Spherical Bumps On Substrate For External Connection, E.g., Ball Grid Arrays (bga) (epo) Patents (Class 257/E23.069)
  • Patent number: 8742577
    Abstract: A semiconductor package includes a first semiconductor chip, a second semiconductor chip disposed on the first semiconductor chip, and a connection member to electrically connect the first semiconductor chip and the second semiconductor chip. The connection member may include a connection pad disposed on the first semiconductor chip, a connection pillar disposed on the second semiconductor chip, and a bonding member to connect the connection pad and the connection pillar. An anti-contact layer may be formed on at least one surface of the connection pad.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 3, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young-kun Jee, Sun-kyoung Seo, Sang-wook Park, Ji-hwan Hwang
  • Patent number: 8742578
    Abstract: An integrated circuit (IC) chip including solder structures for connection to a package substrate, an IC chip package, and a method of forming the same are disclosed. In an embodiment, an IC chip is provided comprising a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer is disposed between each of the plurality of solder structures and the wafer. At least one of the plurality of solder structures has a first diameter and a first height, and at least one other solder structure has a second diameter and a second height. The differing heights and volumes of solder structures facilitate solder volume compensation for chip join improvement on the IC chip side rather than the package side.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Eric D. Perfecto, Wolfgang Sauter, Jennifer D. Schuler
  • Publication number: 20140124925
    Abstract: Embodiments of the present disclosure are directed towards multi-solder techniques and configurations for integrated circuit (IC) package assembly. In one embodiment, a method includes depositing a plurality of solder balls on a plurality of pads of a package substrate, the plurality of solder balls corresponding with the plurality of pads and performing a solder reflow process to form a solder joint between the plurality of solder balls and the plurality of pads. Individual solder balls of the plurality of solder balls include a first solder material and a second solder material, the first solder material having a liquidus temperature that is greater than a peak temperature of the solder reflow process and the second solder material having a liquidus temperature that is less than the peak temperature of the solder reflow process. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Inventors: Rajen S. Sidhu, Wei Hu, Carl L. Deppisch, Martha A. Dudek
  • Patent number: 8716873
    Abstract: A device is disclosed. The device includes a carrier substrate having first and second major surfaces. The first surface includes a die region and contact pads and the second surface includes package contacts. The carrier substrate includes a patterned lead frame which defines a line level with conductive traces and a via level with via contacts. The patterned lead frame provides interconnections between the contact pads and package contacts. The carrier substrate further includes a dielectric layer isolating the conductive traces and via contacts. The device includes a die mounted on the die region of the first surface.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: May 6, 2014
    Assignee: United Test and Assembly Center Ltd.
    Inventors: Chuen Khiang Wang, Nathapong Suthiwongsunthorn, Kriangsak Sae Le, Antonio Jr B Dimaano, Catherine Bee Liang Ng, Richard Te Gan, Kian Teng Eng
  • Patent number: 8716872
    Abstract: A stacked semiconductor package has a first semiconductor package including a first package substrate and a first semiconductor chip mounted on the first package substrate, a second semiconductor package including a second package substrate and a second semiconductor chip mounted on the second package substrate, and a plurality of connections electrically connecting the first and second semiconductor packages. The connections are disposed on an outer region of the first package substrate outside the first semiconductor chip. The connections are disposed along opposite first longer sides and opposite shorter second sides of the first package substrate. The heights of those connections disposed along each longer first side gradually vary from a central to an outer region (i.e., the ends) of the longer first side.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-kyu Kwon, Su-chang Lee
  • Patent number: 8716847
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 8709935
    Abstract: A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, OhHan Kim, SungWon Cho
  • Patent number: 8710657
    Abstract: Semiconductor packages connecting a semiconductor chip to an external device by bumps are provided. The semiconductor packages may include a connection pad on a semiconductor chip, a connecting bump on and configured to be electrically connected to the connection pad and a supporting bump on the semiconductor chip and configured to be electrically isolated from the connection pad. The connection bump may include a first pillar and a first solder ball and the supporting bump may include a second pillar and a second solder ball. The semiconductor packages may further include a solder channel in the second pillar configured to allow a portion of the second solder ball to extend into the solder channel along a predetermined direction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-woo Park, Moon-gi Cho, Ui-hyoung Lee, Sun-hee Park
  • Patent number: 8710656
    Abstract: An integrated circuit (IC) chip is disclosed including a plurality of metal vertical interconnect accesses (vias) in a back end of line (BEOL) layer, a redistribution layer (RDL) on the BEOL layer, the BEOL layer having a plurality of bond pads, each bond pad connected to at least one corresponding metal via through the RDL; and a solder bump connected to each bond pad, wherein each solder bump is laterally offset from the corresponding metal via connected to the bond pad towards a center of the IC chip by an offset distance, wherein the offset distance is non-uniform across the IC chip. In one embodiment, the offset distance for each solder bump is proportionate to a distance between the center of the IC chip and the center of the corresponding solder bump pad structure for that solder bump.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Brian M. Erwin, Jeffrey P. Gambino, Wolfgang Sauter, George J. Scott
  • Publication number: 20140110839
    Abstract: A structure comprises a first semiconductor chip with a first metal bump and a second semiconductor chip with a second metal bump. The structure further comprises a solder joint structure electrically connecting the first semiconductor chip and the second semiconductor chip, wherein the solder joint structure comprises an intermetallic compound region between the first metal bump and the second metal bump, wherein the intermetallic compound region is with a first height dimension and a surrounding portion formed along exterior walls of the first metal bump and the second metal bump, wherein the surrounding portion is with a second height dimension, and wherein the second height dimension is greater than the first height dimension.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8703508
    Abstract: Disclosed is a method for wafer-level testing a plurality of diced multi-chip stacked packages. Each package includes a plurality of chips with vertically electrical connections such as TSVs. Next, according to a die-on-wafer array arrangement, the multi-chip stacked packages are fixed on a transparent reconstructed wafer by a photo-sensitive adhesive, and the packages are located within the component-bonding area of the wafer. Then, the transparent reconstructed wafer carrying the multi-chip stacked packages can be loaded into a wafer tester for probing. Accordingly, the wafer testing probers in the wafer tester can be utilized to probe the testing electrodes of the stacked packages so that it is easy to integrate this wafer-level testing method especially into TSV packaging processes.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: April 22, 2014
    Assignee: Powertech Technology Inc.
    Inventors: Kai-Jun Chang, Yu-Shin Liu, Shin-Kung Chen, Kun-Chih Chan
  • Patent number: 8703599
    Abstract: Microelectronic devices having intermediate contacts, and associated methods of packaging microelectronic devices with intermediate contacts, are disclosed herein. A packaged microelectronic device configured in accordance with one embodiment of the invention includes a microelectronic die attached to an interconnecting substrate. The microelectronic die includes an integrated circuit electrically coupled to a plurality of terminals. Each of the terminals is electrically coupled to a corresponding first contact on the die with an individual wire-bond. Each of the first contacts on the die is electrically coupled to a corresponding second contact on the interconnecting substrate by a conductive coupler such as a solder ball.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Setho Sing Fee
  • Patent number: 8704366
    Abstract: A semiconductor device includes a wafer and a dicing saw tape that is laminated to a back surface of the wafer. An active surface of the wafer is opposite the back surface of the wafer. The semiconductor device further includes a lamination tape disposed in contact with the wafer. The lamination tape includes an under-film layer contacting the active surface of the wafer. The lamination tape further includes an adhesive layer contacting the under-film layer.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: April 22, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Junghoon Shin, Sangho Lee, Sungyoon Lee
  • Patent number: 8698309
    Abstract: A semiconductor device includes a first semiconductor device and second semiconductor device stacked on the first semiconductor device. The first semiconductor device includes a first interconnect substrate, a first semiconductor element provided on an upper surface of the first interconnect substrate, a first electrode provided on the upper surface of the first interconnect substrate, and an insulating layer having an opening portion through which part of the first electrode is exposed. The second semiconductor device includes a second interconnect substrate, a second semiconductor element provided on an upper surface of the second interconnect substrate, a second electrode provided on a lower surface of the second interconnect substrate, and an inter-device connection terminal connected to the second electrode. Part of the first electrode exposed through the opening portion has a smaller area than an area of the opening portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Shigefumi Dohi, Kouji Oomori
  • Publication number: 20140097536
    Abstract: A two-sided-access (TSA) eWLB is provided that makes it possible to easily access electrical contact pads disposed on both the front and rear faces of the die(s) of the eWLB package. When fabricating the IC die wafer, metal stamps are formed in the IC die wafer in contact with the rear faces of the IC dies. When the IC dies are subsequently reconstituted in an artificial wafer, portions of the metal stamps are exposed through the mold of the artificial wafer. When the artificial wafer is sawed to singulate the TSA eWLB packages and the packages are mounted on PCBs, any electrical contact pad that is disposed on the rear face of the IC die can be accessed via the respective metal stamp of the IC die.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventor: Nikolaus W. Schunk
  • Publication number: 20140091461
    Abstract: A die cap for use with flip chip packages, flip chip packages using a die cap, and a method for manufacturing flip chip packages with a die cap are provided in the invention. A die cap encases the die of flip chip packages about its top and sides for constraining the thermal deformation of the die during temperature change. The CTE (coefficient of thermal expansion) mismatch between the die and substrate of flip chip packages is the root cause for warpage and reliability issues. The current inventive concept is to reduce the CTE mismatch by using a die cap to constrain the thermal deformation of the die. When a die cap with high CTE and high modulus is used, the die with the die cap has a relatively high overall CTE, reducing the CTE mismatch. As a result, the warpage and reliability of flip chip packages are improved.
    Type: Application
    Filed: September 30, 2012
    Publication date: April 3, 2014
    Inventor: Yuci Shen
  • Patent number: 8686560
    Abstract: Wafer-level chip-scale package semiconductor devices are described that have bump assemblies configured to mitigate solder bump failures due to stresses, particularly stresses caused by CTE mismatch during thermal cycling tests, dynamic deformation during drop tests or cyclic bending tests, and so on. In an implementation, the wafer-level chip-scale package devices include an integrated circuit chip having two or more arrays of bump assemblies for mounting the device to a printed circuit board. At least one of the arrays includes bump assemblies that are configured to withstand higher levels of stress than the bump assemblies of the remaining arrays.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 1, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Pirooz Parvarandeh, Reynante Alvarado, Chiung C. Lo, Arkadii V. Samoilov
  • Patent number: 8671560
    Abstract: Low temperature bond balls connect two structures having disparate coefficients of linear thermal expansion. An integrated circuit is made to heat the device such that the low temperature bond balls melt. After melting, the bond balls solidify, and the device is operated with the bond balls solidified. In one example, one of the two structures is a semiconductor substrate, and the other structure is a printed circuit board. The integrated circuit is a die mounted to the semiconductor substrate. The bond balls include at least five percent indium, and the integrated circuit is an FPGA loaded with a bit stream. The bit stream configures the FPGA such that the FPGA has increased power dissipation, which melts the balls. After the melting, a second bit stream is loaded into the FPGA and the FPGA is operated in a normal user-mode using the second bit stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 18, 2014
    Assignee: Research Triangle Institute
    Inventors: Robert O. Conn, Daniel S. Stevenson
  • Publication number: 20140061902
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for surface treatment of an integrated circuit (IC) substrate. In one embodiment, an apparatus includes an integrated circuit substrate, an interconnect structure disposed on the integrated circuit substrate, the interconnect structure being configured to route electrical signals to or from the integrated circuit substrate and comprising a metal surface, and a protective layer disposed on the metal surface of the interconnect structure, the protective layer comprising a first functional group bonded with the metal surface and a second functional group bonded with the first functional group, wherein the second functional group is hydrophobic to inhibit contamination of the metal surface by hydrophilic materials and further inhibits oxidation of the metal surface. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Suriyakala Ramalingam, Rajen S. Sidhu, Nisha Ananthakrishnan, Sivakumar Nagarajan, Wei Tan, Sandeep Razdan, Vipul V. Mehta
  • Patent number: 8664775
    Abstract: A semiconductor device includes a circuit substrate, a first semiconductor chip disposed on the circuit substrate, a plurality of first spacers disposed on the first semiconductor chip, a second semiconductor chip which includes a first adhesive agent layer on a lower face thereof and is disposed on upper portions of the plurality of spacers, a wire which connects the circuit substrate to the first semiconductor chip, and a first sealing material which seals a gap between the first semiconductor chip and the first adhesive agent layer, wherein each height of the plurality of the first spacers is greater than height of the wire relative to an upper face of the first semiconductor chip.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 4, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kenichi Sasaki, Norio Fukasawa
  • Patent number: 8664760
    Abstract: A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Shin-Puu Jeng, Shang-Yun Hou, Cheng-Chieh Hsieh, Kuo-Ching Hsu, Ying-Ching Shih, Po-Hao Tsai, Chin-Fu Kao, Cheng-Lin Huang, Jing-Cheng Lin
  • Patent number: 8659123
    Abstract: A die includes a substrate, a metal pad over the substrate, and a passivation layer that has a portion over the metal pad. A dummy pattern is disposed adjacent to the metal pad. The dummy pattern is level with, and is formed of a same material as, the metal pad. The dummy pattern forms at least a partial ring surrounding at least a third of the metal pad.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Chita Chuang, Chen-Cheng Kuo, Chen-Shien Chen
  • Publication number: 20140048934
    Abstract: A semiconductor device assembly includes a substrate having an area of the surface treated to form a surface roughness. A die is mounted on the substrate by a plurality of coupling members. An underfill substantially fills a gap disposed between the substrate and the die, wherein a fillet width of the underfill is substantially limited to the area of surface roughness.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Tse Chen, Jung Wei Cheng, Chun-Cheng Lin, Yu-Peng Tsai, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8653640
    Abstract: A semiconductor package apparatus includes a first semiconductor package including a first semiconductor chip, a first substrate, a first terminal, and a first signal transfer medium, and a second semiconductor package including a second semiconductor chip, a second substrate, a second terminal, and a second signal transfer medium. At least one package connecting solder ball is located between the first terminal and the second terminal. A first solder ball guide member is positioned around the first terminal of the first substrate and includes a first guide surface for guiding a shape of the package connecting solder ball.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-hun Kim, Dae-young Choi, Yang-hoon Ahn, Sun-hye Lee
  • Patent number: 8653661
    Abstract: A package structure having an MEMS element is provided, which includes: a protection layer having openings formed therein; conductors formed in the openings, respectively; conductive pads formed on the protection layer and the conductors; a MEMS chip disposed on the conductive pads; and an encapsulant formed on the protection layer for encapsulating the MEMS chip. By disposing the MEMS chip directly on the protection layer to dispense with the need for a carrier, such as a wafer or a circuit board that would undesirably add to the thickness, the present invention reduces the overall thickness of the package to thereby achieve miniaturization.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Yueh Chan, Chien-Ping Huang, Chun-Chi Ke, Shih-Kuang Chiu
  • Patent number: 8653658
    Abstract: The mechanisms for forming bump structures reduce variation of standoffs between chips and package substrates. By planarizing the solder layer on bump structures on chips and/or substrates after plating, the heights of bump structures are controlled to minimize variation due to within die and within wafer locations, pattern density, die size, and process variation. As a result, the standoffs between chips and substrates are controlled to be more uniform. Consequently, underfill quality is improved.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Po-Hao Tsai
  • Publication number: 20140042622
    Abstract: A package-on-package (PoP) device including a substrate having an array of contact pads arranged around a periphery of the substrate, a logic chip mounted to the substrate inward of the array of contact pads, and non-solder bump structures mounted on less than an entirety of the contact pads available.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsai-Tsung Tsai, Chun-Cheng Lin, Ai-Tee Ang, Yi-Da Tsai, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20140042621
    Abstract: An embodiment is a package-on-package (PoP) device comprising a first package on a first substrate and a second package over the first package. A plurality of wire sticks disposed between the first package and the second package and the plurality of wire sticks couple the first package to the second package. Each of the plurality of wire sticks comprise a conductive wire of a first height affixed to a bond pad on the first substrate and each of the plurality of wire sticks is embedded in a solder joint.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Chien-Hsun Lee, Yung Ching Chen, Jiun Yi Wu
  • Patent number: 8643168
    Abstract: A ball-grid-array (BGA) package is disclosed that includes traces within a BGA substrate. At least one of the traces is configured to match a low-impedance load presented by a BGA substrate pad and associated circuitry on a flip-chip die to an impedance of a circuit board trace. Each configured trace includes a relatively narrow section coupling to a tapered section that widens from the relatively narrow section to join a relatively wider trace section.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 4, 2014
    Assignee: Lattice Semiconductor Corporation
    Inventors: Ban P. Wong, Brad Sharpe-Geisler
  • Patent number: 8642387
    Abstract: Described herein is a stacked package using laser direct structuring. The stacked package includes a die attached to a substrate. The die is encapsulated with a laser direct structuring mold material. The laser direct structuring mold material is laser activated to form circuit traces on the top and side surfaces of the laser direct structuring mold material. The circuit traces then undergo metallization. A package is then attached to the metalized circuit traces and is electrically connected to the substrate via the metalized circuit traces.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Flextronics AP, LLC
    Inventors: Samuel Tam, Bryan Lee Sik Pong, Dick Pang
  • Patent number: 8637997
    Abstract: The present invention provides a semiconductor device with an improved yield ratio and reduced height and manufacturing cost; and a method of manufacturing the semiconductor device. According to an aspect of the present invention, there is provided a semiconductor device including a substrate, a semiconductor element that is flip-chip connected to the substrate, and a molding portion that seals the semiconductor element. The side surfaces of the semiconductor element are enclosed by the molding portion. An upper surface of the semiconductor element is not enclosed by the molding portion. Damage to the side surfaces of the semiconductor element caused by an external impact when the semiconductor device is stored is minimized, because the molding portion protects the side surfaces of the semiconductor element. Accordingly, the yield ratio of the semiconductor device is improved.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: January 28, 2014
    Assignee: Spansion LLC
    Inventor: Masanori Onodera
  • Patent number: 8637391
    Abstract: A method of manufacturing a semiconductor chip is disclosed. A die having a plurality of die-pads is attached to a substrate in a semiconductor package which includes a plurality of substrate-pads. The method involves forming conductive column bumps of differing volumes extending from the die-pads; attaching each of the column bumps to a corresponding substrate-pad to form a subassembly; and reflowing the subassembly so that the column bumps form robust electrical and mechanical connections between the die pads and the substrate pads.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: January 28, 2014
    Assignee: ATI Technologies ULC
    Inventor: Vincent K. Chan
  • Publication number: 20140015131
    Abstract: A stacked semiconductor device and method of manufacturing a stacked semiconductor device are described. The semiconductor device may include a reconstituted base layer having a plurality of embedded semiconductor chips. A first redistribution layer may contact the electrically conductive contacts of the embedded chips and extend beyond the boundary of one or more of the embedded chips, forming a fan-out area. Another chip may be stacked above the chips embedded in the base layer and be electrically connected to the embedded chips by a second redistribution layer. Additional layers of chips may be included in the semiconductor device.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Gerald Ofner, Sven Albers
  • Patent number: 8629556
    Abstract: The semiconductor device 1 includes a substrate 3, a semiconductor chip 4 mounted on the substrate 3, the substrate 3, a bump 5 connecting the substrate 3 and the semiconductor chip 4, and an underfill 6 filling in around the bump 5. In the case of a bump 5 composed of a high-melting-point solder having a melting point of 230° C. or more, the underfill 6 is composed of a resin material having an elastic modulus in the range of 30 MPa to 3000 MPa. In the case of a bump 5 composed of a lead-free solder, the underfill 6 is composed of a resin material having an elastic modulus in the range of 150 MPa to 800 MPa. An insulating layer 311 of buildup layers 31 of the substrate 3 has a linear expansion coefficient of 35 ppm/° C. or less in the in-plane direction of the substrate at temperatures in the range of 25° C. to the glass transition temperature.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 14, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Mitsuo Sugino, Takeshi Hosomi, Masahiro Wada, Masataka Arai
  • Patent number: 8624393
    Abstract: Methods for localized thinning of wafers used in semiconductor devices and the structures formed from such methods are described. The methods thin localized areas of the backside of the semiconductor wafer to form recesses with a bi-directional channel design that is repeated within the wafer (or die) so that no straight channel line crosses the wafer (or die). The bi-directional pattern design keeps the channels from being aligned with the crystal orientation of the wafer. The recesses are then filled by a solder ball drop process by dropping proper size solder balls into the recesses and then annealing the wafer to reflow the solder balls and flatten them out. The reflow process begins to fill in the recesses from the bottom up, thereby avoiding void formation and the resulting air traps in the reflowed solder material. Other embodiments are also described.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 7, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Suku Kim, James Murphy, Matthew Reynolds, Romel Manatad, Jan Mancelita, Michael Gruenhagen
  • Patent number: 8623754
    Abstract: Generally, the subject matter disclosed herein relates to repairing anomalous stiff pillar bumps that may be detected above a metallization system of a semiconductor chip or wafer. One illustrative method disclosed herein includes, among other things, forming a pillar bump above a metallization system of a semiconductor chip, and forming a plurality of notches in the pillar bump, wherein the plurality of notches are adapted to adjust a flexibility of the pillar bump when the pillar bump is exposed to a lateral force.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Holm Geisler, Dirk Breuer
  • Publication number: 20140001623
    Abstract: A microelectronic structure comprising a microelectronic package that includes at least one microelectronic device attached to a microelectronic interposer, wherein the microelectronic package is mounted to a microelectronic substrate, such that the microelectronic device is disposed between and in electrical communication with both the microelectronic interposer and the microelectronic substrate.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventor: PRAMOD MALATKAR
  • Publication number: 20140001632
    Abstract: A package structure includes a package substrate having a top surface and a bottom surface. A semiconductor die having a top surface and a bottom surface. The semiconductor die is mounted to the package substrate. The bottom surface of the semiconductor die is adjacent to the top surface of the package substrate. An air gap is between the bottom surface of the package substrate and the bottom surface of semiconductor die.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Trent S. Uehling, Burton J. Carpenter, Brett P. Wilkerson
  • Patent number: 8618676
    Abstract: A method of assembly of a semiconductor package includes treating the electrical contacts thereof by the application on the electrical contacts of a chemical composition comprising at least one ionic polar surfactant. A semiconductor package has a coating on the electrical contacts thereof, the coating comprising at least one ionic polar surfactant. A device includes a semiconductor package with electrical contacts on a circuit board, the electrical contacts having a coating that includes an ionic surfactant.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: December 31, 2013
    Assignee: STMicroelectronics (Malta) Ltd.
    Inventors: Robert Caruana, Adrian-Michael Borg, Joseph Gauci
  • Publication number: 20130334685
    Abstract: An embedded package that may be realized by surrounding a semiconductor chip (or a semiconductor die) in a package substrate. A semiconductor chip of an embedded package may be electrically connected to external connection terminals through interconnection wires instead of bumps, and the interconnection wires may be formed using a wire bonding process. A high reliability embedded package results.
    Type: Application
    Filed: September 13, 2012
    Publication date: December 19, 2013
    Applicant: SK HYNIX INC.
    Inventors: Si Han KIM, Qwan Ho CHUNG, Seung Jee KIM, Jong Hyun NAM, Sang Yong LEE
  • Patent number: 8610266
    Abstract: A semiconductor device (5) for radio frequency applications has a semiconductor chip (1) with an integrated circuit accommodated in a radio frequency package. Inside bumps (2) comprise inside contacts between the semiconductor chip (1) and a redistribution substrate (3). The inside bumps (2) have a metallic or plastic core (6) and a coating layer (7) of a noble metal.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Kai Chong Chan, Gerald Ofner
  • Patent number: 8610273
    Abstract: An improved wafer level chip scale packaging technique is described which does not use an encapsulated via to connect between a redirection layer and a pad within the pad ring on the semiconductor die. In an embodiment, a first dielectric layer is formed such that it terminates on each die within the die's pad ring. Tracks are then formed in a conductive layer which contact one of the pads and run over the edge of an opening onto the surface of the first dielectric layer. These tracks may be used to form an electrical connection between the pad and a solder ball.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Cambridge Silicon Radio Ltd.
    Inventor: Andrew Holland
  • Publication number: 20130328190
    Abstract: Methods and apparatuses for wafer level packaging (WLP) of semiconductor devices are disclosed. A contact pad of a circuit may be connected to a solder bump by way of a post passivation interconnect (PPI) line and a PPI pad. The PPI pad may comprise a hollow part and an opening. The PPI pad may be formed together with the PPI line as one piece. The hollow part of the PPI pad can function to control the amount of solder flux used in the ball mounting process so that any extra amount of solder flux can escape from an opening of the solid part of the PPI pad. A solder ball can be mounted to the PPI pad directly without using any under bump metal (UBM) as a normal WLP package would need.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen Wu, Ming-Che Ho, Wen-Hsiung Lu, Chia-Wei Tu, Chung-Shi Liu
  • Patent number: 8604601
    Abstract: A semiconductor device of the invention includes a first wiring layer including a signal wiring line formed therein, and a second wiring layer stacked on the first wiring layer and including a power-supply plane and/or ground plane formed therein, the power-supply plane or the ground plane is not formed at least within a part of the region of the second wiring layer facing the signal wiring line of the first wiring layer.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Satoshi Isa, Mitsuaki Katagiri
  • Publication number: 20130320516
    Abstract: Disclosed herein are a semiconductor package and a method of manufacturing the same, the semiconductor package including: a molding member having a cavity formed therein; a device mounted in the cavity; an insulating member formed inside the cavity and on and/or beneath the molding member and the device; a circuit layer formed on the insulating member, and including vias and connection pads electrically connected with the device; a solder resist layer formed on the circuit layer, and having openings exposing upper portions of the connection pads; and solder balls formed in the openings.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 5, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Doo Hwan Lee, Tae Sung Jeong, Yul Kyo Chung
  • Publication number: 20130313705
    Abstract: A method and structures are provided for implementing decoupling capacitors within a DRAM TSV stack. A DRAM is formed with a plurality of TSVs extending completely through the substrate and filled with a conducting material. A layer of glass is grown on both the top and bottom of the DRAM providing an insulator. A layer of metal is grown on each glass layer providing a conductor. The metal and glass layers are etched through to TSVs with a gap provided around the perimeter of via pads. A respective solder ball is formed on the TSVs to connect to another DRAM chip in the DRAM TSV stack. The metal layers are connected to at least one TSV by one respective solder ball and are connected to a voltage source and a dielectric is inserted between the metal layers in the DRAM TSV stack to complete the decoupling capacitor.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joab D. Henderson, Kyu-hyoun Kim, Warren E. Maule, Kenneth L. Wright
  • Patent number: 8586467
    Abstract: In flip chip attach of electronic components, underfill is filled between the component and the substrate to alleviate, for example, thermal stress. In electronic component mounting using copper pillars conducted so far, filler contained in the underfill may cause separation in the process of heating and curing the resin. Disclosed is plating the surfaces of the copper pillars with solder. Mobilization of the filler charged in the underfill due to electric fields produced by local cells that are developed upon contact between dissimilar metals, is suppressed, and occurrence of crack at connection portions is obviated. Thus, connection reliability is increased.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 19, 2013
    Assignee: Namics Corporation
    Inventors: Osamu Suzuki, Seiichi Ishikawa, Haruyuki Yoshii
  • Publication number: 20130299977
    Abstract: A chip package includes a stack of semiconductor dies or chips that are offset from each other, thereby defining a terrace with exposed pads. Moreover, surfaces of each of the semiconductor dies in the stepped terrace include two rows of first pads approximately parallel to edges of the semiconductor dies. Furthermore, the chip package includes a high-bandwidth ramp component, which is positioned approximately parallel to the terrace, and which has a surface that includes second pads arranged in at least two rows of second pads for each of the semiconductor dies. The second pads are electrically and mechanically coupled to the exposed first pads by connectors. Consequently, the electrical contacts in the chip package may have a conductive, a capacitive or, in general, a complex impedance. Furthermore, the chips and/or the ramp component may be positioned relative to each other using a ball-and-pit alignment technique.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Michael H. S. Dayringer, Nyles I. Nettleton, Robert David Hopkins, II
  • Patent number: 8580609
    Abstract: A semiconductor device comprising: a lower semiconductor package that comprises a first set of one or more semiconductor dies, an upper semiconductor package that is stacked on the lower semiconductor package, the upper semiconductor package comprises a second set of one or more semiconductor dies, and a first interconnect pad that is embedded in a top side of the lower semiconductor package to couple the upper semiconductor package to the lower semiconductor package.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: November 12, 2013
    Assignee: Intel Corporation
    Inventors: Ke Xiao, Henry K. Hong, Gunaranjan Viswanathan
  • Patent number: 8580673
    Abstract: Underfill flow guide structures and methods of using the same are provided with a module. In particular the underfill flow guide structures are integrated with a substrate and are configured to prevent air entrapment from occurring during capillary underfill processes.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 12, 2013
    Assignee: Ultratech, Inc.
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Marie-Claude Paquet, Wolfgang Sauter, Timothy D. Sullivan