Field-effect Transistor With Insulated Gate (epo) Patents (Class 257/E27.06)
  • Patent number: 12048147
    Abstract: A structure includes first and second active areas, first and second gates and a data line. The first gate is continuous and crosses over the first active area and the second active area. The first gate corresponds to gate terminals of first and second transistors, and first source/drain regions of the first and the second active areas correspond to first source/drain terminals of the first and second transistors. The second gate includes first and second gate portions electrically isolated from each other. The first and second gate portions correspond to gate terminals of third and fourth transistors, respectively. The first gate portion crosses over the first active area, and the second gate portion crosses over the second active area. The first data line is coupled to the first source/drain regions of the first active area and the second active area.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Sheng Chang, Chia-En Huang, Wan-Hsueh Cheng, Yao-Jen Yang, Yih Wang
  • Patent number: 12044941
    Abstract: A display device is provided and includes display unit comprising common electrodes two dimensionally arrayed on substrate, drive signal lines configured to transmit drive signals for touch detection to common electrodes, and switch circuit comprising transistors connected to drive signal lines to select at least one common electrode; flexible substrate connected to substrate; pads at connections of flexible substrate and substrate; and touch detection circuit configured to transmit drive signals to common electrodes, wherein: transistors comprises: first transistor connected to first electrode of common electrodes via first wiring of first length; and second transistor connected to second electrode of common electrodes via second wiring of second length; channel width of first transistor is narrower than channel width of second transistor; drive signal lines are respectively connected to pads separated at two or more positions.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: July 23, 2024
    Assignee: Japan Display Inc.
    Inventor: Gen Koide
  • Patent number: 12046630
    Abstract: The present disclosure provides a manufacturing method of a semiconductor structure and a semiconductor structure, and relates to the technical field of semiconductors. The manufacturing method includes: providing a base, wherein the base is provided with an active region; forming a gate layer on the base; forming isolation structures on a periphery of the gate layer, wherein in a direction away from the gate layer, each of the isolation structures at least includes a hollow portion and an isolation portion; forming an insulating structure on top surfaces of the isolation structures; forming contact plugs, wherein the contact plugs penetrate the insulating structure; an end of each of the contact plugs close to the base is electrically connected to the active region; each of the contact plugs is located on a side of each of the isolation structures away from the gate layer.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: July 23, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Qiang Wan, Kangshu Zhan, Jun Xia, Sen Li, Penghui Xu, Tao Liu
  • Patent number: 12046593
    Abstract: The present disclosure relates to a semiconductor device and a fabrication method thereof. The semiconductor device includes a substrate, a first nitride semiconductor layer disposed on the substrate, a second nitride semiconductor layer disposed on the first nitride semiconductor layer and having a bandgap greater than that of the first nitride semiconductor layer. The semiconductor device further includes a first gate conductor disposed on a first region of the second nitride semiconductor layer, a passivation layer covering the first gate conductor, and a second gate conductor disposed on the passivation layer and on a second region of the second nitride semiconductor layer, wherein the first region is laterally spaced apart from the second region.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: July 23, 2024
    Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.
    Inventors: Danfeng Mao, King Yuen Wong, Jinhan Zhang, Xiaoyan Zhang, Wei Wang, Jianjian Sheng
  • Patent number: 12040007
    Abstract: A semiconductor device with reduced power consumption is provided. The semiconductor device includes a transmitter unit, a receiver unit, a bias-outputting unit, and a controller unit. The bias-outputting unit has a plurality of memory units. The plurality of memory units each retains information to determine transmission power. The receiver unit receives a request signal transmitted from a base station and supplies it to the controller unit. The controller unit selects one of the plurality of memory units according to the request signal. The memory unit has an OS transistor and retains information when power supply is stopped.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 16, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Munehiro Kozuma, Takayuki Ikeda, Kei Takahashi, Takeshi Aoki
  • Patent number: 12033898
    Abstract: In an embodiment, a method for fabricating a FinFET device includes providing a semiconductor substrate, etching the semiconductor substrate to form dummy fins and active fins. The group of dummy fins is etched through a patterned mask layer. An isolation feature is formed on the semiconductor substrate after etching the first group of dummy fins.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: July 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Joanna Chaw Yane Yin, Chi-Hsi Wu, Kuo-Chiang Ting, Kuang-Hsin Chen
  • Patent number: 12026609
    Abstract: A resistive processing unit (RPU) that includes a pair of transistors connected in series providing an update function for a weight of a training methodology to the RPU, and a read transistor for reading the weight of the training methodology. In some embodiments, the resistive processing unit (RPU) further includes a capacitor connecting a gate of the read transistor to the air of transistors providing the update function for the resistive processing unit (RPU). The capacitor stores said weight of training methodology for the RPU.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: July 2, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tayfun Gokmen, Seyoung Kim, Dennis M. Newns, Yurii A. Vlasov
  • Patent number: 12022651
    Abstract: The present disclosure relates to a method of forming a flash memory structure. The method includes forming a sacrificial material over a substrate, and forming a plurality of trenches extending through the sacrificial material to within the substrate. A dielectric material is formed within the plurality of trenches. The dielectric material is selectively etched, according to a mask that is directly over the dielectric material, to form depressions along edges of the plurality of trenches. The sacrificial material between neighboring ones of the depressions is removed to form a floating gate recess. A floating gate material is formed within the floating gate recess and the neighboring ones of the depressions.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: June 25, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Shu Huang, Ming Chyi Liu
  • Patent number: 12015061
    Abstract: A radio frequency (RF) switch is provided. The RF switch is configured to switch a RF signal input to a first terminal. The RF switch includes a first transistor, disposed at a first distance from the first terminal, and configured to switch the RF signal, and a second transistor, disposed at a second distance from the first terminal, and configured to switch the RF signal. The first distance is shorter than the second distance, and a number of first contact vias formed in a first electrode in the first transistor is greater than a number of second contact vias formed in a second electrode of the second transistor.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: June 18, 2024
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jongmo Lim, Wonsun Hwang, Byeonghak Jo, Yoosam Na, Youngsik Hur
  • Patent number: 12009400
    Abstract: A method includes forming a dielectric layer on a semiconductor workpiece, forming a first patterned layer of a first dipole material on the dielectric layer, and performing a first thermal drive-in operation at a first temperature to form a diffusion feature in a first portion of the dielectric layer beneath the first patterned layer. The method also includes forming a second patterned layer of a second dipole material, where a first section of the second patterned layer is on the diffusion feature and a second section of the second patterned layer is offset from the diffusion feature. The method further includes performing a second thermal drive-in operation at a second temperature, where the second temperature is less than the first temperature. The method additionally includes forming a gate electrode layer on the dielectric layer.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: June 11, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yung-Hsiang Chan, Shan-Mei Liao, Wen-Hung Huang, Jian-Hao Chen, Kuo-Feng Yu, Mei-Yun Wang
  • Patent number: 11996323
    Abstract: A semiconductor device includes a plurality of gate electrodes over a substrate, and a source/drain epitaxial layer. The source/drain epitaxial layer is disposed in the substrate and between two adjacent gate electrodes, wherein a bottom surface of the source/drain epitaxial layer is buried in the substrate to a depth less than or equal to two-thirds of a spacing between the two adjacent gate electrodes.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Victor Chiang Liang, Chung-Hao Chu, Ching-Yu Yang
  • Patent number: 11989427
    Abstract: Methods, systems, and devices for transistor configurations for vertical memory arrays are described. A memory device may implement a multi-transistor architecture, such as a two-transistor architecture, that is operable to couple pillars with bit lines. For example, a memory device may include a conductive pillar that extends through levels of a memory array. The pillar may be coupled with a first bit line via a first transistor and coupled with a second bit line via a second transistor. To access a memory cell coupled with the pillar, the memory device may bias a word line coupled with the memory cell to a first access voltage, bias one of the bit lines to a second access voltage, activate one of the transistors to couple the pillar with the one of the bit lines, and deactivate the other transistor to isolate the pillar from the other of the bit lines.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: May 21, 2024
    Inventor: Ferdinando Bedeschi
  • Patent number: 11990531
    Abstract: A tunneling field-effect transistor (TFET) device is disclosed. A protrusion structure is disposed over the substrate and protrudes out of the plane of substrate. Isolation features are formed on the substrate. A drain region is disposed over the substrate adjacent to the protrusion structure and extends to a bottom portion of the protrusion structure as a raised drain region. A drain contact is disposed over the drain region and overlap with the isolation feature.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hay-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
  • Patent number: 11990477
    Abstract: In one embodiment, an integrated circuit cell includes a first circuit component and a second circuit component. The first circuit component includes fin field-effect transistors (finFETs) formed in a high fin portion of the integrated circuit cell, the high fin portion of the integrated circuit including a plurality of fin structures arranged in rows. The second circuit component that includes finFETs formed in a less fin portion of the integrated circuit cell, the less fin portion of the integrated circuit including a lesser number of fin structures than the high fin portion of the integrated circuit cell.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: May 21, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wei-An Lai, Hui-Zhong Zhuang, Jiann-Tyng Tzeng, Wei-Cheng Lin, Lipen Yuan, Yan-Hao Chen
  • Patent number: 11984487
    Abstract: Disclosed herein are non-planar transistor (e.g., nanoribbon) arrangements having asymmetric gate enclosures on at least one side. An example transistor arrangement includes a channel material shaped as a nanoribbon, and a gate stack wrapping around at least a portion of a first face of the nanoribbon, a sidewall, and a portion of a second face of the nanoribbon. Portions of the gate stack provided over the first and second faces of the nanoribbon extend in a direction parallel to the longitudinal axis of the nanoribbon for a certain distance that may be referred to as a “gate length.” A portion of the gate stack wrapping around the sidewall of the nanoribbon does not extend along the entire gate length, but, rather, extends over less than a half of the gate length, e.g., about one third of the gate length, thus making the gate enclosure on that sidewall asymmetric.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: May 14, 2024
    Assignee: Intel Corporation
    Inventors: Sean T. Ma, Guillaume Bouche
  • Patent number: 11972790
    Abstract: The semiconductor device includes a first memory cell, and a second memory cell thereover. The first memory cell includes first and second transistors, and a first capacitor. The second memory cell includes third and fourth transistors, and a second capacitor. A gate of the first transistor is electrically connected to one of a source and a drain of the second transistor and the first capacitor. A gate of the third transistor is electrically connected to one of a source and a drain of the fourth transistor and the second capacitor. One of a source and a drain of the first transistor is electrically connected to one of a source and a drain of the third transistor. The second and fourth transistors include an oxide semiconductor. A channel length direction of the first and third transistors is substantially perpendicular to a channel length direction of the second and fourth transistors.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: April 30, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoaki Atsumi, Junpei Sugao
  • Patent number: 11963361
    Abstract: An integrated circuit device includes: a substrate having a cell region, a peripheral circuit region, and an interconnection region between the cell region and the peripheral circuit region; a first cell stack structure and a second cell stack structure on the first cell stack structure, each including a plurality of insulating layers and a plurality of word line structures alternately stacked on the substrate; and a dummy stack structure located at a same vertical level as the second cell stack structure, and including a plurality of dummy insulating layers and a plurality of dummy support layers alternately stacked in the peripheral circuit region.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: April 16, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changsun Hwang, Youngjin Kwon, Gihwan Kim, Hansol Seok, Dongseog Eun, Jongheun Lim
  • Patent number: 11961836
    Abstract: An integrated circuit structure comprises one or more fins extending above a surface of a substrate over an N-type well. A gate is over and in contact with the one or more fins. A second shallow N-type doping is below the gate and above the N-type well.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 16, 2024
    Assignee: Intel Corporation
    Inventors: Hyung-Jin Lee, Mark Armstrong, Saurabh Morarka, Carlos Nieva-Lozano, Ayan Kar
  • Patent number: 11961833
    Abstract: A high voltage device is used as a lower switch in a power stage of a switching regulator. The high voltage device includes at least one lateral diffused metal oxide semiconductor (LDMOS) device, a first isolation region, a second isolation region, a third isolation region, and a current limiting device. The first isolation region is located in a semiconductor layer, and encloses the LDMOS device. The second isolation region has a first conductivity type, and encloses the first isolation region in the semiconductor layer. The third isolation region has a second conductivity type, and encloses the second isolation region in the semiconductor layer. The current limiting device is electrically connected to the second isolation region, and is configured to operably suppress a parasitic silicon controlled rectifier (SCR) from being turned on.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: April 16, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chin Chiu, Chien-Wei Chiu
  • Patent number: 11955081
    Abstract: A pixel includes: a storage capacitor connected between a first power supply voltage and a gate node; a first transistor including a gate electrode connected to the gate node; a second transistor to transfer a data signal to a source of the first transistor in response to a scan signal; a third transistor to diode-connect the first transistor in response to the scan signal, and including first and second sub-transistors serially connected between the gate node and a drain of the first transistor; a fourth transistor to transfer an initialization voltage to the gate node in response to an initialization signal, and including third and fourth sub-transistors serially connected between the gate node and the initialization voltage; and an organic light emitting diode including a cathode connected to a second power supply voltage. At least one of the second and fourth sub-transistors includes a bottom electrode.
    Type: Grant
    Filed: August 8, 2020
    Date of Patent: April 9, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyo Jin Lee, Joon-Chul Goh, Sangan Kwon, Hong Soo Kim, Hui Nam, Jin Young Roh, Sehyuk Park
  • Patent number: 11948937
    Abstract: A semiconductor integrated circuit includes: a semiconductor base body of a first conductivity-type; a bottom surface electrode to which a first potential is applied, the bottom surface electrode being provided on a bottom surface of the semiconductor base body; a first well of a second conductivity-type to which a second potential lower than the first potential is applied, the first well being provided on a top surface side of the semiconductor base body; a second well of the first conductivity-type provided in the first well; and an edge structure provided in the first well and configured to supply a third potential higher than the second potential to the second well.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 2, 2024
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Patent number: 11948947
    Abstract: A display device includes pixel circuits disposed in a display area and a driving circuit disposed in the peripheral area. The driving circuit includes a first transistor and each pixel circuit includes a second transistor. The first transistor includes a first active pattern disposed on the substrate, a first gate insulation layer having a first outer portion disposed on the first active pattern, and a first gate electrode disposed on the first gate insulation layer. The second transistor includes a second active pattern disposed on the substrate, a second gate insulation layer having a second outer portion disposed on the second active pattern, and a second gate electrode disposed on the second gate insulation layer. The first outer portion doesn't overlap the first gate electrode and has a first width. The second outer portion doesn't overlap the second gate electrode and has a second width smaller than the first width.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: April 2, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Kwang Soo Lee, Hyun Kim, Kap Soo Yoon, Su Jung Jung
  • Patent number: 11948939
    Abstract: An integrated circuit (IC) with active and dummy device cell arrays and a method of fabricating the same are discloses. The IC includes a substrate, an active device cell, and a dummy device cell. The active device cell includes an array of source/drain (S/D) regions of a first conductivity type disposed on or within the substrate and an array of gate structures with a first gate fill material disposed on the substrate. The dummy device cell includes a first array of S/D regions of the first conductivity type disposed on or within the substrate, a second array of S/D regions of a second conductivity type disposed on or within the substrate, and an array of dual gate structures disposed on the substrate. Each of the dual gate structures includes the first gate fill material and a second gate fill material that is different from the first gate fill material.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Kai-Chi Wu, Ching-Hung Kao, Meng-I Kang, Kuo-Fang Ting
  • Patent number: 11942515
    Abstract: A semiconductor device includes a substrate, a first active fin on the substrate, the first active fin including a first side surface and a second side surface opposing the first side surface, a second active fin on the substrate, the second active fin including a third side surface facing the second side surface and a fourth side surface opposing the third side surface of the second active fin, a first isolation layer on the first side surface of the first active fin, a second isolation layer between the second side surface of the first active fin and the third side surface of the second active fin, a third isolation layer on the fourth side surface of the second active fin and a merged source/drain on the first and second active fins.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: March 26, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongki Jung, Myungil Kang, Yoonhae Kim, Kwanheum Lee
  • Patent number: 11942514
    Abstract: The present application discloses a semiconductor device including a substrate; a first semiconductor stack having a first threshold voltage and comprising a first insulating stack positioned on the substrate; a second semiconductor stack having a second threshold voltage and comprising a second insulating stack positioned on the substrate; and wherein the first threshold voltage is different the second threshold voltage; a thickness of the first insulating stack is different from a thickness of the second insulating stack.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 26, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11942540
    Abstract: A semiconductor device having an LDMOS transistor can include: a first deep well region having a first doping type; a drift region located in the first deep well region and having a second doping type; and a drain region located in the drift region and having the second doping type, where the second doping type is opposite to the first doping type, and where a doping concentration peak of the first deep well region is located below the drift region to optimize the breakdown voltage and the on-resistance of the LDMOS transistor.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 26, 2024
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Meng Wang, Yicheng Du, Hui Yu
  • Patent number: 11943924
    Abstract: Various embodiments include methods and apparatus having a number of charge trap structures, where each charge trap structure includes a dielectric barrier between a gate and a blocking dielectric region, the blocking dielectric region located on a charge trap region of the charge trap structure. At least a portion of the gate can be separated by a void from a region which the charge trap structure is directly disposed. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: March 26, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Chris M. Carlson
  • Patent number: 11942544
    Abstract: A semiconductor device includes: a first stacked structure including a first lower dielectric layer, a first horizontal gate structure, and a first upper dielectric layer stacked vertically; a second stacked structure including a second lower dielectric layer, a second horizontal gate structure, and a second upper dielectric layer stacked vertically, and having a first side facing a first side of the first stacked structure; a first channel layer formed on the first side of the first stacked structure; a second channel layer formed on the first side of the second stacked structure; a lower electrode layer commonly coupled to lower ends of the first and second channel layers between the first and second stacked structures; a first upper electrode layer coupled to an upper end of the first channel layer; and a second upper electrode layer coupled to an upper end of the second channel layer.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: March 26, 2024
    Assignee: SK hynix Inc.
    Inventor: Young Gwang Yoon
  • Patent number: 11935957
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 11929370
    Abstract: Embodiments of the current disclosure to provide a display device which can reduce the number of intersections of scan lines and data lines. According to an embodiment of the disclosure, a display device comprises: a substrate; scan lines extending along a first direction; data lines extending along a second direction that intersect the first direction; a first switching element; a first pixel electrode connected to a first source electrode of the first switching element; a second switching element; and a second pixel electrode connected to a second source electrode of the second switching element. The first pixel electrode and the second pixel electrode are disposed along the second direction, and a first source electrode and a first drain electrode of the first switching element extend along the second direction in an area overlapping a first active layer of the first switching element.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 12, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seong Young Lee, Kyung Ho Kim, Ki Won Park, Soo Hong Cheon
  • Patent number: 11925126
    Abstract: Technologies for tuning a resistance of tunnel junctions such as Josephson junctions are disclosed. In the illustrative embodiment, a Josephson junction is heated to 85 Celsius, and an electric field is applied to the Josephson junction. The heat and the electric field cause the resistance of the Josephson junction to increase. Monitoring the Josephson junction during the application of the electric field allows for the resistance of the Josephson junction to be adjusted to a particular value.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 5, 2024
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: David Schuster, Andrew Oriani, Larry Chen
  • Patent number: 11916069
    Abstract: The semiconductor device of the present invention includes a semiconductor substrate, a switching element which is defined on the semiconductor substrate, and a temperature sense element which is provided on the surface of the semiconductor substrate independently from the switching element and characterized by being dependent on a temperature.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: February 27, 2024
    Assignee: ROHM CO., LTD.
    Inventor: Yuki Nakano
  • Patent number: 11910614
    Abstract: A three-dimensional semiconductor device and a method of forming the same are provided. The three-dimensional semiconductor device comprises a substrate including first and second areas; first and second main separation patterns, disposed on the substrate and intersecting the first and second areas; gate electrodes disposed between the first and second main separation patterns and forming a stacked gate group, the gate electrodes sequentially stacked on the first area and extending in a direction from the first area to the second area; and at least one secondary separation pattern disposed on the second area, disposed between the first and second main separation patterns, and penetrating through the gate electrodes disposed on the second area. The gate electrodes include pad portions on the second area, and the pad portions are thicker than the gate electrodes disposed on the first area and in contact with the at least one secondary separation pattern.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: February 20, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang Sup Lee, Phil Ouk Nam, Sung Yun Lee, Chang Seok Kang
  • Patent number: 11901452
    Abstract: A fin-like field-effect transistor (FinFET) device is disclosed. The device includes a semiconductor substrate having a source/drain region, a plurality of isolation regions over the semiconductor substrate and a source/drain feature in the source/drain region. The source/drain feature includes a multiple plug-type portions over the substrate and each of plug-type portion is isolated each other by a respective isolation region. The source/drain feature also includes a single upper portion over the isolation regions. Here the single upper portion is merged from the multiple plug-type portions. The single upper portion has a flat top surface facing away from a top surface of the isolation region.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lien Huang, Tung Ying Lee, Winnie Chen
  • Patent number: 11899311
    Abstract: A low-resolution image is displayed at high resolution and power consumption is reduced. Resolution is made higher by super-resolution processing. Then, display is performed with the luminance of a backlight controlled by local dimming after the super-resolution processing. By controlling the luminance of the backlight, power consumption can be reduced. Further, by performing the local dimming after the super-resolution processing, accurate display can be performed.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: February 13, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 11895832
    Abstract: A memory integrated circuit is provided. The memory integrated circuit includes a first memory array, a second memory array and a driving circuit. The first and second memory arrays are laterally spaced apart, and respectively include: memory cells, each including an access transistor and a storage capacitor coupled to the access transistor; bit lines, respectively coupled to a row of the memory cells; and word lines, respectively coupled to a column of the memory cells. The driving circuit is disposed below the first and second memory arrays, and includes sense amplifiers. Each of the bit lines in the first memory array and one of the bit lines in the second memory array are routed to input lines of one of the sense amplifiers.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Feng Kao, Ming-Yen Chuang, Katherine H. Chiang, Chia-En Huang
  • Patent number: 11894438
    Abstract: A semiconductor device includes a field effect transistor (FET). The FET includes a first channel, a first source and a first drain; a second channel, a second source and a second drain; and a gate structure disposed over the first and second channels. The gate structure includes a gate dielectric layer and a gate electrode layer. The first source includes a first crystal semiconductor layer and the second source includes a second crystal semiconductor layer. The first source and the second source are connected by an alloy layer made of one or more Group IV element and one or more transition metal elements. The first crystal semiconductor layer is not in direct contact with the second crystal semiconductor layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yee-Chia Yeo, Sung-Li Wang, Chi On Chui, Jyh-Cherng Sheu, Hung-Li Chiang, I-Sheng Chen
  • Patent number: 11887937
    Abstract: An apparatus comprises a ground plane (2), an integrated circuit chip (1) disposed on the ground plane (2), the integrated circuit chip (1) comprising one or more electrically conductive layers (10) encircling a periphery of the integrated circuit chip (1), and a plurality of bondwires (9) electrically coupling the one or more electrically conductive layers (10) to the ground plane (2).
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: January 30, 2024
    Assignee: ams International AG
    Inventors: Benjamin Joseph Sheahan, Richard Jennings, Robert Allen Helmick, Marko Magerl, Christian Stockreiter
  • Patent number: 11889695
    Abstract: A device comprises an array of elevationally-extending transistors and a circuit structure adjacent and electrically coupled to the elevationally-extending transistors of the array. The circuit structure comprises a stair step structure comprising vertically-alternating tiers comprising conductive steps that are at least partially elevationally separated from one another by insulative material. Operative conductive vias individually extend elevationally through one of the conductive steps at least to a bottom of the vertically-alternating tiers and individually electrically couple to an electronic component below the vertically-alternating tiers. Dummy structures individually extend elevationally through one of the conductive steps at least to the bottom of the vertically-alternating tiers. Methods are also disclosed.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: January 30, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Tessariol, Justin B. Dorhout, Indra V. Chary, Jun Fang, Matthew Park, Zhiqiang Xie, Scott D. Stull, Daniel Osterberg, Jason Reece, Jian Li
  • Patent number: 11881508
    Abstract: A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: January 23, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungin Choi, Hyunchul Song, Sunjung Kim, Taegon Kim, Seong Hoon Jeong
  • Patent number: 11854898
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 11855202
    Abstract: A MOS transistor includes a substrate, a first region, a second region, a source region, a drain region, an active gate stack, and a dummy gate stack. The substrate has a first conductivity. The first region having the first conductivity is formed in the substrate. The second region having a second conductivity is formed in the substrate and is adjacent to the first region. The source region with the second conductivity is formed in the first region. The drain region with the second conductivity is formed in the second region. The active gate stack is disposed on the first region. The dummy gate stack is disposed on the second region, and the dummy gate stack is electrically coupled to a variable voltage.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ching Wu, Po-Jen Wang
  • Patent number: 11848336
    Abstract: An array substrate, a display panel, and a display apparatus are provided. The array substrate includes a substrate and a first thin-film transistor located on the substrate. In an embodiment, the first thin-film transistor includes a channel and a gate electrode. In an embodiment, an orthographic projection of the gate electrode on the substrate overlaps with an orthographic projection of the channel on the substrate. In an embodiment, the gate electrode comprises a first zone and a second zone that are arranged in a first direction. In an embodiment, the channel overlapping with the first zone in a direction perpendicular to the substrate has a total width W1 in a second direction perpendicular to the first direction, the channel overlapping with the second zone in a direction perpendicular to the substrate has a total width W2 in the second direction, and W1/W2?3.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 19, 2023
    Assignees: WUHAN TIANMA MICRO-ELECTRONICS CO., LTD., WUHAN TIANMA MICROELECTRONICS CO., LTD. SHANGHAI BRANCH
    Inventors: Huiping Chai, Lijing Han, Guobing Wang
  • Patent number: 11844204
    Abstract: A process includes (a) providing a semiconductor substrate having a planar surface; (b) forming a plurality of thin-film layers above the planar surface of the semiconductor substrate, one on top of another, including among the thin-film layers first and second isolation layers, wherein a significantly greater concentration of a first dopant specie is provided in the first isolation layer than in the second isolation layer; (c) etching along a direction substantially orthogonal to the planar surface through the thin-films to create a trench having sidewalls that expose the thin-film layers; (d) depositing conformally a semiconductor material on the sidewalls of the trench; (e) annealing the first isolation layer at a predetermined temperature and a predetermined duration such that the first isolation layer act as a source of the first dopant specie which dopes a portion of the semiconductor material adjacent the first isolation layer; and (f) selectively etching the semiconductor material to remove the doped
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: December 12, 2023
    Assignee: SUNRISE MEMORY CORPORATION
    Inventors: Vinod Purayath, Jie Zhou, Wu-Yi Henry Chien, Eli Harari
  • Patent number: 11843033
    Abstract: A method for the selective formation of epitaxial layers is described herein. In the method, epitaxial layers are deposited to form source and drain regions around a horizontal gate all around (hGAA structure). The method includes co-flowing a combination of chlorinated silicon containing precursors, antimony containing precursors, and n-type dopant precursors. The resulting source and drain regions are selectively grown from crystalline nanosheets or nanowires of the hGAA structure over the non-crystalline gate structure and dielectric layers. The source and drain regions are predominantly grown in a <110> direction.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: December 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chen-Ying Wu, Abhishek Dube, Yi-Chiau Huang
  • Patent number: 11830946
    Abstract: A method of forming a vertical transport fin field effect transistor device is provided. The method includes forming vertical fins on a substrate, depositing a protective liner on the sidewalls of the vertical fins, and removing a portion of the substrate to form a support pillar beneath at least one of the vertical fins. The method further includes etching a cavity in the support pillar of the at least one of the vertical fins, and removing an additional portion of the substrate to form a plinth beneath the support pillar of the vertical fin. The method further includes growing a bottom source/drain layer on the substrate adjacent to the plinth, and forming a diffusion plug in the cavity, wherein the diffusion plug is configured to block diffusion of dopants from the bottom source/drain layer above a necked region in the support pillar.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: November 28, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Heng Wu, Shogo Mochizuki, Gen Tsutsui, Kangguo Cheng
  • Patent number: 11823954
    Abstract: Non-planar I/O and logic semiconductor devices having different workfunctions on common substrates and methods of fabricating non-planar I/O and logic semiconductor devices having different workfunctions on common substrates are described. For example, a semiconductor structure includes a first semiconductor device disposed above a substrate. The first semiconductor device has a conductivity type and includes a gate electrode having a first workfunction. The semiconductor structure also includes a second semiconductor device disposed above the substrate. The second semiconductor device has the conductivity type and includes a gate electrode having a second, different, workfunction.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Pei-Chi Liu
  • Patent number: 11824085
    Abstract: Provided is a semiconductor device including: an N-type diffusion layer being a second region, formed in a surface portion of a P-type diffusion layer being a first region, to function as a RESURF region; an N-type buried diffusion layer being a third region formed in a bottom portion of the second region, close to a high-side circuit; and a MOSFET using the second region as a drift layer. The MOSFET includes a thermal oxide film formed between an N-type diffusion layer being a fourth region serving as a drain region and an N-type diffusion layer being a sixth region serving as a source region, and an N-type diffusion layer being a seventh region formed below the thermal oxide film. The seventh region has an end portion close to a low-side circuit, being closer to the low-side circuit than an end portion of the third region close to the low-side circuit.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: November 21, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Toshihiro Imasaka, Kazuhiro Shimizu, Manabu Yoshino, Yuji Kawasaki
  • Patent number: 11817156
    Abstract: Multi-gate NOR flash thin-film transistor (TFT) string arrays (“multi-gate NOR string arrays”) are organized as stacks of horizontal active strips running parallel to the surface of a silicon substrate, with the TFTs in each stack being controlled by vertical local word-lines provided along one or both sidewalls of the stack of active strips. Each active strip includes at least a channel layer formed between two shared source or drain layers. Data storage in the TFTs of an active strip is provided by charge-storage elements provided between the active strip and the control gates provided by the adjacent local word-lines. Each active strip may provide TFTs that belong to one or two NOR strings, depending on whether one or both sides of the active strip are used.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: November 14, 2023
    Assignee: SUNRISE MEMORY CORPORATION
    Inventor: Eli Harari
  • Patent number: 11817456
    Abstract: Devices and methods for layout-dependent voltage handling improvement in switch stacks. In some embodiments, a switching device can include a first terminal and a second terminal, a radio-frequency signal path implemented between the first terminal and the second terminal, and a plurality of switching elements connected in series to form a stack between the second terminal and ground. The stack can have an orientation relative to the radio-frequency signal path, and the switching elements can have a non-uniform distribution of a first parameter based in part on the orientation of the stack.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: November 14, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Guillaume Alexandre Blin, Ambarish Roy, Seungwoo Jung