolar Junction Transistor (BJT) in high temperature and high power applications are disclosed. In some embodiments, a thin doped delta layer is inserted at the base emitter junction but inside the base layer. In addition, in some embodiments, a surface recombination layer is inserted between the emitter-base regions of the device. In some embodiments, use of an ion implantation step is avoided to achieve simplicity and low cost of manufacture.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: UNIVERSITETSSENTERET PÅ KJELLER (UNIK)
    Inventor: Muhammad NAWAZ
  • Publication number: 20120098099
    Abstract: Provided are a compound semiconductor device and a method of manufacturing the same. The semiconductor device includes: a substrate including a first region and a second region; a transistor including first to third conductive impurity layers stacked on the substrate of the first region; and a variable capacitance diode spaced apart from the transistor of the first region and including the first and second conductive impurity layers stacked on the substrate of the second region.
    Type: Application
    Filed: July 29, 2011
    Publication date: April 26, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jongmin LEE, Byoung-Gue Min, Seong-il Kim, Hyung Sup Yoon, Hae Cheon Kim, Eun Soo Nam
  • Publication number: 20120098095
    Abstract: Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20120098098
    Abstract: An integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series is disclosed. Each bipolar transistor includes a breakdown inducing feature. The breakdown inducing features have reflection symmetry with respect to each other. A process for forming an integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series, with breakdown inducing features having reflection symmetry, is also disclosed.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Marie Denison, Yongxi Zhang
  • Patent number: 8124489
    Abstract: Provided are a monolithic microwave integrated circuit device and a method for forming the same. The method includes: forming an sub-collector layer, a collector layer, a base layer, an emitter layer, and an emitter cap layer on a Heterojunction Bipolar Transistor (HBT) region and a PIN diode region of a substrate; forming an emitter pattern and an emitter cap pattern in the HBT region and exposing the base layer by patterning the emitter layer and the emitter cap layer; and forming an intrinsic region by doping a portion of the collector layer of the PIN diode region with a first type impurity, the PIN diode region being spaced apart from the HBT region.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 28, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung-Gue Min, Jongmin Lee, Seong-Il Kim, Hyung Sup Yoon
  • Publication number: 20120028432
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Publication number: 20120007207
    Abstract: Apparatus and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises a substrate includes an n-well and a p-well adjacent the n-well. An n-type active area and a p-type active area are disposed in the n-well. The p-type active area, the n-well, and the p-well are configured to operate as an emitter, a base, and a collector of an PNP bipolar transistor, respectively, and the p-type active area surrounds at least a portion of the n-type active area so as to aid in recombining carriers injected into the n-well from the p-well before the carriers reach the n-type active area. The n-well and the p-well are configured to operate as a breakdown diode, and a punch-through breakdown voltage between the n-well and the p-well is lower than or equal to about a breakdown voltage between the p-type active area and the n-well.
    Type: Application
    Filed: February 18, 2011
    Publication date: January 12, 2012
    Applicant: Analog Devices, Inc.
    Inventor: Javier A. Salcedo
  • Publication number: 20120008242
    Abstract: Apparatuses and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises an internal circuit electrically connected between a first node and a second node, and a protection circuit electrically connected between the first node and the second node and configured to protect the internal circuit from transient electrical events. The protection circuit comprises a bipolar transistor having an emitter connected to the first node, a base connected to a third node, and a collector connected to a fourth node. The protection circuit further comprises a first diode electrically connected between the third node and the fourth node, and a second diode electrically connected between the second node and the fourth node. The first diode is an avalanche breakdown diode having an avalanche breakdown voltage lower than or about equal to a breakdown voltage associated with the base and the collector of the bipolar transistor.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: Analog Devices, Inc.
    Inventor: Javier A. Salcedo
  • Patent number: 8076211
    Abstract: A bipolar junction transistor may act as a select device for a semiconductor memory. The bipolar junction transistor may be formed of a stack of base and collector layers. Sets of parallel trenches are formed in a first direction down to the base and in a second direction down to the collector. The trenches may be used to form local enhancement implants into the exposed portion of the base and collector in each trench. As a result of the local enhancement implants, in some embodiments, leakage current may be reduced, active current capability may be higher, gain may be higher, base resistance may be reduced, breakdown voltage may be increased, and parasitic effects with adjacent junctions may be reduced.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Agostino Pirovano, Augusto Benvenuti, Fabio Pellizzer, Giorgio Servalli
  • Patent number: 8026146
    Abstract: The invention provides for an alternative and less complex method of manufacturing a bipolar transistor comprising a field plate (17) in a trench (7) adjacent to a collector region (21), which field plate (17) employs a reduced surface field (Resurf) effect. The Resurf effect reshapes the electric field distribution in the collector region (21) such that for the same collector-base breakdown voltage the doping concentration of the collector region (21) can effectively be increased resulting in a reduced collector resistance and hence an increased bipolar transistor speed. The method comprises a step of forming a base window (6) in a first base layer (4) thereby exposing a top surface of the collector region (21) and a part of an isolation region (3). The trench (7) is formed by removing the exposed part of the isolation region (3), after which isolation layers (9,10) are formed on the surface of the trench (7).
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 27, 2011
    Assignee: NXP B.V.
    Inventors: Johannes J. T. M. Donkers, Sebastien Nuttinck, Guillaume L. R. Boccardi, Francois Neuilly
  • Patent number: 8003475
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: August 23, 2011
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Publication number: 20110199346
    Abstract: A semiconductor device includes a semiconductor substrate having a first conductivity type, at least two first well regions which have a second conductivity type and a predetermined depth in the semiconductor substrate, at least one second well region which has the first conductivity type and a predetermined depth in each of the first well regions, and a guard-ring region which has the second conductivity type and a predetermined depth and is positioned between the first well regions to be separated by a predetermined distance from the first well regions. The guard-ring region is connected to a ground voltage.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 18, 2011
    Inventors: Jae Hyok Ko, Han Gu Kim, Chang Su Kim, Suk-Jin Kim, Kwan Young Kim
  • Publication number: 20110181323
    Abstract: An integrated power transistor includes emitter or source regions, and a comb-like patterned metal electrode structure interconnecting the emitter or source regions and defining at least one connection pad. The comb-like patterned metal electrode structure includes a plurality of fingers. A current sensing resistor produces a voltage drop representative of a current delivered to a load by the integrated power transistor. The current sensing resistor includes a portion of a current carrying metal track having a known resistance value and extending between one of the fingers and a connectable point along the current carrying metal track.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 28, 2011
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Davide Patti, Vincenzo Sciacca
  • Publication number: 20110176243
    Abstract: A stacked electrostatic discharge (ESD) protection clamp (99, 100-104) for protecting associated devices or circuits (24) comprises two or more series coupled (stacked) bipolar transistors (70, 700) whose individual trigger voltages Vt1 depend on their base-collector spacing D. A first (70-1, 700-1) of the transistors (70, 700) has a spacing DZ1 chosen within a D range Z1 whose slope (?Vt1/?D) has a first value (?Vt1/?D)Z1, and a second (70-2, 700-2) of the transistors (70, 700) has a spacing value D(Z2 or Z3) chosen within a D range Z2 or Z3 whose slope (?Vt1/?D) has a second value (?Vt1/?D)(Z2 or Z3) less than the first value (?Vt1/?D)Z1. The sensitivity of the ESD stack trigger voltage Vt1STACK to base-collector spacing variations ?D during manufacture is much reduced, for example, by as much as 50% for a 2-stack and more for 3-stacks and beyond. A wide range of Vt1STACK values can be obtained that are less sensitive to unavoidable manufacturing spacing variations ?D.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Publication number: 20110151638
    Abstract: There is provided a method of fabricating a semiconductor including: forming a first and a second bipolar transistors on a semiconductor substrate; forming a dummy layer on, or on the periphery of, at least one region of the emitter region, the base region, or the collector region of the second bipolar transistor and on an area surrounding a contact region for establishing an electrical connection to the outside in the at least one of the emitter region, the base region, or the collector region; forming an insulation layer so as to cover the first bipolar transistor, the second bipolar transistor, and the dummy layer; forming, together with the insulation layer and in a contact region of each region of the first bipolar transistor and the second bipolar transistor, a contact hole for establishing contact with each of those regions; and embedding a conductive member in the contact holes.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 23, 2011
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Katsuhiro Yamaide
  • Publication number: 20110140175
    Abstract: Provided are a monolithic microwave integrated circuit device and a method for forming the same. The method includes: forming an sub-collector layer, a collector layer, a base layer, an emitter layer, and an emitter cap layer on a Heterojunction Bipolar Transistor (HBT) region and a PIN diode region of a substrate; forming an emitter pattern and an emitter cap pattern in the HBT region and exposing the base layer by patterning the emitter layer and the emitter cap layer; and forming an intrinsic region by doping a portion of the collector layer of the PIN diode region with a first type impurity, the PIN diode region being spaced apart from the HBT region.
    Type: Application
    Filed: July 8, 2010
    Publication date: June 16, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Byoung-Gue MIN, Jongmin Lee, Seong-ll Kim, Hyung Sup Yoon