Body Region Structure Of Igfet's With Channel Containing Layer (dmosfet Or Igbt) (epo) Patents (Class 257/E29.066)
  • Patent number: 8097917
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a silicon carbide substrate, a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; a trench penetrating the second and the third semiconductor layers to reach the first semiconductor layer; a channel layer on a sidewall and a bottom of the trench; an oxide film on the channel layer; a gate electrode on the oxide film; a first electrode connecting to the third semiconductor layer; and a second electrode connecting to the silicon carbide substrate. A position of a boundary between the first semiconductor layer and the second semiconductor layer is disposed lower than an utmost lowest position of the oxide film.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 17, 2012
    Assignee: DENSO CORPORATION
    Inventors: Malhan Rajesh Kumar, Yuichi Takeuchi
  • Patent number: 8067797
    Abstract: A trench type IGBT as disclosed herein includes a plurality of channel regions having one threshold voltage for the normal operation of the device and a plurality of channel regions having a threshold voltage higher than the threshold voltage for the normal operation of the device.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 29, 2011
    Assignee: International Rectifier Corporation
    Inventors: Chiu Ng, Yuan-Heng Chao
  • Patent number: 8053835
    Abstract: A semiconductor element includes an insulating outer layer that includes electric contact connections of a first conductive type. These connections are connected to contact areas located beneath the insulating surface layer, of which connections at least one is of a first conductive type. At least one of the contact areas and a further area that includes two layers of mutually different conductive types disposed between the contact areas, are covered by a layer of a second conductive type of material. This second layer is, in turn, covered with an insulating layer on at least that side which lies distal from the surface layer.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: November 8, 2011
    Inventor: Klas-Hakan Eklund
  • Patent number: 8049273
    Abstract: A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Li-Cheng Lin, Jen-Hao Yeh, Hsin-Yen Chiu, Hsin-Yu Hsu, Shih-Chieh Hung
  • Patent number: 7968940
    Abstract: Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n? drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Anpec Electronics Corporation
    Inventor: Florin Udrea
  • Patent number: 7915675
    Abstract: An IGBT includes a first region, a second region located within the first region, a first contact coupled to the first region, a first layer arranged below the first region, a gate overlying at least a portion of the first region between the second region and the first layer and a second layer formed under the first layer. One or more stacked zones are formed within the second layer. Each one or more stacked zones includes a first zone and a second zone that overlies the first zone. Each first zone is inversely doped with respect to the second layer and each second zone is inversely doped with respect to the first zone. The IGBT further includes a third layer formed under the second layer and a second contact coupled to the third layer.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: March 29, 2011
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Hans-Peter Felsl
  • Patent number: 7868335
    Abstract: A bipolar junction transistor having an emitter, a base, and a collector includes a stack of one or more layer sets adjacent the collector. Each layer set includes a first material having a first band gap, wherein the first material is highly doped, and a second material having a second band gap narrower than the first band gap, wherein the second material is at most lightly doped.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 11, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Patent number: 7838926
    Abstract: A semiconductor device includes a semiconductor substrate; a first base region of a first conductivity type provided in the semiconductor substrate; a buffer region of the first conductivity type provided on a lower surface of the first base region and having an impurity concentration higher than an impurity concentration of the first base region; an emitter region of a second conductivity type provided on a lower surface of the buffer region; a second base region of the second conductivity type selectively provided on an upper surface of the first base region; a diffusion region of the first conductivity type selectively provided on an upper surface of the second base region; a control electrode; a first main electrode; and a second main electrode. A junction interface between the buffer region and the first base region has a concave portion and a convex portion.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanori Tsukuda, Ichiro Omura
  • Patent number: 7829955
    Abstract: A horizontal semiconductor device having multiple unit semiconductor elements, each of said unit semiconductor element formed by an IGBT including: a semiconductor substrate of a first conductivity type; a semiconductor region of a second conductivity type formed on the semiconductor substrate; a collector layer of the first conductivity type formed within the semiconductor region; a ring-shaped base layer of the first conductivity type formed within the semiconductor region such that the base layer is off said collector layer but surrounds said collector layer; and a ring-shaped first emitter layer of the second conductivity type formed in said base layer, wherein movement of carriers between the first emitter layer and the collector layer is controlled in a channel region formed in the base layer, and the unit semiconductor elements are disposed adjacent to each other.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 9, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazunari Hatade
  • Patent number: 7808014
    Abstract: A semiconductor device includes a semiconductor layer including a base region of a second conductive type formed in a first surface of the semiconductor layer, an emitter region of the first conductive type formed in the base region, a buffer layer of the first conductive type formed on a second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity of approximately 5 ×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity of approximately 1×1017 cm?3 or more. The ratio of the maximal concentration of the collector layer to that of the buffer layer is greater than 100. The collector layer has a thickness of approximately 1 ?m or more.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: October 5, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Eisuke Suekawa
  • Patent number: 7804150
    Abstract: A field effect transistor includes a trench gate extending into a semiconductor region. The trench gate has a front wall facing a drain region and a side wall perpendicular to the front wall. A channel region extends along the side wall of the trench gate, and a drift region extends at least between the drain region and the trench gate. The drift region includes a stack of alternating conductivity type silicon layers.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: September 28, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chang-ki Jeon, Gary Dolny
  • Patent number: 7795638
    Abstract: A cell of a semiconductor device comprises a substrate of n-type with a trench formed in a portion of a first main surface of the substrate and filled with insulator. Two device-feature regions are formed beneath the first main surface of the substrate, the first one at one side and the second one at the other side of the trench. A region of a p-type and/or a region of metal is formed in the first device feature region and is connected to a first electrode. A p-n junction is formed in the second device feature region and the p-region of the p-n junction is connected to a second electrode. A U-shaped region is formed between the two device regions. An IGBT without tail during turning-off can be fabricated with a simple process at a low cost.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: September 14, 2010
    Assignee: University of Electronic Science and Technology
    Inventor: Xingbi Chen
  • Patent number: 7795675
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 14, 2010
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Patent number: 7781834
    Abstract: A semiconductor device includes a gate electrode over a semiconductor substrate, wherein the gate electrode has a gate width direction; a source/drain region in the semiconductor substrate and adjacent the gate electrode, wherein the source/drain region has a first width in a direction parallel to the gate width direction; and a bulk pick-up region in the semiconductor substrate and abutting the source/drain region. The bulk pick-up region and the source/drain region have opposite conductivity types. The bulk pick-up region has a second width in the width direction, and wherein the second width is substantially less than the first width.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-San Wei, Kuo-Ming Wu, Jian-Hsing Lee
  • Patent number: 7759186
    Abstract: Methods for producing a junction termination extension surrounding the edge of a cathode or anode junction in a semiconductor substrate, where the junction termination extension has a controlled arbitrary lateral doping profile and a controlled arbitrary lateral width, are provided. A photosensitive material is illuminated through a photomask having a pattern of opaque and clear spaces therein, the photomask being separated from the photosensitive material so that the light diffuses before striking the photosensitive material. After processing, the photosensitive material so exposed produces a laterally tapered implant mask. Dopants are introduced into the semiconductor material and follow a shape of the laterally tapered implant mask to create a controlled arbitrary lateral doping profile and a controlled lateral width in the junction termination extension in the semiconductor.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: July 20, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene A. Imhoff, Francis J. Kub, Karl D. Hobart
  • Patent number: 7759734
    Abstract: A semiconductor device including a plurality of doped regions, a metal layer and a polysilicon layer is provided. The doped regions are disposed in a substrate. The metal layer includes a plurality of metal line patterns. The polysilicon layer disposed between the substrate and the metal layer includes a gate pattern and at least one guard ring pattern. The at least one guard ring pattern connects to the gate pattern and surrounds at least one of the metal line patterns. One of the metal line patterns connects to the gate pattern. The others of the metal line patterns connect to one of the doped regions in the substrate.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 20, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Yuh-Turng Liu, Shyan-Yhu Wang
  • Patent number: 7750438
    Abstract: An n-type buffer region 6 is arranged between an n? drift region 1 and a p-type collector region 7, and has a higher impurity concentration than n? drift region 1 Assuming that ? represents the ratio (WTA/WTB) between WTA expressed as: WTA = 2 ? ? s ? ? 0 ? V qNd and the thickness WTB of the drift region held between the base region and the buffer region, the ratio (DC/DB) of the net dose DC of the collector region with respect to the net dose DB of the buffer region is at least ?. Thus, a semiconductor device capable of ensuring a proper margin of SCSOA resistance can be obtained.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 6, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tatsuo Harada
  • Patent number: 7732833
    Abstract: In a base region of a first conductivity type, at least one emitter region of a second conductivity type and at least one sense region of the second conductivity type, spaced away from the emitter region, are selectively formed. The emitter region and the sense region are located so as to be aligned in a second direction perpendicular to a first direction going from a collector region of the first conductivity type, which is formed so as to be spaced away from the base region, toward the base region. The width of the sense region, the width of the emitter region, the width of a part of the base region that is adjacent to the sense region, and the width of a part of the base region that is adjacent to the emitter region in the second direction are set in such a manner that a sense ratio varies in a desired manner in accordance with variation in collector current.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroto Yamagiwa, Takashi Saji
  • Patent number: 7732862
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes an offset body region.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 8, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 7723782
    Abstract: A trench structure semiconductor device is disclosed. In one embodiment, field electrode devices are arranged in a trench structure, in direct spatial proximity in comparison with essentially planar or smooth conditions, have an enlarged common interface region with an insulation material in between, whereby a comparatively stronger electrical coupling of the directly adjacent field electrode devices is achieved.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: May 25, 2010
    Assignee: Infineon Technologies AG
    Inventor: Franz Hirler
  • Patent number: 7723780
    Abstract: A lateral DMOS device includes a body diode region and a protective diode region. The body diode region has a second conduction type well region formed in a first conduction type semiconductor substrate, the second conduction type well region including a first conduction type body region and a drain region each formed in the second conduction type well region, a first conduction type impurity region and a source region formed in the first conduction type body region, and a gate insulating film and a gate electrode formed on the first conduction type semiconductor substrate. The first conduction type body region and the second conduction type well region compose a body diode. In the protective diode region, the first conduction type impurity region is formed at a prescribed interval and the first conduction type body region and the second conduction type well region compose a protective diode.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: May 25, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung-Man Pang
  • Publication number: 20100117117
    Abstract: According to one embodiment, a power semiconductor device comprises a semiconductor substrate. A transistor gate structure is arranged in a trench formed in the semiconductor substrate. A body region of a first conductivity type is arranged adjacent the transistor gate structure and a first highly-doped region of a second conductivity type is arranged in an upper portion of the body region. A drift zone of the second conductivity type is arranged below the body region and a second highly-doped region of the second conductivity type is arranged below the drift zone. An end-of-range irradiation region is arranged adjacent the transistor gate structure and has a plurality of vacancies. In some embodiments, at least some of the vacancies are occupied by metals.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 7696600
    Abstract: A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 13, 2010
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Pfirsch, Elmar Falck, Josef Lutz
  • Patent number: 7687851
    Abstract: A method for manufacturing a trenched metal oxide semiconductor field effect transistor (MOSFET) cell includes the steps of opening a gate trench in a semiconductor substrate and implanting ions of a first conductivity type same as a conductivity type of a source region with at least two levels of implanting energies to form a column of drain-to-source resistance reduction regions below the gate trench. The method further includes steps of forming a gate in the gate trench and forming body and source regions in the substrate surrounding the gate trench. Then the MOSFET cell is covered with an insulation layer and proceeds with applying a contact mask for opening a source-body contact trench with sidewalls substantially perpendicular to a top surface of the insulation layer into the source and body regions.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: March 30, 2010
    Assignee: M-MOS Semiconductor Sdn. Bhd.
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7646059
    Abstract: A body layer of a first conductivity type is formed on a semiconductor substrate, and a source layer of a second conductivity type is formed in a surface region of the body layer. An offset layer of the second conductivity type is formed on the semiconductor substrate, and a drain layer of the second conductivity type is formed in a surface region of the offset layer. An insulating film is embedded in a trench formed in the surface region of the offset layer between the source layer and the drain layer. A gate insulating film is formed on the body layer and the offset layer between the source layer and the insulating film. A gate electrode is formed on the gate insulating film. A first peak of an impurity concentration profile in the offset layer is formed at a position deeper than the insulating film.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusuke Kawaguchi, Norio Yasuhara, Tomoko Matsudai, Kenichi Matsushita
  • Patent number: 7635878
    Abstract: One of the aspects of the present invention is to provide a semiconductor device, which includes a semiconductor layer of a first conductive type having first and second surfaces. The semiconductor layer includes a base region of a second conductive type formed in the first surface and an emitter region of the first conductive type formed in the base region. Also, the semiconductor device includes a buffer layer of the first conductive type formed on the second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity therein of approximately 5×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity therein of approximately 1×1017 cm?3 or more. Further, the ratio of the maximal concentration of the collector layer to the maximal concentration of the buffer layer being greater than 100.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: December 22, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Eisuke Suekawa
  • Patent number: 7633122
    Abstract: A trench MOSFET includes mesa regions between the trenches. The mesa regions are connected to an emitter electrode to fix the mesa region potential so that the mesa regions do not form a floating structure. P-type base regions are distributed in the mesa regions, and the distributed p-type base regions (e.g., the limited regions in the mesa regions) are provided with an emitter structure. The trench MOSFET can lower the switching losses, reducing the total losses while suppressing the ON-state voltage drop of the trench IGBT as low as the ON-state voltage drop of the IEGT, and improving the turn-on characteristics thereof. The trench MOSFET also can reduce the capacitance between the gates and the emitter thereof, since the regions where the gate electrode faces the emitter structure are reduced. The trench MOSFET can have trench gate structures set at a narrow interval to relax the electric field localization to the bottom portions of the trenches and obtain a high breakdown voltage.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: December 15, 2009
    Inventor: Masahito Otsuki
  • Publication number: 20090302373
    Abstract: A single crystal semiconductor layer of a first conduction type is disposed on a surface of a semiconductor substrate. A plurality of trenches are provided in the semiconductor layer to form a plurality of first semiconductor regions of the first conduction type at intervals in a direction parallel to the surface. An epitaxial layer is buried in the plurality of trenches to form a plurality of second semiconductor regions of a second conduction type. The plurality of second semiconductor regions each includes an outer portion with a high impurity concentration formed against an inner wall of the trench, and an inner portion with a low impurity concentration formed inner than the outer portion.
    Type: Application
    Filed: August 18, 2009
    Publication date: December 10, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kenichi TOKANO, Tetsuo Matsuda, Wataru Saito
  • Patent number: 7629626
    Abstract: One of the aspects of the present invention is to provide a semiconductor device, which includes a semiconductor layer of a first conductive type having first and second surfaces. The semiconductor layer includes a base region of a second conductive type formed in the first surface and an emitter region of the first conductive type formed in the base region. Also, the semiconductor device includes a buffer layer of the first conductive type formed on the second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity therein of approximately 5×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity therein of approximately 1×1017 cm?3 or more. Further, the ratio of the maximal concentration of the collector layer to the maximal concentration of the buffer layer being greater than 100.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 8, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Eisuke Suekawa
  • Publication number: 20090289277
    Abstract: A plurality of cell structures of a vertical power device are formed at a semiconductor substrate. One cell structure included in the plurality of cell structures and located in a central portion CR of the main surface has a lower current carrying ability than the other cell structure included in the plurality of cell structures and located in an outer peripheral portion PR of the main surface. This provides a power semiconductor device having a long power cycle life.
    Type: Application
    Filed: March 2, 2009
    Publication date: November 26, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Hiroshi YAMAGUCHI
  • Patent number: 7602025
    Abstract: A drift diffusion layer of a low concentration is formed so as to surround a collector buffer layer having a relatively high concentration including a high-concentration collector diffusion layer in a plane structure. Thereby, current crowding in corner portions of the high-concentration collector diffusion layer is suppressed while maintaining a short turnoff time, and the improvement of breakdown voltage at on-time is realized.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Hisaji Nishimura, Hiroyoshi Ogura, Akira Ohdaira
  • Publication number: 20090206440
    Abstract: A semiconductor device has a heavily doped substrate and an upper layer with doped silicon of a first conductivity type disposed on the substrate, the upper layer having an upper surface and including an active region that comprises a well region of a second, opposite conductivity type. An edge termination zone has a junction termination extension (JTE) region of the second conductivity type, the region having portions extending away from the well region and a number of field limiting rings of the second conductivity type disposed at the upper surface in the junction termination extension region.
    Type: Application
    Filed: March 13, 2009
    Publication date: August 20, 2009
    Inventors: Hans-Joachim Schulze, Frank Hille, Thomas Raker
  • Patent number: 7554173
    Abstract: A semiconductor device accurately monitoring temperature of a semiconductor chip even in a noisy environment, while not requiring a highly accurate detection circuit. A PTC element is bonded onto an IGBT chip. Then, a constant current flows from a constant current source through the PTC element, and an output voltage of the PTC element is detected by a voltage monitor. When output voltage increases, a voltage applied to a gate electrode by a detection circuit is decreased. Since the PTC element is directly arranged on the IGBT chip, the temperature of the IGBT chip can be monitored with high accuracy. Further, since the change in output voltage of the PTC element per 1° C. is large, a highly accurate detection circuit is not necessary, thereby allowing accurate monitoring of the temperature of the IGBT chip even in a noisy environment.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: June 30, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Inaguchi, Takeshi Ohi, Katsuhiko Fukuhara, Naoshi Yamada, Yoshitsugu Inaba, Takao Mitsuhashi
  • Patent number: 7542317
    Abstract: The power conversion apparatus uses the semiconductor device. Said semiconductor device includes a first group of power semiconductor elements at least one of which is electrically connected between a first potential and a third potential, a second group of power semiconductor elements at least one of which is electrically connected between a second potential and the third potential, and a third group of power semiconductor elements at least one of which is electrically connected between the first potential and the third potential. The second group is disposed between the first group and third group. Thereby, a low-loss semiconductor device having both inductance reducibility and heat generation balancing capability and also an electric power conversion apparatus using the same is provided.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 2, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Katsunori Azuma, Toshiaki Morita, Hiroshi Hozoji, Kazuhiro Suzuki, Toshiya Satoh, Osamu Otsuka
  • Publication number: 20090134458
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Application
    Filed: December 5, 2008
    Publication date: May 28, 2009
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Patent number: 7531871
    Abstract: A semiconductor element of this invention includes a drift layer of a first conductivity type formed on a semiconductor substrate of the first conductivity type, a well layer of a second conductivity type selectively formed in the surface of the drift layer, a source layer of the first conductivity type selectively formed in the surface of the well layer, a trench formed to reach at least the inside of the drift layer from the surface of the source layer through the well layer, a buried electrode formed in the trench through a first insulating film, and a control electrode formed on the drift layer, the well layer, and the source layer through a second insulating film.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: May 12, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Wataru Saito, Tsuneo Ogura, Hiromichi Ohashi, Yoshihiko Saito, Kenichi Tokano
  • Patent number: 7498658
    Abstract: A trench gate type IGBT includes: a first semiconductor layer; a second semiconductor on the first semiconductor layer; a third semiconductor on the second semiconductor layer; trenches for separating the third semiconductor layer into first regions and second regions; a gate insulation film on an inner wall of each trench; a gate electrode on the gate insulation film; a fourth semiconductor layer in a surface portion of each first region and contacting each trench; a first electrode connecting to the first region and the fourth semiconductor layer; and a second electrode connecting to the first semiconductor layer. The first regions and the second regions are alternately arranged. Two second regions are continuously connected together to be integrated into one body.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 3, 2009
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Kensaku Yamamoto
  • Publication number: 20090045457
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate including a low-side steering diode, a high-side steering diode integrated with a main Zener diode for suppressing a transient voltage. The low-side steering diode and the high-side steering diode integrated with the Zener diode are disposed in the semiconductor substrate and each constituting a vertical PN junction as vertical diodes in the semiconductor substrate whereby reducing a lateral area occupied by the TVS device. In an exemplary embodiment, the high-side steering diode and the Zener diode are vertically overlapped with each other for further reducing lateral areas occupied by the TVS device.
    Type: Application
    Filed: October 1, 2008
    Publication date: February 19, 2009
    Inventor: Madhur Bobde
  • Patent number: 7456484
    Abstract: A semiconductor device includes: a semiconductor substrate having first and second semiconductor layers; an IGBT having a collector region, a base region in the first semiconductor layer, an emitter region in the base region, and a channel region in the base region between the emitter region and the first semiconductor layer; a diode having an anode region in the first semiconductor layer and a cathode electrode on the first semiconductor layer; and a resistive region. The collector region and the second semiconductor layer are disposed on the first semiconductor layer. The resistive region for increasing a resistance of the second semiconductor layer is disposed in a current path between the channel region and the cathode electrode through the first semiconductor layer and the second semiconductor layer with bypassing the collector region.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 25, 2008
    Assignee: Denso Corporation
    Inventors: Yoshihiko Ozeki, Norihito Tokura, Yukio Tsuzuki
  • Patent number: 7453106
    Abstract: A semiconductor device includes: a semiconductor substrate formed with an active region and an isolation region and having a trench formed in the isolation region; an isolation insulating film embedded in the trench of the semiconductor substrate; and semiconductor nanocrystals buried in the isolation insulating film. The coefficient of linear expansion of the semiconductor nanocrystal is closer to that of the semiconductor substrate rather than that of the isolation insulating film, so that stress applied to the active region after a thermal treatment or the like is reduced.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: November 18, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinji Takeoka, Junji Hirase
  • Patent number: 7423316
    Abstract: The dense accumulation of hole carriers can be obtained over a wide range of a semiconductor region in a floating state formed within a body region of an IGBT. An n type semiconductor region (52) whose potential is floating is formed within a p? type body region (28). The n type semiconductor region (52) is isolated from an n+ type emitter region (32) and an n? type drift region (26) by the body region (28). Furthermore, a second electrode (62) is formed, so as to oppose to at least a part of the semiconductor region (52) via an insulator film (64). The second electrode (62) does not oppose to the emitter region (32).
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: September 9, 2008
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Sachiko Kawaji, Masayasu Ishiko, Takahide Sugiyama, Masanori Usui, Jun Saito, Koji Hotta
  • Patent number: 7417282
    Abstract: The present invention disclosed herein is a Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS) device incorporating a reverse diode. This device includes a plurality of source regions isolated from a drain region. A source region in close proximity to the drain region is a first diffusion structure in which a heavily doped diffusion layer of a second conductivity type is formed in a body region of a second conductivity type. Another source region is a second diffusion structure in which a heavily doped diffusion layer of a first conductivity type and a heavily doped diffusion layer of the second conductivity type are formed in the body region of the second conductivity type. An impurity diffusion structure of the source region in close proximity to the drain region is changed to be operated as a diode, thereby forming a strong current path to ESD (Electro-Static Discharge) or EOS (Electrical Over Stress). As a result, it is possible to prevent the device from being broken down.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sung-Pil Jang, Han-Gu Kim, Chan-Hee Jeon
  • Publication number: 20080197409
    Abstract: An embodiment of an MOS device includes a semiconductor substrate of a first conductivity type, a first region of the first conductivity type having a length Lacc and a net active dopant concentration of about Nfirst, a pair of spaced-apart body regions of a second opposite conductivity type and each having a length Lbody and a net active dopant concentration of about Nsecond, channel regions located in the spaced-apart body regions, source regions of the first conductivity type located in the spaced-apart body regions and separated from the first region by the channel regions, an insulated gate overlying the channel regions and the first region, and a drain region of the first conductivity type located beneath the first region. In an embodiment, (Lbody*Nsecond)=k1*(Lacc*Nfirst), where k1 has a value in the range of about 0.6?k1?1.4.
    Type: Application
    Filed: April 24, 2008
    Publication date: August 21, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Edouard D. deFresart, Robert W. Baird, Ganming Qin
  • Patent number: 7408234
    Abstract: An object of the present invention is to provide a semiconductor device that is able to realize a low on-resistance maintaining a high drain-to-source breakdown voltage, and a method for manufacturing thereof, the present invention including: a supporting substrate; a semiconductor layer having a P? type active region that is formed on the supporting substrate, interposing a buried oxide film between the semiconductor layer and the supporting substrate; and a gate electrode that is formed on the semiconductor layer, interposing a gate oxide film and a part of a LOCOS film between the gate electrode and the semiconductor layer, wherein the P? type active region has: an N+ type source region; a P type body region; a P+ type back gate contact region; an N type drain offset region; an N+ type drain contact region; and an N type drain buffer region that is formed in a limited region between the N type drain offset region and the P type body region, and the N type drain buffer region is in contact with a source sid
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: August 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisao Ichijo, Hiroyoshi Ogura, Yoshinobu Sato, Teruhisa Ikuta
  • Patent number: 7381603
    Abstract: In one embodiment, a lateral FET cell is formed in a body of semiconductor material. The lateral FET cell includes a super junction structure formed in a drift region between a drain contact and a body region. The super junction structure includes a plurality of spaced apart filled trenches having doped regions of opposite or alternating conductivity types surrounding the trenches.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: June 3, 2008
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Zia Hossain, Shanghui Larry Tu
  • Patent number: 7372104
    Abstract: A transistor suitable for high-voltage applications is provided. The transistor is formed on a substrate having a deep well of a first conductivity type. A first well of the first conductivity type and a second well of a second conductivity type are formed such that they are not immediately adjacent each other. The well of the first conductivity type and the second conductivity type may be formed simultaneously as respective wells for low-voltage devices. In this manner, the high-voltage devices may be formed on the same wafer as low-voltage devices with fewer process steps, thereby reducing costs and process time. A doped isolation well may be formed adjacent the first well on an opposing side from the second well to provide further device isolation.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: May 13, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Bau Wu, Chien-Shao Tang, Robin Hsieh, Ruey-Hsin Liu, Shun-Liang Hsu
  • Patent number: 7365402
    Abstract: An LDMOS semiconductor transistor structure comprises a substrate having an epitaxial layer of a first conductivity type, a source region extending from a surface of the epitaxial layer of a second conductivity type, a lightly doped drain region within the epitaxial layer of a second conductivity type, a channel located between the drain and source regions, and a gate arranged above the channel within an insulating layer, wherein the lightly doped drain region comprises an implant region of the first conductivity type extending from the surface of the epitaxial layer into the epitaxial layer covering an end portion of the lightly doped drain region next to the gate.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: April 29, 2008
    Assignee: Infineon Technologies AG
    Inventor: Gordon Ma
  • Patent number: 7335944
    Abstract: A high-voltage transistor includes first and second trenches that define a mesa in a semiconductor substrate. First and second field plate members are respectively disposed in the first and second trenches, with each of the first and second field plate members being separated from the mesa by a dielectric layer. The mesa includes a plurality of sections, each section having a substantially constant doping concentration gradient, the gradient of one section being at least 10% greater than the gradient of another section. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: February 26, 2008
    Assignee: Power Integrations, Inc.
    Inventors: Sujit Banerjee, Donald Ray Disney
  • Patent number: 7319257
    Abstract: A power semiconductor device includes trenches disposed in a first base layer of a first conductivity type at intervals to partition main and dummy cells, at a position remote from a collector layer of a second conductivity type. In the main cell, a second base layer of the second conductivity type, and an emitter layer of the first conductivity type are disposed. In the dummy cell, a buffer layer of the second conductivity type is disposed. A gate electrode is disposed, through a gate insulating film, in a trench adjacent to the main cell. A buffer resistor having an infinitely large resistance value is inserted between the buffer layer and emitter electrode. The dummy cell is provided with an inhibiting structure to reduce carriers of the second conductivity type to flow to and accumulate in the buffer layer from the collector layer.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 15, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamaguchi, Hideaki Ninomiya, Ichiro Omura, Tomoki Inoue
  • Publication number: 20080006874
    Abstract: A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
    Type: Application
    Filed: January 30, 2007
    Publication date: January 10, 2008
    Inventors: Peyman Hadizad, Jina Shumate, Ali Salih