Capacitor And Transistor In Common Trench (epo) Patents (Class 257/E27.095)
-
Patent number: 11888021Abstract: A method of fabricating an integrated circuit includes etching trenches in a first surface of a semiconductor layer. A trench dielectric layer is formed over the first surface and over bottoms and sidewalls of the trenches and a doped polysilicon layer is formed over the trench dielectric layer and within the trenches. The doped polysilicon layer is patterned to form a polysilicon bridge that connects to the polysilicon within the filled trenches and a blanket implant of a first dopant is directed to the polysilicon bridge and to the first surface. The blanket implant forms a contact region extending from the first surface into the semiconductor layer.Type: GrantFiled: September 29, 2021Date of Patent: January 30, 2024Assignee: Texas Instruments IncorporatedInventors: Jing Hu, Zhi Peng Feng, Chao Zuo, Dongsheng Liu, Yunlong Liu, Manoj K Jain, Shengpin Yang
-
Patent number: 10692769Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.Type: GrantFiled: October 31, 2017Date of Patent: June 23, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
-
Patent number: 10651090Abstract: Integrated circuit devices having optimized fin critical dimension loading are disclosed herein. An exemplary integrated circuit device includes a core region that includes a first multi-fin structure and an input/output region that includes a second multi-fin structure. The first multi-fin structure has a first width and the second multi-fin structure has a second width. The first width is greater than the second width. In some implementations, the first multi-fin structure has a first fin spacing and the second multi-fin structure has a second fin spacing. The first fin spacing is less than the second fin spacing. In some implementations, a first adjacent fin pitch of the first multi-fin structure is greater than or equal to three times a minimum fin pitch and a second adjacent fin pitch of the second multi-fin structure is less than or equal to two times the minimum fin pitch.Type: GrantFiled: October 31, 2017Date of Patent: May 12, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Chia Ming Liang, Yi-Shien Mor, Huai-Hsien Chiu, Chi-Hsin Chang, Jin-Aun Ng, Yi-Juei Lee
-
Patent number: 9443867Abstract: A method of fabricating a memory device includes forming a mask over a top surface of a stack of alternating insulating material layers and control gate electrodes located over a substrate, wherein the stack has a memory opening extending vertically through the stack, a semiconductor channel extends vertically in the memory opening, and a memory film is located in the memory opening between the semiconductor channel and the plurality of control gate electrodes, and the mask covers a first portion of an upper insulating layer of the stack and exposes a second portion of the upper insulating layer adjacent to the memory opening, etching the upper insulating layer through the mask to provide a recess in the second portion of the upper insulating layer, and forming a conductive material within the recess to provide a select gate electrode adjacent to the semiconductor channel in the memory opening.Type: GrantFiled: April 29, 2015Date of Patent: September 13, 2016Assignee: SANDISK TECHNOLOGIES LLCInventor: Shingo Ohsaki
-
Patent number: 8981427Abstract: A device includes a crystalline material within an area confined by an insulator. A surface of the crystalline material has a reduced roughness. One example includes obtaining a surface with reduced roughness by using a planarization process configured with a selectivity of the crystalline material to the insulator greater than one. In a preferred embodiment, the planarization process uses a composition including abrasive spherical silica, H2O2 and water. In a preferred embodiment, the area confined by the insulator is an opening in the insulator having an aspect ratio sufficient to trap defects using an ART technique.Type: GrantFiled: July 15, 2009Date of Patent: March 17, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jennifer M. Hydrick, James G. Fiorenza
-
Patent number: 8872264Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: June 13, 2013Date of Patent: October 28, 2014Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8860112Abstract: A method of forming a strap connection structure for connecting an embedded dynamic random access memory (eDRAM) to a transistor comprises forming a buried oxide layer in a substrate, the buried oxide layer defining an SOI layer on a surface of the substrate; forming a deep trench through the SOI layer and the buried oxide layer in the substrate; forming a storage capacitor in a lower portion of the deep trench; conformally doping a sidewall of an upper portion of the deep trench; depositing a metal strap on the conformally doped sidewall and on the storage capacitor; forming at least one fin in the SOI layer, the fin being in communication with the metal strap; forming a spacer over the metal strap and over a juncture of the fin and the metal strap; and depositing a passive word line on the spacer.Type: GrantFiled: October 28, 2013Date of Patent: October 14, 2014Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Effendi Leobandung, Tenko Yamashita, Chun-Chen Yeh
-
Patent number: 8552523Abstract: A method for manufacturing a semiconductor device is disclosed. The method includes forming a shallow trench isolation (STI) region extending in a first direction on a semiconductor substrate, forming a mask layer extending in a second direction that intersects with the first direction on the semiconductor substrate and forming a trench on the semiconductor substrate by using the STI region and the mask layer as masks. In addition, the method includes forming a charge storage layer so as to cover the trench and forming a conductive layer on side surfaces of the trench and the mask layer. Word lines are formed from the conductive layer on side surfaces of the trench that oppose in the first direction by etching. The word lines are separated from each other and extend in the second direction.Type: GrantFiled: August 9, 2011Date of Patent: October 8, 2013Assignee: Spansion LLCInventors: Fumiaki Toyama, Fumihiko Inoue
-
Patent number: 8492816Abstract: Solutions for forming a silicided deep trench decoupling capacitor are disclosed. In one aspect, a semiconductor structure includes a trench capacitor within a silicon substrate, the trench capacitor including: an outer trench extending into the silicon substrate; a dielectric liner layer in contact with the outer trench; a doped polysilicon layer over the dielectric liner layer, the doped polysilicon layer forming an inner trench within the outer trench; and a silicide layer over a portion of the doped polysilicon layer, the silicide layer separating at least a portion of the contact from at least a portion of the doped polysilicon layer; and a contact having a lower surface abutting the trench capacitor, a portion of the lower surface not abutting the silicide layer.Type: GrantFiled: January 11, 2010Date of Patent: July 23, 2013Assignee: International Business Machines CorporationInventors: James S. Nakos, Edmund J. Sprogis, Anthony K. Stamper
-
Patent number: 8482062Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: September 11, 2012Date of Patent: July 9, 2013Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8294189Abstract: A memory device is disclosed, comprising a substrate, and a capacitor with a specific shape along an orientation parallel to a surface of the substrate, wherein the specific shape includes a curved outer edge, a curved inner edge having a positive curvature, a first line and a second line connecting the curved outer edge with the curved inner edge. A word line is coupled to the capacitor. In an embodiment of the invention, the capacitor is a deep trench capacitor with a vertical transistor. In another embodiment of the invention, the capacitor is a stacked capacitor.Type: GrantFiled: April 24, 2009Date of Patent: October 23, 2012Assignee: Inotera Memories, Inc.Inventors: Hou-Hong Chou, Chien-Sung Chu
-
Patent number: 8264033Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: July 21, 2009Date of Patent: September 11, 2012Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8253163Abstract: A high voltage semiconductor device includes a semiconductor substrate, a p type base region in a first main surface, an n+ type emitter region in the p type base region, an n+ type cathode region adjacent to an end surface of the semiconductor substrate and not penetrating the semiconductor substrate, a p+ type collector region in a second main surface, a first main electrode, a second main electrode, a third main electrode, and a connection portion connecting the second main electrode and the third main electrode. A resistance between the p type base region and the n+ type cathode region is greater than a resistance between the p type base region and the p+ type collector region. In the high voltage semiconductor device in which an IGBT and a free wheel diode are formed in a single semiconductor substrate, occurrence of a snap-back phenomenon is suppressed.Type: GrantFiled: October 7, 2010Date of Patent: August 28, 2012Assignee: Mitsubishi Electric CorporationInventors: Shigeru Kusunoki, Junji Yahiro, Yoshihiko Hirota
-
Patent number: 8247305Abstract: A method of forming a capacitor structure includes forming a pad oxide layer overlying a substrate, a nitride layer overlying the pad oxide layer, an interlayer dielectric layer overlying the nitride layer, and a patterned polysilicon mask layer overlying the interlayer dielectric layer. The method then applies a first RIE process to form a trench region through a portion of the interlayer dielectric layer using the patterned polysilicon mask layer and maintaining the first RIE to etch through a portion of the nitride layer and through a portion of the pad oxide layer. The method stops the first RIE when a portion of the substrate has been exposed. The method then forms an oxide layer overlying the exposed portion of the substrate and applies a second RIE process to continue to form the trench region by removing the oxide layer and removing a portion of the substrate to a predetermined depth.Type: GrantFiled: December 3, 2010Date of Patent: August 21, 2012Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Kuo-Chang Liao, Weijun Song, Dang Quan Liao
-
Patent number: 8164111Abstract: A high voltage semiconductor device includes a semiconductor substrate, a p type base region in a first main surface, an n+ type emitter region in the p type base region, an n+ type cathode region adjacent to an end surface of the semiconductor substrate and not penetrating the semiconductor substrate, a p+ type collector region in a second main surface, a first main electrode, a second main electrode, a third main electrode, and a connection portion connecting the second main electrode and the third main electrode. A resistance between the p type base region and the n+ type cathode region is greater than a resistance between the p type base region and the p+ type collector region. In the high voltage semiconductor device in which an IGBT and a free wheel diode are formed in a single semiconductor substrate, occurrence of a snap-back phenomenon is suppressed.Type: GrantFiled: October 7, 2010Date of Patent: April 24, 2012Assignee: Mitsubishi Electric CorporationInventors: Shigeru Kusunoki, Junji Yahiro, Yoshihiko Hirota
-
Patent number: 8129789Abstract: A semiconductor chip includes a semiconductor body having an upper surface. At least one power semiconductor component is integrated in the semiconductor chip together with other circuitry. Two or more vertically spaced metallization layers are arranged on the surface of the semiconductor body. The top metallization layer includes terminals establishing an electrical connection to load terminals of the power semiconductor component. A current measurement resistor is formed by a portion of the top metallization layer for sensing a load current of the power semiconductor component. A temperature measurement resistor is formed by a portion of at least one of the vertically spaced metallization layers, electrically isolated from current measurement resistor but thermally coupled thereto such that the current measurement resistor and the temperature measurement resistor have the same temperature.Type: GrantFiled: May 28, 2010Date of Patent: March 6, 2012Assignee: Infineon Technologies AGInventors: Alexander Mayer, Guenter Herzele, Andreas Tschmelitsch, Matthias Kogler
-
Publication number: 20110248326Abstract: A transistor includes a first fin structure and at least a second fin structure formed on a substrate. A deep trench area is formed between the first and second fin structures. The deep trench area extends through an insulator layer of the substrate and a semiconductor layer of the substrate. A high-k metal gate is formed within the deep trench area. A polysilicon layer is formed within the deep trench area adjacent to the metal layer. The polysilicon layer and the high-k metal layer are recessed below a top surface of the insulator layer. A poly strap in the deep trench area is formed on top of the high-k metal gate and the polysilicon material. The poly strap is dimensioned to be below a top surface of the first and second fin structures. The first fin structure and the second fin structure are electrically coupled to the poly strap.Type: ApplicationFiled: April 7, 2010Publication date: October 13, 2011Applicant: International Business Machines CorporationInventors: SIVANANDA KANAKASABAPATHY, Hemanth Jagannathan, Geng Wang
-
Patent number: 8026138Abstract: A method for manufacturing a semiconductor memory apparatus may include forming a channel region and a gate region through a self-alignment etching process on a cell region; and forming a three-dimensional multi-channel region through an etching process using a first multi-channel mask on a core region and a peripheral region and forming a gate region through an etching process using a second multi-channel mask, thereby preventing mis-arrangement of gates.Type: GrantFiled: November 5, 2008Date of Patent: September 27, 2011Assignee: Hynix Semiconductor Inc.Inventor: Sang Don Lee
-
Patent number: 7943474Abstract: A method for forming a memory device is provided by first forming at least one trench in a semiconductor substrate. Next, a lower electrode is formed in the at least one trench, and thereafter a conformal dielectric layer is formed on the lower electrode. An upper electrode is then formed on the conformal dielectric layer. The forming of the upper electrode may include a conformal deposition of metal nitride layer, and a non-conformal deposition of an electrically conductive material atop the metal nitride layer, in which the electrically conductive material encloses the at least one trench.Type: GrantFiled: February 24, 2009Date of Patent: May 17, 2011Assignee: International Business Machines CorporationInventors: Thomas W. Dyer, Keith Kwong Hon Wong, Mahender Kumar
-
Publication number: 20110079837Abstract: A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.Type: ApplicationFiled: December 14, 2010Publication date: April 7, 2011Inventors: Brian S. Doyle, Robert S. Chau, Suman Datta, Vivek De, Ali Keshavarzi, Dinesh Somasekhar
-
Patent number: 7910983Abstract: A MOS transistor having an increased gate-drain capacitance is described. One embodiment provides a drift zone of a first conduction type. At least one transistor cell has a body zone, a source zone separated from the drift zone by the body zone, and a gate electrode, which is arranged adjacent to the body zone and which is dielectrically insulated from the body zone by a gate dielectric. At least one compensation zone of the first conduction type is arranged in the drift zone. At least one feedback electrode is arranged at a distance from the body zone, which is dielectrically insulated from the drift zone by a feedback dielectric and which is electrically conductively connected to the gate electrode.Type: GrantFiled: September 30, 2008Date of Patent: March 22, 2011Assignee: Infineon Technologies Austria AGInventors: Armin Willmeroth, Michael Treu
-
Patent number: 7884418Abstract: A semiconductor device includes active areas which are insulatedly separated from each other by element-separation insulating films; a gate insulating film formed on each active area; a gate electrode which extends across the active area via the gate insulating film; a source area and a drain area formed in the active area so as to interpose the gate electrode; and a fin-channel structure in which at the intersection between the active area and the gate electrode, trenches are provided at both sides of the active area, and part of the gate electrode is embedded in each trench via the gate insulating film, so that the gate electrode extends across a fin which rises between the trenches. In the gate insulating film, the film thickness of a part which contacts the bottom surface of each trench is larger than that of a part which contacts the upper surface of the fin.Type: GrantFiled: June 24, 2008Date of Patent: February 8, 2011Assignee: Elpida Memory, Inc.Inventor: Keizo Kawakita
-
Patent number: 7863663Abstract: Techniques for manufacturing an electronic device. In certain embodiments, a substrate includes a lower patterned layer that has a target conductor. A hybrid-vertical contact may be disposed directly on the target conductor. The hybrid vertical contact may include a lower-vertical contact directly on the target conductor and an upper-vertical contact directly on the lower-vertical contact. The upper-vertical contact may have an upper width that is greater than a lower width of the lower-vertical contact.Type: GrantFiled: April 7, 2006Date of Patent: January 4, 2011Assignee: Micron Technology, Inc.Inventor: Jonathan Doebler
-
Patent number: 7821047Abstract: According to an aspect of the present invention, there is provided a semiconductor apparatus including: a semiconductor substrate; an element isolation region formed in the semiconductor substrate so as to extend in a first direction; a gate electrode formed in the semiconductor substrate so as to extend in a second direction crossing the first direction and to penetrate through the element isolation region; a gate insulating film interposed between the gate electrode and the semiconductor substrate; an interlayer dielectric film formed on the gate electrode; a ferroelectric capacitor including: first and second electrodes disposed on the interlayer dielectric film and a ferroelectric between the first and second electrodes; and first and second semiconductor pillars being in contact respectively with the first and second electrodes.Type: GrantFiled: September 27, 2007Date of Patent: October 26, 2010Assignee: Kabushiki Kaisha ToshibaInventor: Tohru Ozaki
-
Patent number: 7800187Abstract: In a semiconductor device including a gate electrode buried in a trench of the device, the trench is constructed by a first opening with a uniform width the same as that of an upper portion of the first opening and a second opening beneath the first opening with a width larger than the uniform width. A bottom of a base region adjacent to the trench is adjacent to the second opening.Type: GrantFiled: May 18, 2006Date of Patent: September 21, 2010Assignee: NEC Electronics CorporationInventor: Naoki Matsuura
-
Patent number: 7757393Abstract: Disclosed are moveable microstructures comprising in-plane capacitive microaccelerometers, with submicro-gravity resolution (<200 ng/?Hz) and very high sensitivity (>17 pF/g). The microstructures are fabricated in thick (>100 ?m) silicon-on-insulator (SOI) substrates or silicon substrates using a two-mask fully-dry release process that provides large seismic mass (>10 milli-g), reduced capacitive gaps, and reduced in-plane stiffness. Fabricated devices may be interfaced to a high resolution switched-capacitor CMOS IC that eliminates the need for area-consuming reference capacitors. The measured sensitivity is 83 mV/mg (17 pF/g) and the output noise floor is ?91 dBm/Hz at 10 Hz (corresponding to an acceleration resolution of 170 ng/?Hz). The IC consumes 6 mW power and measures 0.65 mm2 core area.Type: GrantFiled: September 28, 2007Date of Patent: July 20, 2010Assignee: Georgia Tech Research CorporationInventors: Farrokh Ayazi, Babak Vakili Amini, Reza Abdolvand
-
Patent number: 7709323Abstract: Methods of forming a NAND-type nonvolatile memory device include: forming first common drains and first common sources alternatively in an active region which is defined in a semiconductor substrate and extends one direction, forming a first insulating layer covering an entire surface of the semiconductor substrate, patterning the first insulating layer to form seed contact holes which are arranged at regular distance and expose the active region, forming a seed contact structure filling each of the seed contact holes and a semiconductor layer disposed on the first insulating layer and contacting the seed contact structures, patterning the semiconductor layer to form a semiconductor pattern which extends in the one direction and is disposed over the active region, forming second common drains and second common sources disposed alternatively in the semiconductor pattern in the one direction, forming a second insulating layer covering an entire surface of the semiconductor substrate, forming a source line patteType: GrantFiled: May 29, 2009Date of Patent: May 4, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Hoo-Sung Cho, Soon-Moon Jung, Won-Seok Cho, Jong-Hyuk Kim, Jae-Hun Jeong, Jae-Hoon Jang
-
Patent number: 7704836Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: GrantFiled: March 31, 2008Date of Patent: April 27, 2010Assignee: Siliconix incorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Patent number: 7683416Abstract: A design structure for capacitor having a suitably large value for decoupling applications is formed in a trench defined by isolation structures such as recessed isolation or shallow trench isolation. The capacitor provides a contact area coextensive with an active area and can be reliably formed individually or in small numbers. Plate contacts are preferably made through implanted regions extending to or between dopant diffused regions forming a capacitor plate. The capacitor can be formed by a process subsequent to formation of isolation structures such that preferred soft mask processes can be used to form the isolation structures and process commonality and compatibility constraint are avoided while the capacitor forming processes can be performed in common with processing for other structures.Type: GrantFiled: November 6, 2007Date of Patent: March 23, 2010Assignee: International Business Machines CorporationInventors: Anil K. Chinthakindi, Deok-kee Kim, Xi Li
-
Patent number: 7679133Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.Type: GrantFiled: November 3, 2008Date of Patent: March 16, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Yong-Hoon Son, Jong-Wook Lee
-
Patent number: 7670901Abstract: A method of fabricating a bottle trench and a bottle trench capacitor. The method including: providing a substrate; forming a trench in the substrate, the trench having sidewalls and a bottom, the trench having an upper region adjacent to a top surface of the substrate and a lower region adjacent to the bottom of the trench; forming an oxidized layer of the substrate in the bottom region of the trench; and removing the oxidized layer of the substrate from the bottom region of the trench, a cross-sectional area of the lower region of the trench greater than a cross-sectional area of the upper region of the trench.Type: GrantFiled: February 20, 2008Date of Patent: March 2, 2010Assignees: International Business Machines Corporation, Infineon Technologies North America Corp., Infineon Technologies AGInventors: Oh-Jung Kwon, Kenneth T. Settlemyer, Jr., Ravikumar Ramachandran, Min-Soo Kim
-
Patent number: 7573120Abstract: According to an aspect of the present invention, there is provided a semiconductor device comprising a semiconductor substrate, a capacitor which is disposed above the semiconductor substrate and in which a dielectric film is held between lower and upper electrodes, an oxide film formed in such a manner as to coat the capacitor and having a thickness of 5 nm or more and 50 nm or less, and a protective film formed on the oxide film by an ALD process.Type: GrantFiled: June 30, 2005Date of Patent: August 11, 2009Assignee: Kabushiki Kaisha ToshibaInventors: Katsuaki Natori, Hiroyuki Kanaya, Koji Yamakawa
-
Patent number: 7560773Abstract: A vertical-type semiconductor device for controlling a current flowing between electrodes opposed against each other across a semiconductor substrate, including: a semiconductor substrate having first and second surfaces opposed against each other; a first electrode formed in the first surface; a second electrode formed in the second surface through a high-resistance electrode whose resistance is Rs; and a third electrode formed along at least a part of the outer periphery of the second surface, wherein a potential difference Vs between the second and third electrodes is measured with a current I flowing between the first and second electrodes, and the current I is detected from the resistance Rs and the potential difference Vs.Type: GrantFiled: August 9, 2006Date of Patent: July 14, 2009Assignee: Mitsubishi Electric CorporationInventor: Masahiro Tanaka
-
Patent number: 7528035Abstract: A method of forming a vertical transistor trench memory cell having an insulating ring is provided. The method includes forming a semiconductor material region in an etched portion of a semiconductor substrate; partially etching the semiconductor material region to form a deep trench, where the deep trench extends beyond the semiconductor material region, and where the remaining of the partially etched semiconductor material region defines an insulating ring. A vertical transistor is then formed in the deep trench, such that the vertical transistor is isolated by the insulating ring. A semiconductor structure is also provided. The semiconductor structure includes a first and a second trench memory cells formed on a semiconductor substrate; and an insulating ring surrounding each of the first and second trench memory cells. The insulating ring is configured for significantly enclosing out diffusions from the trench memory cells.Type: GrantFiled: March 20, 2007Date of Patent: May 5, 2009Assignee: International Business Machines CorporationInventor: Kangguo Cheng
-
Patent number: 7494865Abstract: A manufacturing method of metal oxide semiconductor transistor is provided. A substrate is provided. A source/drain extension region is formed in the substrate. A pad material layer with low dielectric constant is formed on the substrate. A trench is formed in the substrate and the pad material layer. A gate dielectric layer is formed on the surface of the substrate in the trench. A stacked gate structure is formed in the trench, wherein the top surface of a conductive layer of the stacked gate structure is higher than the surface of the pad material layer. A spacer material layer is formed conformably on the substrate. Portions of the spacer material layer and the pad material layer are removed so as to form a pair of first spacers and a pair of pad blocks. A source/drain is formed on the substrate beside the stacked gate structure.Type: GrantFiled: July 23, 2006Date of Patent: February 24, 2009Assignee: ProMOS Technologies Inc.Inventors: Yu-Chi Chen, Jih-Wen Chou, Frank Chen
-
Patent number: 7462901Abstract: A field effect transistor is provided. The field effect transistor includes a channel region, electrically conductive channel connection regions, and a control region. The electrically conductive channel connection regions adjoin the channel region along with a transistor dielectric. The control region is separated from the channel region by the transistor dielectric. In addition, the control region may comprise a monocrystalline material.Type: GrantFiled: April 14, 2006Date of Patent: December 9, 2008Assignee: Infineon Technologies AGInventor: Helmut Tews
-
Patent number: 7388274Abstract: Disclosed is a semiconductor structure that incorporates a capacitor for reducing the soft error rate of a device within the structure. The multi-layer semiconductor structure includes an insulator-filled deep trench isolation structure that is formed through an active silicon layer, a first insulator layer, and a first bulk layer and extends to a second insulator layer. The resulting isolated portion of the first bulk layer defines the first capacitor plate. A portion of the second insulator layer that is adjacent the first capacitor plate functions as the capacitor dielectric. Either the silicon substrate or a portion of a second bulk layer that is isolated by a third insulator layer and another deep trench isolation structure can function as the second capacitor plate. A first capacitor contact couples, either directly or via a wire array, the first capacitor plate to a circuit node of the device in order to increase the critical charge, Qcrit, of the circuit node.Type: GrantFiled: August 15, 2007Date of Patent: June 17, 2008Assignee: International Business Machines CorporationInventors: John M. Aitken, Ethan H. Cannon, Philip J. Oldiges, Alvin W. Strong
-
Publication number: 20070238244Abstract: A trench capacitor structure includes a semiconductor substrate comprising thereon a STI structure. A capacitor deep trench is etched into the semiconductor substrate. Collar oxide layer is disposed on inner surface of the capacitor deep trench. A first doped polysilicon layer is disposed on the collar oxide layer and on the exposed bottom of the capacitor deep trench. A capacitor dielectric layer is formed on the first doped polysilicon layer. A second doped polysilicon layer is formed on the capacitor dielectric layer. A deep ion well is formed in the semiconductor substrate, wherein the deep ion well is electrically connected with the first doped polysilicon layer through the bottom of the capacitor deep trench. A passing gate insulation (PGI) layer is formed on the second doped polysilicon layer and on the STI structure.Type: ApplicationFiled: April 11, 2006Publication date: October 11, 2007Inventors: Yung-Chang Lin, Sun-Chieh Chien, Chien-Li Kuo, Ruey-Chyr Lee
-
Patent number: 7262452Abstract: In a method of forming a DRAM device having a capacitor and a DRAM device so formed, an interlayer dielectric having at least one layer is formed on a semiconductor substrate. The interlayer dielectric layer and a predetermined portion of the semiconductor substrate are sequentially etched to form a storage node hole. A lower electrode is conformally formed in the storage node hole and on the interlayer dielectric layer. A planarization process is performed to remove a portion of the lower electrode layer that lies on the interlayer dielectric layer and to form a lower electrode in the storage node hole. A dielectric layer and an upper electrode layer are sequentially formed on the lower electrode. The upper electrode layer and the dielectric layer are sequentially patterned.Type: GrantFiled: December 13, 2005Date of Patent: August 28, 2007Assignee: Samsung Electronics Co., Ltd.Inventor: Hee-Il Chae
-
Patent number: 7247905Abstract: The present invention includes a method for forming a memory array and the memory array produced therefrom. Specifically, the memory array includes at least one first-type memory device, each of the at least one first-type memory device comprising a first transistor and a first underlying capacitor that are in electrical contact to each other through a first buried strap, where the first buried strap positioned on a first collar region; and at least one second-type memory cell, where each of the at least are second-type memory device comprises a second transistor and a second underlying capacitor that are in electrical contact through an offset buried strap, where the offset buried strap is positioned on a second collar region, wherein the second collar region has a length equal to the first collar region.Type: GrantFiled: March 30, 2004Date of Patent: July 24, 2007Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ramachandra Divakaruni, Geng Wang
-
Patent number: 7199416Abstract: The subject invention provides systems and methodologies for fabrication of memory and/or selection (e.g., diodes) elements in a recession in a semiconductor layer. In particular, a trench of varying width is created in the semiconductor layer by employing various etching techniques. A metal film can be deposited in the trench according to a desired deposition thickness in order to seam close a narrow portion of the trench while form a dimple in a wide portion of the trench. The trench, after metal film deposition, exhibits a depression in wider trench portions relative to narrow trench portions. The depression can be utilized by placing one or more memory or selection layers in the depression, and a via can be formed over a portion of the trench to form an interconnect.Type: GrantFiled: November 10, 2004Date of Patent: April 3, 2007Assignee: Spansion LLCInventors: Nicholas H. Tripsas, Minh Tran, Jeffrey Shields
-
Publication number: 20070057303Abstract: A method for forming a trench capacitor and memory cell by providing a substrate on which a grid STI and a plurality of active regions covered by a hard mask layer are formed. A photoresist is formed and a low grade photo mask having only X direction consideration is used to define the required pattern on the photoresist. The hard mask layer and the STI are used as an etching mask to etch a plurality of deep trenches. Then diffusion regions, capacitor dielectric layer, and polysilicon filled to form the capacitor bottom electrode are sequentially formed to complete the forming for trench capacitors. After removing the hard mask layer and performing a logic process, the memory cells are completed.Type: ApplicationFiled: September 14, 2005Publication date: March 15, 2007Inventors: Yi-Nan Su, Jun-Chi Huang
-
Publication number: 20070015327Abstract: The present invention discloses a STI-first process for making trench DRAM devices. According to the preferred embodiment, the etching recipe for etching the STI region in the memory array is completely compatible with the logic STI process.Type: ApplicationFiled: July 12, 2005Publication date: January 18, 2007Inventor: Yi-Nan Su
-
Patent number: 7129130Abstract: The present invention provides a vertical memory device formed in a silicon-on-insulator substrate, where a bitline contacting the upper surface of the silicon-on-insulator substrate is electrically connected to the vertical memory device through an upper strap diffusion region formed through a buried oxide layer. The upper strap diffusion region is formed by laterally etching a portion of the buried oxide region to produce a divot, in which doped polysilicon is deposited. The upper strap region diffusion region also provides the source for the vertical transistor of the vertical memory device. The vertical memory device may also be integrated with a support region having logic devices formed atop the silicon-on-insulator substrate.Type: GrantFiled: December 9, 2005Date of Patent: October 31, 2006Assignee: International Business Machines CorporationInventors: James W. Adkisson, Gary B. Bronner, Dureseti Chidambarrao, Ramachandra Divakaruni, Carl J. Radens