Si Compounds (e.g., Sic) (epo) Patents (Class 257/E29.104)
  • Publication number: 20130092956
    Abstract: Single crystal substrates are made of silicon carbide, and each have a first front-side surface and a first backside surface opposite to each other. A support substrate has a second front-side surface and a second backside surface opposite to each other. A connection layer has silicon carbide as a main component, and lies between the single crystal substrates and the support substrate for connecting each of the first backside surfaces and the second front-side surface such that each of the first backside surfaces faces the second front-side surface.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 18, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Sumitomo Electric Industries, Ltd.
  • Patent number: 8421086
    Abstract: A silicon carbide semiconductor device having an active layer with reduced defect density which is formed on a substrate made of silicon carbide, and a method of manufacturing the same are provided. A semiconductor device includes a substrate made of silicon carbide and having an off angle of not less than 50° and not more than 65° with respect to a plane orientation {0001}; a buffer layer, and an epitaxial layer, a p-type layer and an n+ region each serving as an active layer. The buffer layer is made of silicon carbide and formed on the substrate. The active layer is made of silicon carbide and formed on the buffer layer. The micropipe density is lower in the active layer than in the substrate. The density of dislocations in which the direction of a Burgers vector corresponds to is higher in the active layer than in the substrate.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: April 16, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Masato Tsumori
  • Patent number: 8415722
    Abstract: A memory device includes an array of memory cells and peripheral devices. At least some of the individual memory cells include carbonated portions that contain SiC. At least some of the peripheral devices do not include any carbonated portions. A transistor includes a first source/drain, a second source/drain, a channel including a carbonated portion of a semiconductive substrate that contains SiC between the first and second sources/drains and a gate operationally associated with opposing sides of the channel.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 9, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8415671
    Abstract: Semiconductor switching devices include a first wide band-gap semiconductor layer having a first conductivity type. First and second wide band-gap well regions that have a second conductivity type that is opposite the first conductivity type are provided on the first wide band-gap semiconductor layer. A non-wide band-gap semiconductor layer having the second conductivity type is provided on the first wide band-gap semiconductor layer. First and second wide band-gap source/drain regions that have the first conductivity type are provided on the first wide band-gap well region. A gate insulation layer is provided on the non-wide band-gap semiconductor layer, and a gate electrode is provided on the gate insulation layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: April 9, 2013
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20130075758
    Abstract: A MOSFET includes a semiconductor substrate having a trench formed in a main surface, a gate oxide film, a gate electrode, and a source interconnection. A semiconductor substrate includes an n-type drift layer and a p-type body layer. The trench is formed to penetrate the body layer and to reach the drift layer. The trench includes an outer peripheral trench arranged to surround an active region when viewed two-dimensionally. On the main surface opposite to the active region when viewed from the outer peripheral trench, a potential fixing region where the body layer is exposed is formed. The source interconnection is arranged to lie over the active region when viewed two-dimensionally. The potential fixing region is electrically connected to the source interconnection.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 28, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi MASUDA, Keiji WADA, Toru HIYOSHI
  • Patent number: 8404536
    Abstract: A stacked non-volatile memory device uses amorphous silicon based thin film transistors stacked vertically. Each layer of transistors or cells is formed from a deposited a-Si channel region layer having a predetermined concentration of carbon to form a carbon rich silicon film or silicon carbide film, depending on the carbon content. The dielectric stack is formed over the channel region layer. In one embodiment, the dielectric stack is an ONO structure. The control gate is formed over the dielectric stack. This structure is repeated vertically to form the stacked structure. In one embodiment, the carbon content of the channel region layer is reduced for each subsequently formed layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 26, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20130062628
    Abstract: A method for the epitaxial growth of SiC is described which includes contacting a surface of a substrate with hydrogen and HCl, subsequently increasing the temperature of the substrate to at least 1550° C. and epitaxially growing SiC on the surface of the substrate. A method for the epitaxial growth of SiC is also described which includes heating a substrate to a temperature of at least 1550° C., contacting a surface of the substrate with a C containing gas and a Si containing gas at a C/Si ratio of 0.5-0.8 to form a SiC buffer layer and subsequently contacting the surface with a C containing gas and a Si containing gas at a C/Si ratio >0.8 to form a SiC epitaxial layer on the SiC buffer layer. The method results in silicon carbide epitaxial layers with improved surface morphology.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 14, 2013
    Applicant: SEMISOUTH LABORATORIES, INC.
    Inventors: Hrishikesh DAS, Swapna SUNKARI, Timothy OLDHAM, Janna B. CASADY
  • Publication number: 20130062620
    Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the substrate. A junction barrier array is provided in the drift layer just below the Schottky layer. The elements of the junction barrier array are generally doped regions in the drift layer. To increase the depth of these doped regions, individual recesses may be formed in the surface of the drift layer where the elements of the junction barrier array are to be formed. Once the recesses are formed in the drift layer, areas about and at the bottom of the recesses are doped to form the respective elements of the junction barrier array.
    Type: Application
    Filed: September 11, 2011
    Publication date: March 14, 2013
    Applicant: CREE, INC.
    Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal, John Williams Palmour, Scott Allen
  • Publication number: 20130062625
    Abstract: Disclosed is a semiconductor device including: a semiconductor substrate; a field effect transistor formed on the semiconductor substrate; and a diode forming area adjacent to a forming area of the field effect transistor, wherein the diode forming area is insulated from the forming area of the field effect transistor on the semiconductor substrate, the diode forming area includes an anode electrode and a cathode electrode arranged side by side in a multi-finger shape, and the anode electrode and the cathode electrode are formed in a direction different from directions of a gate electrode, a source electrode, and a drain electrode of the field effect transistor arranged side by side in a multi-finger shape.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 14, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Yoshiharu TAKADA
  • Patent number: 8395162
    Abstract: The semiconductor device of the present invention includes a semiconductor region made of a material to which conductive impurities are added, an insulating film formed on a surface of the semiconductor region, and an electroconductive gate electrode formed on the insulating film. The gate electrode is made of a material whose Fermi level is closer to a Fermi level of the semiconductor region than a Fermi level of Si in at least a portion contiguous to the insulating film.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 12, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yuki Nakano, Ryota Nakamura, Katsuhisa Nagao
  • Publication number: 20130056755
    Abstract: A transistor chip formed from a wide band gap semiconductor, on which transistor elements for an upper arm are formed is mounted on a front surface of an insulating substrate. A transistor chip formed from a wide band gap semiconductor, on which transistor elements for a lower arm are formed is mounted on a rear surface of the insulating substrate.
    Type: Application
    Filed: May 21, 2010
    Publication date: March 7, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akira Hatai, Shizuri Tamura
  • Publication number: 20130056753
    Abstract: A semiconductor device including a low conducting field-controlling element is provided. The device can include a semiconductor including an active region (e.g., a channel), and a set of contacts to the active region. The field-controlling element can be coupled to one or more of the contacts in the set of contacts. The field-controlling element can be formed of a low conducting layer of material and have a lateral resistance that is both larger than an inverse of a minimal operating frequency of the device and smaller than an inverse of a maximum control frequency of the device.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 7, 2013
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 8390001
    Abstract: A normally-off type silicon carbide junction FET has a problem that the gate thereof is not easy to use due to inferiority in the characteristics of it. This problem occurs because in order to achieve normally-off, the gate voltage should be off at 0V and at the same time, the ON-state gate voltage should be suppressed to about 2.5V to prevent the passage of an electric current through a pn junction between gate and source. Accordingly, a range from the threshold voltage to the ON-state gate voltage is only from about 1 V to 2V and it is difficult to control the gate voltage. Provided in the present invention is an electronic circuit device obtained by coupling, to a gate of a normally-off type silicon carbide junction FET, an element having a capacitance equal to or a little smaller than the gate capacitance of the junction FET.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Haruka Shimizu, Natsuki Yokoyama
  • Publication number: 20130049013
    Abstract: A semiconductor device includes a silicon substrate, a silicon carbide film formed on the silicon substrate, a mask member formed on a surface of the silicon carbide film, and having an opening section, single-crystal silicon carbide films each having grown epitaxially from the silicon carbide film exposed in the opening section as a base point, and covering the silicon carbide film and the mask member, and a semiconductor element formed on surfaces of the single-crystal silicon carbide films, an assembly section formed of the single-crystal silicon carbide films assembled to each other exists above the mask member, the semiconductor element has a body contact region, and the body contact region is disposed at a position overlapping the assembly section viewed from a direction perpendicular to the surface of the silicon substrate.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 28, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hiroyuki SHIMADA
  • Patent number: 8384090
    Abstract: A high quality single crystal wafer of SiC is disclosed having a diameter of at least about 3 inches and a 1c screw dislocation density of less than about 2000 cm?2.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: February 26, 2013
    Assignee: Cree, Inc.
    Inventors: Adrian Powell, Mark Brady, Stephan G. Mueller, Valeri F. Tsvetkov, Robert T. Leonard
  • Publication number: 20130043490
    Abstract: The semiconductor device 100 of this invention includes: a semiconductor layer 2 arranged on the principal surface of a substrate 1 and made of a wide bandgap semiconductor; a trench 5 which is arranged in the semiconductor layer 2 and which has a bottom and a side surface; an insulating region 11 arranged on the bottom and side surface of the trench 5; and a conductive layer 7 arranged in the trench 5 and insulated from the semiconductor layer 2 by the insulating region 11. The insulating region 11 includes a gate insulating film 6 arranged on the bottom and the side surface of the trench 5 and a gap 10 arranged between the gate insulating film 6 and the conductive layer 7 at the bottom of the trench 5. The gate insulating film 6 contacts with the conductive layer 7 on a portion of the side surface of the trench 5 but does not contact with the conductive layer 7 at the bottom of the trench 5.
    Type: Application
    Filed: February 14, 2012
    Publication date: February 21, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Haruyuki Sorada
  • Publication number: 20130037822
    Abstract: A semiconductor device and its manufacturing method are provided. The semiconductor device comprises: a semiconductor substrate of a first semiconductor material, a gate structure on the semiconductor substrate, a crystal lattice dislocation line in a channel under the gate structure for generating channel stress, wherein the crystal lattice dislocation line being at an angle to the channel.
    Type: Application
    Filed: November 25, 2011
    Publication date: February 14, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20130032857
    Abstract: The present invention provides novel silicon-germanium hydride compounds, methods for their synthesis, methods for their deposition, and semiconductor structures made using the novel compounds.
    Type: Application
    Filed: July 6, 2012
    Publication date: February 7, 2013
    Applicant: The Arizona Board of Regents, a body corporate acting on behalf of Arizona State University
    Inventors: John Kouvetakis, Cole J. Ritter, III, Changwu Hu, Ignatius S.T. Tsong, Andrew Chizmeshya
  • Publication number: 20130032822
    Abstract: A substrate capable of achieving a lowered probability of defects produced in a step of forming an epitaxial film or a semiconductor element, a semiconductor device including the substrate, and a method of manufacturing a semiconductor device are provided. A substrate is a substrate having a front surface and a back surface, in which at least a part of the front surface is composed of single crystal silicon carbide, the substrate having an average value of surface roughness Ra at the front surface not greater than 0.5 nm, a standard deviation ? of that surface roughness Ra not greater than 0.2 nm, an average value of surface roughness Ra at the back surface not smaller than 0.3 nm and not greater than 10 nm, standard deviation ? of that surface roughness Ra not greater than 3 nm, and a diameter D of the front surface not smaller than 110 mm.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 7, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Keiji ISHIBASHI
  • Patent number: 8368165
    Abstract: A SiC Schottky diode which includes a Schottky barrier formed on a silicon face 4H—SiC body.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 5, 2013
    Assignee: Siliconix Technology C. V.
    Inventor: Giovanni Richieri
  • Publication number: 20130026493
    Abstract: The present disclosure relates to a Silicon Carbide (SiC) semiconductor device having both a high blocking voltage and low on-resistance. In one embodiment, the semiconductor device has a blocking voltage of at least 10 kilovolts (kV) and an on-resistance of less than 10 milli-ohms centimeter squared (m?·cm2) and even more preferably less than 5 m?·cm2. In another embodiment, the semiconductor device has a blocking voltage of at least 15 kV and an on-resistance of less than 15 m?·cm2 and even more preferably less than 7 m?·cm2. In yet another embodiment, the semiconductor device has a blocking voltage of at least 20 kV and an on-resistance of less than 20 m?·cm2 and even more preferably less than 10 m?·cm2. The semiconductor device is preferably, but not necessarily, a thyristor such as a power thyristor, a Bipolar Junction Transistor (BJT), an Insulated Gate Bipolar Transistor (IGBT), or a PIN diode.
    Type: Application
    Filed: February 6, 2012
    Publication date: January 31, 2013
    Applicant: CREE, INC.
    Inventors: Lin Cheng, Anant K. Agarwal, Michael John O'Loughlin, Albert Augustus Burk, JR., John Williams Palmour
  • Publication number: 20130026494
    Abstract: An SiC semiconductor device includes a semiconductor element formed in an SiC substrate, a source electrode and a gate pad formed by using an interconnect layer having barrier metal provided at the bottom surface thereof, and a temperature measuring resistive element formed by using part of the barrier metal in the interconnect line.
    Type: Application
    Filed: March 12, 2012
    Publication date: January 31, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yasunori ORITSUKI, Naoki Yutani, Yoichiro Tarui
  • Patent number: 8362575
    Abstract: An integrated circuit structure includes a fin field-effect transistor (FinFET) including a semiconductor fin over and adjacent to insulation regions; and a source/drain region over the insulation regions. The source/drain region includes a first and a second semiconductor region. The first semiconductor region includes silicon and an element selected from the group consisting of germanium and carbon, wherein the element has a first atomic percentage in the first semiconductor region. The first semiconductor region has an up-slant facet and a down-slant facet. The second semiconductor region includes silicon and the element. The element has a second atomic percentage lower than the first atomic percentage. The second semiconductor region has a first portion on the up-slant facet and has a first thickness. A second portion of the second semiconductor region, if any, on the down-slant facet has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Chien-Chang Su, Kuan-Yu Chen, Hsueh-Chang Sung, Hsien-Hsin Lin
  • Publication number: 20130009170
    Abstract: An epitaxial SiC single crystal substrate including a SiC single crystal wafer whose main surface is a c-plane or a surface that inclines a c-plane with an angle of inclination that is more than 0 degree but less than 10 degrees, and SiC epitaxial film that is formed on the main surface of the SiC single crystal wafer, wherein the dislocation array density of threading edge dislocation arrays that are formed in the SiC epitaxial film is 10 arrays/cm2 or less.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicants: SHOWA DENKO K.K., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, NATIONAL INSTITUTE OF ADVANCE INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kenji MOMOSE, Michiya ODAWARA, Keiichi MATSUZAWA, Hajime OKUMURA, Kazutoshi KOJIMA, Yuuki ISHIDA, Hidekazu TSUCHIDA, Isaho KAMATA
  • Publication number: 20130009168
    Abstract: A semiconductor module is disclosed that includes a semiconductor element, a capacitor configured to be electrically connected to the semiconductor element and a heat sink, wherein the semiconductor and the capacitor are stacked with each other via the heat sink, and wherein the semiconductor element is disposed in a position overlapping with the capacitor as viewed from a stack direction.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 10, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jiro TSUCHIYA, Torahiko SASAKI, Makoto IMAI, Hideki TOJIMA, Tadakazu HARADA, Tomoaki MITSUNAGA
  • Publication number: 20130001591
    Abstract: An integrated circuit device and method for manufacturing the same are disclosed. An exemplary device includes a semiconductor substrate having a substrate surface and a trench isolation structure disposed in the semiconductor substrate for isolating an NMOS region of the device and from a PMOS region of the device. The device further includes a first fin structure comprising silicon or SiGe disposed over a layer of III-V semiconductor material having a high band gap energy and a lattice constant greater than that of Ge; a second fin structure comprising silicon or SiGe disposed over a layer of III-V semiconductor material having a high band gap energy and a lattice constant smaller than that of Ge; and a gate structure disposed over and arranged perpendicular to the first and second fin structures.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Yao-Tsung Huang, Clement Hsingjen Wann
  • Publication number: 20130001593
    Abstract: A semiconductor device structure includes a transistor with an energy barrier beneath its transistor channel. The energy barrier prevents leakage of stored charge from the transistor channel into a bulk substrate. Methods for fabricating semiconductor devices that include energy barriers are also disclosed.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Chandra V. Mouli
  • Publication number: 20130001592
    Abstract: In a silicon carbide semiconductor device, a plurality of trenches has a longitudinal direction in one direction and is arranged in a stripe pattern. Each of the trenches has first and second sidewalls extending in the longitudinal direction. The first sidewall is at a first acute angle to one of a (11-20) plane and a (1-100) plane, the second sidewall is at a second acute angle to the one of the (11-20) plane and the (1-100) plane, and the first acute angle is smaller than the second acute angle. A first conductivity type region is in contact with only the first sidewall in the first and second sidewalls of each of the trenches, and a current path is formed on only the first sidewall in the first and second sidewalls.
    Type: Application
    Filed: June 25, 2012
    Publication date: January 3, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Shinichiro Miyahara, Masahiro Sugimoto, Hidefumi Takaya, Yukihiko Watanabe, Narumasa Soejima, Tsuyoshi Ishikawa
  • Publication number: 20120326166
    Abstract: A substrate has a surface made of a semiconductor having a hexagonal single-crystal structure of polytype 4H. The surface of the substrate is constructed by alternately providing a first plane having a plane orientation of (0-33-8), and a second plane connected to the first plane and having a plane orientation different from the plane orientation of the first plane. A gate insulating film is provided on the surface of the substrate. A gate electrode is provided on the gate insulating film.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 27, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Shin Harada, Keiji Wada, Toru Hiyoshi
  • Publication number: 20120326164
    Abstract: An exemplary thinned-down betavoltaic device includes an N+ doped silicon carbide (SiC) substrate having a thickness between about 3 to 50 microns, an electrically conductive layer disposed immediately adjacent the bottom surface of the SiC substrate; an N? doped SiC epitaxial layer disposed immediately adjacent the top surface of the SiC substrate, a P+ doped SiC epitaxial layer disposed immediately adjacent the top surface of the N? doped SiC epitaxial layer, an ohmic conductive layer disposed immediately adjacent the top surface of the P+ doped SiC epitaxial layer, and a radioisotope layer disposed immediately adjacent the top surface of the ohmic conductive layer. The radioisotope layer can be 63Ni, 147Pm, or 3H. Devices can be stacked in parallel or series. Methods of making the devices are disclosed.
    Type: Application
    Filed: November 19, 2010
    Publication date: December 27, 2012
    Applicant: CORNELL UNIVERSITY
    Inventors: Amit Lal, Steven Tin
  • Publication number: 20120319136
    Abstract: A SiC device includes an inversion type MOSFET having: a substrate, a drift layer, and a base region stacked in this order; source and contact regions in upper portions of the base region; a trench penetrating the source and base regions; a gate electrode on a gate insulating film in the trench; a source electrode coupled with the source and base region; a drain electrode on a back of the substrate; and multiple deep layers in an upper portion of the drift layer deeper than the trench. Each deep layer has an impurity concentration distribution in a depth direction, and an inversion layer is provided in a portion of the deep layer on the side of the trench under application of the gate voltage.
    Type: Application
    Filed: February 6, 2012
    Publication date: December 20, 2012
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Masato Noborio, Kensaku Yamamoto, Hideo Matsuki, Hidefumi Takaya, Masahiro Sugimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
  • Publication number: 20120319134
    Abstract: A gate electrode includes a polysilicon film in contact with a gate insulating film, a barrier film provided on the polysilicon film, a metal film provided on the barrier film and made of refractory metal. An interlayer insulating film is arranged so as to cover the gate insulating film and the gate electrode provided on the gate insulating film. The interlayer insulating film has a substrate contact hole partially exposing a silicon carbide substrate in a region in contact with the gate insulating film. A interconnection is electrically connected to the silicon carbide substrate through the substrate contact hole and is electrically insulated from the gate electrode by the interlayer insulating film.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Misako HONAGA, Takeyoshi MASUDA
  • Publication number: 20120305940
    Abstract: A method and structure are disclosed for a defect free Si:C source/drain in an NFET device. A wafer is accepted with a primary surface of {100} crystallographic orientation. A recess is formed in the wafer in such manner that the bottom surface and the four sidewall surfaces of the recess are all having {100} crystallographic orientations. A Si:C material is eptaxially grown in the recess, and due to the crystallographic orientations the defect density next to each of the four sidewall surfaces is essentially the same as next to the bottom surface. The epitaxially filled recess is used in the source/drain fabrication of an NFET device. The NFET device is oriented along the <100> crystallographic direction, and has the device channel under a tensile strain due to the defect free Si:C in the source/drain.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Stephen W. Bedell, Bruce B. Doris, Lisa F. Edge, Keith E. Fogel, Johnathan E. Faltermeier, Jinghong Li, Alexander Reznicek, Devendra K. Sadana, Bin Yang
  • Patent number: 8324704
    Abstract: A silicon carbide semiconductor device with a Schottky barrier diode includes a first conductivity type silicon carbide substrate, a first conductivity type silicon carbide drift layer on a first surface of the substrate, a Schottky electrode forming a Schottky contact with the drift layer, and an ohmic electrode on a second surface of the substrate. The Schottky electrode includes an oxide layer in direct contact with the drift layer. The oxide layer is made of an oxide of molybdenum, titanium, nickel, or an alloy of at least two of these elements.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 4, 2012
    Assignees: DENSO CORPORATION, Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeo Yamamoto, Takeshi Endo, Eiichi Okuno, Hirokazu Fujiwara, Masaki Konishi, Takashi Katsuno, Yukihiko Watanabe
  • Patent number: 8324631
    Abstract: A SiC semiconductor substrate is disclosed which includes a SiC single crystal substrate, a nitrogen (N)-doped n-type SiC epitaxial layer in which nitrogen (N) is doped and a phosphorus (P)-doped n-type SiC epitaxial layer in which phosphorus (P) is doped. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are laminated on the silicon carbide single crystal substrate sequentially. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are formed by using two or more different dopants, for example, nitrogen and phosphorus, at the time of epitaxial growth. Basal plane dislocations in a SiC device can be reduced.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: December 4, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshiyuki Yonezawa, Takeshi Tawara
  • Publication number: 20120299014
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type and having a major surface, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first and second semiconductor layers. The major surface is opposite to the light emitting layer. The first semiconductor layer has structural bodies provided in the major surface. The structural bodies are recess or protrusion. A centroid of a first structural body aligns with a centroid of a second structural body nearest the first structural. hb, rb, and Rb satisfy rb/(2·hb)?0.7, and rb/Rb<1, where hb is a depth of the recess, rb is a width of a bottom portion of the recess, and Rb is a width of the protrusion.
    Type: Application
    Filed: February 24, 2012
    Publication date: November 29, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Toshiki HIKOSAKA, Yoshiyuki Harada, Maki Sugai, Shinya Nunoue
  • Publication number: 20120292639
    Abstract: A semiconductor device and method of manufacturing a semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate and forming a dielectric layer over the substrate. The method further includes forming a first trench within the dielectric layer, wherein the first trench extends through the dielectric layer and epitaxially (epi) growing a first active layer within the first trench and selectively curing with a radiation energy the dielectric layer adjacent to the first active layer.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Miao-Cheng Liao, Min Hao Hong, Hsiang Hsiang Ko, Kei-Wei Chen, Ying-Lang Wang
  • Publication number: 20120286292
    Abstract: A power semiconductor module in which temperature rise of switching elements made of a Si semiconductor can be suppressed low and efficiency of cooling the module can be enhanced. To that end, the power semiconductor module includes switching elements made of the Si semiconductor and diodes made of a wide-bandgap semiconductor, the diodes are arranged in the middle region of the power semiconductor module, and the switching elements are arranged in both sides or in the periphery of the middle region of the power semiconductor module.
    Type: Application
    Filed: January 12, 2011
    Publication date: November 15, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yasushi Nakayama, Takayoshi Miki, Takeshi Oi, Kazuhiro Tada, Shiori Idaka, Shigeru Hasegawa, Takeshi Tanaka
  • Publication number: 20120286289
    Abstract: The invention concerns a semiconductor device comprising a structure, wherein the structure comprising a substrate, a first layer onto the substrate comprising GaN and a second layer comprising AlGaN.
    Type: Application
    Filed: February 16, 2012
    Publication date: November 15, 2012
    Applicant: UNIVERSITAT ULM
    Inventors: Michele Dipalo, Erhard Kohn
  • Publication number: 20120280253
    Abstract: Stress regulated semiconductor devices and associated methods are provided. In one aspect, for example, a stress regulated semiconductor device can include a semiconductor layer, a stress regulating interface layer including a carbon layer formed on the semiconductor layer, and a heat spreader coupled to the carbon layer opposite the semiconductor layer. The stress regulating interface layer is operable to reduce the coefficient of thermal expansion difference between the semiconductor layer and the heat spreader to less than or equal to about 10 ppm/° C.
    Type: Application
    Filed: October 29, 2011
    Publication date: November 8, 2012
    Applicant: RiteDia Corporation
    Inventors: Chien-Min Sung, Ming Chi Kan, Shao Chung Ku
  • Patent number: 8304783
    Abstract: Hybrid semiconductor devices including a PIN diode portion and a Schottky diode portion are provided. The PIN diode portion is provided on a semiconductor substrate and has an anode contact on a first surface of the semiconductor substrate. The Schottky diode portion is also provided on the semiconductor substrate and includes a polysilicon layer on the semiconductor substrate and a ohmic contact on the polysilicon layer. Related Schottky diodes are also provided herein.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Cree, Inc.
    Inventors: Saptharishi Sriram, Qingchun Zhang
  • Publication number: 20120273800
    Abstract: A first vertex of a first single-crystal silicon carbide substrate and a second vertex of a second single-crystal silicon carbide substrate abut each other such that a first side of the first single-crystal silicon carbide substrate and a second side of the second single-crystal silicon carbide substrate are aligned. In addition, at least a part of the first side and at least a part of the second side abut on a third side of a third single-crystal silicon carbide substrate. Thus, in manufacturing a semiconductor device including a composite substrate, process fluctuations caused by a gap between the single-crystal silicon carbide substrates can be suppressed.
    Type: Application
    Filed: June 17, 2011
    Publication date: November 1, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tsutomu Hori, Shin Harada, Hiroki Inoue, Makoto Sasaki, Satomi Itoh, Yasuo Namikawa
  • Publication number: 20120273802
    Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 1, 2012
    Inventors: Qingchun Zhang, Sei-Hyung Ryu
  • Publication number: 20120273801
    Abstract: A SiC semiconductor device includes: a SiC substrate including a first or second conductive type layer and a first conductive type drift layer and including a principal surface having an offset direction; a trench disposed on the drift layer and having a longitudinal direction; and a gate electrode disposed in the trench via a gate insulation film. A sidewall of the trench provides a channel formation surface. The vertical semiconductor device flows current along with the channel formation surface of the trench according to a gate voltage applied to the gate electrode. The offset direction of the SiC substrate is perpendicular to the longitudinal direction of the trench.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Hiroki WATANABE, Shinichiro MIYAHARA, Masahiro SUGIMOTO, Hidefumi TAKAYA, Yukihiko WATANABE, Narumasa SOEJIMA, Tsuyoshi ISHIKAWA
  • Publication number: 20120256194
    Abstract: Disclosed is a semiconductor device having a structure capable of reducing the self-inductance of internal wiring. The semiconductor device includes: a lower board having a lower conductor layer formed on the surface thereof; a switching element bonded to the lower conductor layer in an element bonding area; a terminal bonded to the lower conductor layer in a terminal bonding area; an upper board stacked on the lower board in a board bonding area between the element bonding area and the terminal bonding area, and having an upper conductor layer on the surface thereof; and a switching element connecting member which connects the switching element with the upper conductor layer.
    Type: Application
    Filed: May 12, 2010
    Publication date: October 11, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Katsuhiko Yoshihara, Masaru Ishii, Kouichi Kitaguro
  • Publication number: 20120248463
    Abstract: A method of epitaxially growing a SiC layer on a single crystal SiC substrate is described. The method includes heating a single-crystal SiC substrate to a first temperature of at least 1400° C. in a chamber, introducing a carrier gas, a silicon containing gas and carbon containing gas into the chamber; and epitaxially growing a layer of SiC on a surface of the SiC substrate. The SiC substrate is heated to the first temperature at a rate of at least 30° C./minute. The surface of the SiC substrate is inclined at an angle of from 1° to 3° with respect to a basal plane of the substrate material.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: SS SC IP, LLC
    Inventor: Jie ZHANG
  • Publication number: 20120248461
    Abstract: A silicon carbide layer is epitaxially formed on a main surface of a substrate. The silicon carbide layer is provided with a trench having a side wall inclined relative to the main surface. The side wall has an off angle of not less than 50° and not more than 65° relative to a {0001} plane. A gate insulating film is provided on the side wall of the silicon carbide layer. The silicon carbide layer includes: a body region having a first conductivity type and facing a gate electrode with the gate insulating film being interposed therebetween; and a pair of regions separated from each other by the body region and having a second conductivity type. The body region has an impurity density of 5×1016 cm?3 or greater. This allows for an increased degree of freedom in setting a threshold voltage while suppressing decrease of channel mobility.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Toru Hiyoshi, Keiji Wada
  • Publication number: 20120241761
    Abstract: According to an embodiment, a semiconductor device includes a first semiconductor layer of a first conductive type, a first main electrode provided on a first major surface side of the first semiconductor layer, and a second main electrode provided on a second major surface side of the first semiconductor layer. A pair of first control electrodes is provided within a trench provided from the first major surface side to the second major surface in the first semiconductor layer; and the first control electrodes are provided separately from each other in a direction parallel to the first major surface. Each of the first control electrodes faces an inner face of the trench via a first insulating film. A second control electrode is provided between the first control electrodes and a bottom face of the trench, and faces the inner face of the trench via a second insulating film.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi ASAHARA
  • Publication number: 20120241741
    Abstract: A first single crystal substrate has a first side surface and it is composed of silicon carbide. A second single crystal substrate has a second side surface opposed to the first side surface and it is composed of silicon carbide. A bonding portion connects the first and second side surfaces to each other between the first and second side surfaces, and it is composed of silicon carbide. At least a part of the bonding portion has polycrystalline structure. Thus, a large-sized silicon carbide substrate allowing manufacturing of a semiconductor device with high yield can be provided.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 27, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hiroki INOUE, Shin Harada, Tsutomu Hori, Shinsuke Fujiwara
  • Publication number: 20120235162
    Abstract: This power converter includes a power-conversion semiconductor element, an electrode conductor having a substantially flat upper end surface, and a sealant. The sealant allows the substantially flat upper end surface of the electrode conductor to be exposed at an upper surface of the sealant, and provides electrical connection with an external device at the upper end surface of the exposed electrode conductor.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 20, 2012
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Tasuku ISOBE, Yasuhiko Kawanami, Yukihisa Nakabayashi, Masato Higuchi, Koji Higashikawa, Katsushi Terazono, Akira Sasaki, Takayuki Morihara, Takashi Aoki, Tetsuya Ito, Kiyonori Koguma