Complementary Mis (epo) Patents (Class 257/E27.062)
  • Patent number: 8901665
    Abstract: The present disclosure provides a method of semiconductor fabrication including forming an inter-layer dielectric (ILD) layer on a semiconductor substrate. The ILD layer has an opening defined by sidewalls of the ILD layer. A spacer element is formed on the sidewalls of the ILD layer. A gate structure is formed in the opening adjacent the spacer element. In an embodiment, the sidewall spacer also for a decrease in the dimensions (e.g., length) of the gate structure formed in the opening.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Andrew Joseph Kelly, Pei-Shan Chien, Yung-Ta Li, Chan Syun Yang
  • Patent number: 8901666
    Abstract: A semiconducting graphene structure may include a graphene material and a graphene-lattice matching material over at least a portion of the graphene material, wherein the graphene-lattice matching material has a lattice constant within about ±5% of a multiple of the lattice constant or bond length of the graphene material. The semiconducting graphene structure may have an energy band gap of at least about 0.5 eV. A method of modifying an energy band gap of a graphene material may include forming a graphene-lattice matching material over at least a portion of a graphene material, the graphene-lattice matching material having a lattice constant within about ±5% of a multiple of the lattice constant or bond length of the graphene material.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey
  • Patent number: 8890257
    Abstract: Disclosed is a damascene method for forming a semiconductor structure and the resulting semiconductor structure having multiple fin-shaped channel regions with different widths. In the method, fin-shaped channel regions are etched using differently configured isolating caps as masks to define the different widths. For example, a wide width isolating cap can comprise a dielectric body positioned laterally between dielectric spacers and can be used as a mask to define a relatively wide width channel region; a medium width isolating cap can comprise a dielectric body alone and can be used as a mask to define a medium width channel region and/or a narrow width isolating cap can comprise a dielectric spacer alone and can be used as a mask to define a relatively narrow width channel region. These multiple fin-shaped channel regions with different widths can be incorporated into either multiple multi-gate field effect transistors (MUGFETs) or a single MUGFET.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8884372
    Abstract: At least one analog signal compatible complementary metal oxide semiconductor (CMOS) switch circuit is incorporated with digital logic circuits in an integrated circuit. The integrated circuit may further comprise a digital processor and memory, e.g., microcontroller, microprocessor, digital signal processor (DSP), programmable logic array (PLA), application specific integrated circuit (ASIC), etc., for controlling operation of the at least one analog signal compatible CMOS switch for switching analog signals, e.g., audio, video, serial communications, etc. The at least one analog signal compatible CMOS switch may have first and second states, e.g., single throw “on” or “off”, or double throw common to a or b, controlled by a single digital control signal of either a logic “0” or a logic “1”.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: November 11, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: James K. Russell
  • Patent number: 8878301
    Abstract: A semiconductor device includes core transistors for forming a logic circuit, and I/O transistors for forming an input/output circuit. A distance from the main surface to a lowermost part of an n-type impurity region NR of the I/O n-type transistor is longer than that from the main surface to a lowermost part of an n-type impurity region NR of the core n-type transistor. A distance from the main surface to a lowermost part of a p-type impurity region PR of the I/O p-type transistor is longer than that from the main surface to a lowermost part of a p-type impurity region of the core p-type transistor. A distance from the main surface to the lowermost part of the n-type impurity region of the I/O n-type transistor is longer than that from the main surface to the lowermost part of the p-type impurity region of the I/O p-type transistor.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: November 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Hirano
  • Patent number: 8877581
    Abstract: An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Amitabh Jain, Deborah J. Riley
  • Patent number: 8872272
    Abstract: A method for fabricating a stress enhanced CMOS circuit includes forming a first plurality of MOS transistors at a first pitch and forming a second plurality of MOS transistors at a second pitch. The second pitch is larger than the first pitch. The method further includes depositing a single stress liner overlying the first and second plurality of MOS transistors. The single stress liner is the only stress liner deposited in the fabrication of the stress enhanced CMOS circuit. A stress enhanced CMOS circuit includes a first plurality of MOS transistors formed at a first pitch and a second plurality of MOS transistors formed at a second pitch. The second pitch is larger than the first pitch. The circuit further includes a single stress liner overlying the first and second plurality of MOS transistors. The single stress liner is the only stress liner formed on the stress enhanced CMOS circuit.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: October 28, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Stefan Flachowsky, Jan Hoentschel
  • Patent number: 8860143
    Abstract: A semiconductor structure is provided. The semiconductor structure comprises: a substrate; a gate dielectric layer formed on the substrate; a metal gate electrode layer formed on the gate dielectric layer; and at least one metal-containing adjusting layer for adjusting a work function of the semiconductor structure, in which an interfacial layer is formed between the substrate and the gate dielectric layer, and an energy of bond between a metal atom in the metal-containing adjusting layer and an oxygen atom is larger than that between an atom of materials forming the gate dielectric layer or the interfacial layer and an oxygen atom. Further, a method for forming the semiconductor structure is also provided.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 14, 2014
    Assignee: Tsinghua University
    Inventors: Mei Zhao, Renrong Liang, Jing Wang, Jun Xu
  • Patent number: 8860177
    Abstract: An antifuse of a semiconductor device includes a semiconductor substrate including a device isolation layer and an active region, a gate structure extending across an interface between the device isolation layer and the active region, a contact coupled to at least a portion of a sidewall of the gate structure, and a metal interconnection provided on the contact and gate structure.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 14, 2014
    Assignee: SK hynix Inc.
    Inventor: Chi Hwan Jang
  • Patent number: 8853787
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8847322
    Abstract: A dual polysilicon gate of a semiconductor device includes a substrate having a first region, a second region, and a third region, and a channel region with a protrusion structure formed in the substrate of the first region, a gate insulating layer formed over the substrate, a first polysilicon layer filling the channel region, and formed over the gate insulating layer of the first and second regions, a second polysilicon layer formed over the gate insulating layer of the third region, and an insulating layer doped with an impurity, and disposed inside the first polysilicon layer in the channel region.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: September 30, 2014
    Assignee: SK hynix Inc.
    Inventors: Kwan-Yong Lim, Heung-Jae Cho, Min-Gyu Sung
  • Patent number: 8846467
    Abstract: A method for performing silicidation of a gate electrode is provided that includes forming both a first transistor with a first gate electrode covered by a cap layer and a semiconductor device on the same semiconductor substrate, forming an organic planarization layer (OPL) on the first transistor and the semiconductor device, back etching the OPL such that an upper surface of the OPL is positioned at a level that is below a level of an upper surface of the cap layer, forming a mask layer covering the semiconductor device without covering the first transistor, removing the cap layer while the back-etched OPL and the mask layer are present, and performing silicidation of the first gate electrode.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: September 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Roman Boschke, Stefan Flachowsky, Matthias Kessler
  • Patent number: 8847329
    Abstract: A first gate level feature forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second gate level feature forms a gate electrode of a second transistor of the first transistor type. A third gate level feature forms a gate electrode of a second transistor of the second transistor type. The gate electrodes of the second transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first transistors of the first and second transistor types are positioned. The gate electrodes of the second transistors of the first and second transistor types are electrically connected to each other through an electrical connection that includes two conductive contacting structures at a location not over an inner non-diffusion region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 30, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8836009
    Abstract: A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 ?s and ±16 V program/erase. This is achieved using As+-implanted higher ? trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO2—LaAlO3]—[Ge—HfON]—[LaAlO3—SiO2]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si3N4-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 106 cycles, under very fast 100 ?s and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: September 16, 2014
    Assignee: National Chiao Tung University
    Inventors: Albert Chin, Chun-Yang Tsai
  • Patent number: 8836041
    Abstract: Silicon germanium regions are formed adjacent gates electrodes over both n-type and p-type regions in an integrated circuit. A hard mask patterned by lithography then protects structures over the p-type region while the silicon germanium is selectively removed from over the n-type region, even under remnants of the hard mask on sidewall spacers on the gate electrode. Silicon germanium carbon is epitaxially grown adjacent the gate electrode in place of the removed silicon germanium, and source/drain extension implants are performed prior to removal of the remaining hard mask over the p-type region structures.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 16, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicholas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 8836039
    Abstract: A semiconductor device includes a high dielectric gate insulating film formed on a substrate, and a metal gate electrode formed on the high dielectric gate insulating film. The metal gate electrode includes a crystalline portion and an amorphous portion. A halogen element is eccentrically located in the amorphous portion.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Panasonic Corporation
    Inventors: Jun Suzuki, Hiroshi Nakagawa
  • Patent number: 8836040
    Abstract: A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Pratyush Kamal, Esin Terzioglu, Foua Vang, Prayag Bhanubhai Patel, Giridhar Nallapati, Animesh Datta
  • Patent number: 8828819
    Abstract: Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 9, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephen Kronholz, Markus Lenski, Vassilios Papageorgiou
  • Patent number: 8823108
    Abstract: A method of manufacturing a memory device includes an nMOS region and a pMOS region in a substrate. A first gate is defined within the nMOS region, and a second gate is defined in the pMOS region. Disposable spacers are simultaneously defined about the first and second gates. The nMOS and pMOS regions are selectively masked, one at a time, and LDD and Halo implants performed using the same masks as the source/drain implants for each region, by etching back spacers between source/drain implant and LDD/Halo implants. All transistor doping steps, including enhancement, gate and well doping, can be performed using a single mask for each of the NMOS and pMOS regions. Channel length can also be tailored by trimming spacers in one of the regions prior to source/drain doping.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Suraj Mathew
  • Patent number: 8823110
    Abstract: Disclosed is a semiconductor device including a first MISFET of an n channel type and a second MISFET of a p channel type, each of the MISFETs being configured with a gate insulating film featuring a silicon oxide film or a silicon oxynitride film and a gate electrode including a conductive silicon film positioned on the gate insulating film. Metal elements such as Hf are introduced near the interface between the gate electrode and the gate insulating film in both the first and second MISFETs such that metal atoms with a surface density of 1×1013 to 5×1014 atoms/cm2 are contained near the interface and each of the first and second MISFETs having a channel region containing an impurity the concentration of which is equal to or lower than 1.2×1018/cm3.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 2, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuhiro Shimamoto, Jiro Yugami, Masao Inoue, Masaharu Mizutani
  • Patent number: 8809959
    Abstract: The performances of a semiconductor device are improved. The device includes a first MISFET in which hafnium is added to the gate electrode side of a first gate insulation film including silicon oxynitride, and a second MISFET in which hafnium is added to the gate electrode side of a second gate insulation film including silicon oxynitride. The hafnium concentration in the second gate insulation film of the second MISFET is set smaller than the hafnium concentration in the first gate insulation film of the first MISFET; and the nitrogen concentration in the second gate insulation film of the second MISFET is set smaller than the nitrogen concentration in the first gate insulation film of the first MISFET. As a result, the threshold voltage of the second MISFET is adjusted to be smaller than the threshold voltage of the first MISFET.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 19, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiromasa Yoshimori, Hirofumi Shinohara, Toshiaki Iwamatsu
  • Patent number: 8809940
    Abstract: A FinFET is described, the FinFET includes a substrate including a top surface and a first insulation region and a second insulation region over the substrate top surface comprising tapered top surfaces. The FinFET further includes a fin of the substrate extending above the substrate top surface between the first and second insulation regions, wherein the fin includes a recessed portion having a top surface lower than the tapered top surfaces of the first and second insulation regions, wherein the fin includes a non-recessed portion having a top surface higher than the tapered top surfaces. The FinFET further includes a gate stack over the non-recessed portion of the fin.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Ta Lin, Chu-Yun Fu, Shin-Yeh Huang, Shu-Tine Yang, Hung-Ming Chen
  • Patent number: 8803243
    Abstract: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yue Liang, Dureseti Chidambarrao, Brian J. Greene, William K. Henson, Unoh Kwon, Shreesh Narasimha, Xiaojun Yu
  • Patent number: 8796780
    Abstract: Provided is a semiconductor device capable of having a single metal/dual high-k structure with a good shape and having flat band voltages suited for nMOS and pMOS, respectively. The semiconductor device according to the one embodiment of the present invention has a first conductivity type MOSFET and a second conductivity type MOSFET. The first and second conductivity type MOSFETs are each equipped with a first insulating film formed over a semiconductor substrate, a second insulating film formed over the first insulating film and made of an insulating material having a higher dielectric constant than the first insulating film, and a gate electrode formed over the second insulating film and having, as a lower layer of the gate electrode, a metal layer containing a material which diffuses into the second insulating film to control a work function thereof.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 5, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiki Yamamoto, Yukio Nishida, Jiro Yugami
  • Patent number: 8786032
    Abstract: The present application provides a p-type semiconductor device and a method for manufacturing the same. The structure of the device comprises: a semiconductor substrate; a channel region positioned in the semiconductor substrate; a gate stack which is positioned on the channel region comprising a gate dielectric layer and a gate electrode, wherein the gate dielectric layer is positioned on the channel region and the gate electrode is positioned on the gate dielectric layer; and source/drain regions positioned at the two sides of the channel region and embedded into the semiconductor substrate; wherein the element Al is distributed in at least one of the upper surface, the bottom surface of the gate dielectric layer and the bottom surface of the gate electrode. The embodiments of the present invention are applicable for manufacturing MOSFET.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: July 22, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Gaobo Xu, Qiuxia Xu
  • Patent number: 8779524
    Abstract: A semiconductor device includes a first-conductivity-type first MIS transistor and a second-conductivity-type second MIS transistor. The first and second MIS transistors include a first and a second gate insulating film formed on a first and a second active region surrounded by a separation region of a semiconductor substrate, and a first and a second gate electrode formed on the first and second gate insulating films. The first and second gate insulating films are separated from each other on a first separation region of the separation region. A distance s between first ends of the first and second active regions facing each other with the first separation region being interposed therebetween, and a protrusion amount d1 from the first end of the first active region to a first end of the first gate insulating film located on the first separation region establish a relationship d1<0.5s.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Yoshiya Moriyama, Hiromasa Fujimoto, Satoru Itou, Susumu Akamatsu, Hiroshi Ohkawa
  • Patent number: 8778772
    Abstract: Methods of forming transistor devices having an increased gate width dimension are disclosed. In one example, the method includes forming an isolation structure in a semiconducting substrate, wherein the isolation structure defines an active region in the substrate, performing an ion implantation process on the isolation structure to create a damaged region in the isolation structure and, after performing the implantation process, performing an etching process to remove at least a portion of the damaged region to define a recess in the isolation structure, wherein a portion of the recess extends below an upper surface of the substrate and exposes a sidewall of the active region. The method further includes forming a gate insulation layer above the active region, wherein a portion of the insulation layer extends into the recess, and forming a gate electrode above the insulation layer, wherein a portion of the gate electrode extends into the recess.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 15, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Chung Foong Tan, Maciej Wiatr, Peter Javorka, Falong Zhou
  • Patent number: 8779522
    Abstract: To provide a technique capable of improving the reliability of a semiconductor device even if the downsizing thereof is advanced. The technical idea of the present invention lies in the configuration in which in a first to a third silicon nitride film to be formed by lamination, the respective film thicknesses thereof are not constant but become smaller in order from the third silicon nitride film in the upper layer to the first silicon nitride film in the lower layer while the total film thickness thereof is kept constant. Due to this it is possible to improve the embedding characteristic of the third silicon nitride film in the uppermost layer in particular, while ensuring the tensile stress of the first to third silicon nitride films, which makes effective the strained silicon technique.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yuki Koide
  • Patent number: 8765558
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include within a semiconductor substrate a first gate located over a first active region of a first polarity and a second gate located over a second active region of a second polarity different than the first polarity. The first active region and the second active region are separated by an isolation region. The first gate and the second gate are co-linear, with facing endwalls that terminate over the isolation region. The facing endwalls do not have a spacer located or formed adjacent or adjoining thereto, although sidewalls of the first gate and the second gate do. The CMOS structure may be fabricated using a sequential replacement gate method.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8766370
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate having a first region and a second region, a pMOS transistor formed over the first region and an nMOS formed over the second region. The pMOS transistor has a gate structure that includes: an interfacial layer formed over the substrate; a AlOx layer formed over the interfacial layer; and a metal layer including Mo or W formed over the AlOx layer. The nMOS transistor has a gate structure that includes: the interfacial layer formed over the substrate; a DyOx layer formed over the interfacial layer; and the metal layer including Mo or W formed over the DyOx layer.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jacob Christopher Hooker, Raghunath Singanamalla, Jasmine Petry
  • Patent number: 8766363
    Abstract: Methods and structures for forming a localized silicon-on-insulator (SOI) finFET are disclosed. Fins are formed on a bulk substrate. Nitride spacers protect the fin sidewalls. A shallow trench isolation region is deposited over the fins. An oxidation process causes oxygen to diffuse through the shallow trench isolation region and into the underlying silicon. The oxygen reacts with the silicon to form oxide, which provides electrical isolation for the fins. The shallow trench isolation region is in direct physical contact with the fins and/or the nitride spacers that are disposed on the fins.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Veeraraghavan S. Basker, Bruce B. Doris, Ali Khakifirooz, Kern Rim
  • Patent number: 8759918
    Abstract: A semiconductor device includes two Dt-MOS transistors each having insulation regions respectively under the source and drain regions, the two Dt-MOS transistors sharing a diffusion region as a source region of one Dt-MOS transistor and a drain region of the other Dt-MOS transistor, wherein the insulation regions have respective bottom edges located lower than bottom edges of respective body regions of the Dt-MOS transistors, and wherein the bottom edges of the respective body regions are located deeper than respective bottom edges of the source and drain regions of the Dt-MOS transistors.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: June 24, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Youichi Momiyama
  • Patent number: 8749062
    Abstract: A semiconductor device having a contact structure is provided. The semiconductor device includes: a conductive region; a first film and a second film which are formed over the conductive region to realize a layer; and a contact electrode which extends through the layer to the conductive region, and is formed so as to replace a portion of the layer with a portion of the contact electrode, where the portion of the layer is constituted by only the first film, only the second film, or both of a portion of the first film and a portion of the second film, and the portion of the first film occupies a major part of the portion of the layer.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: June 10, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroshi Morioka, Jusuke Ogura, Sergey Pidin
  • Patent number: 8748991
    Abstract: A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a high-k dielectric having a high dielectric constant greater than approximately 3.9, a germanium (Ge) material layer interfacing with the high-k dielectric, and a conductive electrode layer disposed above the high-k dielectric or the Ge material layer. The gate stack optimizes a shift of the flatband voltage or the threshold voltage to obtain high performance in p-FET devices.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Takashi Ando, Vijay Narayanan
  • Patent number: 8742475
    Abstract: In one aspect of the present invention, a field effect transistor (FET) device includes a first FET including a dielectric layer disposed on a substrate, a first portion of a first metal layer disposed on the dielectric layer, and a second metal layer disposed on the first metal layer, a second FET including a second portion of the first metal layer disposed on the dielectric layer, and a boundary region separating the first FET from the second FET.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8742511
    Abstract: A transistor device includes multiple planar layers of channel material connecting a source region and a drain region, where the planar layers are formed in a stack of layers of a channel material; and a gate conductor formed around and between the planar layers of channel material.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8742512
    Abstract: A semiconductor device according to the invention includes: a first region on a semiconductor substrate, in which a first transistor is formed, the first transistor including first gate insulating film 4 containing a high dielectric constant material and first metal gate electrode 5 formed on first gate insulating film 4; a second region adjacent to the first region on the semiconductor substrate, in which a second transistor is formed, the second transistor including second gate insulating film 4 and second metal gate electrode 12 formed on the second gate insulating film, a layered structure of electrode materials of the second transistor being different from a layered structure of electrode materials of the first transistor; and a first and a second line, the lines being of different potentials, wherein a border between the first and the second region overlaps with at most only the first or the second line.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 3, 2014
    Inventor: Takeshi Kishida
  • Patent number: 8735903
    Abstract: Layer structures for use in density of states (“DOS”) engineered FETs are described. One embodiment comprises a layer structure for use in fabricating an n-channel transistor. The layer structure includes a first semiconductor layer having a conduction band minimum EC1; a second semiconductor layer having a discrete hole level H0; a wide bandgap semiconductor barrier layer disposed between the first and the second semiconductor layers; a gate dielectric layer disposed above the first semiconductor layer; and a gate metal layer disposed above the gate dielectric layer; wherein the discrete hole level H0 is positioned below the conduction band minimum Ec1 for zero bias applied to the gate metal layer.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Matthias Passlack
  • Patent number: 8735995
    Abstract: A first gate level feature forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second gate level feature forms a gate electrode of a second transistor of the first transistor type. A third gate level feature forms a gate electrode of a second transistor of the second transistor type. The gate electrodes of the second transistors of the first and second transistor types are electrically connected to each other. The gate electrodes of the second transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first transistors of the first and second transistor types are positioned.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729641
    Abstract: A semiconductor device includes a first, second, and third MIS transistors of a first conductivity type respectively including a first, second, and third gate electrodes on a first, second, and third active regions of a semiconductor substrate with a first, second, and third gate insulating films interposed therebetween. The first gate insulating film is formed of a first silicon oxide film and a first high-k insulating film on the first silicon oxide film. The second gate insulating film is formed of a second silicon oxide film and a second high-k insulating film on the second silicon oxide film. The third gate insulating film is formed of a third silicon oxide film and a third high-k insulating film on the third silicon oxide film. The second silicon oxide film has a same thickness as the first silicon oxide film, and a greater thickness than the third silicon oxide film.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventor: Susumu Akamatsu
  • Patent number: 8729643
    Abstract: A first conductive gate level feature forms a gate electrode of a first transistor of a first transistor type. A second conductive gate level feature forms a gate electrode of a first transistor of a second transistor type. A third conductive gate level feature forms a gate electrode of a second transistor of the first transistor type. A fourth conductive gate level feature forms a gate electrode of a second transistor of the second transistor type. A first contact connects to the first conductive gate level feature over an inner non-diffusion region. The first and fourth conductive gate level features are electrically connected through the first contact. A second contact connects to the third conductive gate level feature over the inner non-diffusion region and is offset from the first contact. The third and second conductive gate level features are electrically connected through the second contact.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729636
    Abstract: Integrated circuit comprising a substrate carrying at least one transistor comprising an alternating grid (1) of source and drain regions (D, S) separated by a grid (14) of gate regions, e.g. a checkerboard pattern of source and drain regions. The source regions (S) are vertically connected to a first metal layer and the drain regions (D) are vertically connected to a second metal layer. At least one of the first metal layer and the second metal layer comprises a metal grid (30, 40) of a plurality of interconnected metal portions (32, 42) arranged such that said grid comprises a plurality of gaps (34, 44) for connecting respective substrate portions to a further metal layer. Method for manufacturing such an integrated circuit.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: May 20, 2014
    Assignee: NXP B.V.
    Inventor: Jeroen Van Den Boom
  • Patent number: 8729615
    Abstract: A semiconductor memory device has a memory cell region and a peripheral region. The device includes low voltage transistors at the peripheral region having gate insulation films with different thicknesses. For example, a gate insulation film of a low voltage transistor used in an input/output circuit of the memory device may be thinner than the gate insulation film of a low voltage transistor used in a core circuit for the memory device. Since low voltage transistors used at an input/output circuit are formed to be different from low voltage transistors used at a core circuit or a high voltage pump circuit, high speed operation and low power consumption characteristics of a non-volatile memory device may be.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Hyun Lee, Young-Woo Park, Kye-Hyun Kyung, Cheon-An Lee, Sung-il Chang, Chul Bum Kim
  • Patent number: 8729638
    Abstract: A method for making FinFETs and semiconductor structures formed therefrom is disclosed, comprising: providing a SiGe layer on a Si semiconductor substrate and a Si layer on the SiGe layer, wherein the lattice constant of the SiGe layer matches that of the substrate; patterning the Si layer and the SiGe layer to form a Fin structure; forming a gate stack on top and both sides of the Fin structure and a spacer surrounding the gate stack; removing a portion of the Si layer which is outside the spacer with the spacer as a mask, while keeping a portion of the Si layer which is inside the spacer; removing a portion of the SiGe layer which is kept after the patterning, to form a void; forming an insulator in the void; and epitaxially growing stressed source and drain regions on both sides of the Fin structure and the insulator.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 20, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8723266
    Abstract: The embodiments of processes and structures described provide mechanisms for improving the mobility of carriers. A dislocation is formed in a source or drain region between gate structures or between a gate structure and an isolation structure by first amortizing the source or drain region and then recrystallizing the region by using an annealing process with a low pre-heat temperature. A doped epitaxial material may be formed over the recrystallized region. The dislocation and the strain created by the doped epitaxial material in the source or drain region help increase carrier mobility.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 13, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Tsan-Chun Wang
  • Publication number: 20140124869
    Abstract: A semiconductor device includes a first NMOS device with a first threshold voltage and a second NMOS device with a second threshold voltage. The first NMOS device includes a first gate structure over a semiconductor substrate, first source/drain (S/D) regions in the semiconductor substrate and adjacent to opposite edges of the first gate structure. The first S/D regions are free of dislocation. The second NMOS device includes a second gate structure over the semiconductor substrate, second S/D regions in the semiconductor substrate and adjacent to opposite edges of the second gate structure, and a dislocation in the second S/D regions.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay Chuang, Ming Zhu
  • Publication number: 20140124794
    Abstract: Generally, the present disclosure is directed to methods for forming reverse shallow trench isolation structures with super-steep retrograde wells for use with field effect transistor elements. One illustrative method disclosed herein includes performing a thermal oxidation process to form a layer of thermal oxide material on a semiconductor layer of a semiconductor substrate, and forming a plurality of openings in the layer of thermal oxide material to form a plurality of isolation regions from the layer of thermal oxide material, wherein each of the plurality of openings exposes a respective surface region of the semiconductor layer.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: Globalfoundries Inc.
    Inventors: Tong Weihua, Krishnan Bharat, Lun Zhao, Kim Seung, Lee Yongmeng, Kim Sun
  • Patent number: 8716102
    Abstract: A method includes forming a patterned mask comprised of a polish stop layer positioned above a protection layer above a substrate, performing at least one etching process through the patterned mask layer on the substrate to define a trench in the substrate, and forming a layer of silicon dioxide above the patterned mask layer such that the layer of silicon dioxide overfills the trench. The method also includes removing portions of the layer of silicon dioxide positioned outside of the trench to define an isolation structure, performing a dry, selective chemical oxide etching process that removes silicon dioxide selectively relative to the material of the polish stop layer to reduce an overall height of the isolation structure, and performing a selective wet etching process to remove the polish stop layer selectively relative to the isolation region.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 6, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Frank Jakubowski, Joerg Radecker, Joanna Wasyluk
  • Publication number: 20140110792
    Abstract: A semiconductor device includes a PFET transistor (a PMOS FET) having a poly(silicon) layer with a p-type doped portion and an n-type doped portion. The p-type doped portion is located above a channel region of the transistor and the n-type doped portion is located in an end portion of the poly layer outside the channel region. The poly layer may be formed by doping portions of an amorphous silicon layer with either the p-type dopant or the n-type dopant and then annealing the amorphous silicon layer to diffuse the dopants and crystallize the amorphous silicon to form polysilicon. The n-type doped portion of the poly layer may provide an electrical shunt in the end portion of the poly layer to reduce any effects of insufficient diffusion of the p-type dopant in the poly layer.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: APPLE INC.
    Inventor: Date Jan Willem Noorlag
  • Publication number: 20140110791
    Abstract: A method for manufacturing a dual workfunction semiconductor device using a hybrid gate last integration scheme is described. According to one embodiment, the method includes heat-treating a first high-k film at a first heat-treating temperature to diffuse a first chemical element from a first cap layer into the first high-k film in a device region to form a first modified high-k film. The method further includes a gate-last processing scheme to form recessed features defined by sidewall spacers in the device regions and depositing a second high-k film in the recessed features. Some embodiments include forming an oxygen scavenging layer on the first high-k film, where the heat-treating the first high-k film scavenges oxygen from an interface layer to eliminate or reduce the thickness of an interface layer.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Robert D. Clark