Gate Electrodes For Transistors With Floating Gate (epo) Patents (Class 257/E29.129)
  • Patent number: 7198993
    Abstract: A method (100) of forming fully-depleted (90) and partially-depleted (92) silicon-on-insulator (SOI) devices on a single die in an integrated circuit device (2) is disclosed using SOI starting material (4, 6, 8) and a selective epitaxial growth process (110).
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Howard L. Tigelaar, Gabriel G. Barna, Olivier Alain Faynot
  • Patent number: 7199425
    Abstract: A semiconductor device comprises a semiconductor substrate, and a non-volatile memory cell provided on the semiconductor substrate, the non-volatile memory cell comprising a tunnel insulating film provided on the semiconductor substrate, a floating gate electrode provided on the tunnel insulating film, the width of the floating gate electrode changing in the height direction of the non-volatile memory cell in channel width or length direction there, and being thinnest between a region above the bottom surface of the floating gate electrode and a region below the upper surface thereof, a control gate electrode above the floating gate electrode, and an interelectrode insulating film provided between the control gate electrode and the floating gate electrode.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: April 3, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshio Ozawa
  • Publication number: 20070063248
    Abstract: An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.
    Type: Application
    Filed: November 15, 2006
    Publication date: March 22, 2007
    Inventors: Der-Shin Shyu, Hung-Cheng Sung, Chen-Ming Huang
  • Publication number: 20070063257
    Abstract: High-voltage MOS transistors with a floated drain-side auxiliary gate are provided. The high-voltage MOS transistors include a source region and a drain region provided in a semiconductor substrate. A main gate electrode is disposed over the semiconductor substrate between the drain region and the source region. A lower drain-side auxiliary gate and an upper drain-side auxiliary gate are sequentially stacked over the semiconductor substrate between the main gate electrode and the drain region. The lower drain-side auxiliary gate is electrically insulated from the semiconductor substrate, the main gate electrode and the upper drain-side auxiliary gate. Methods of fabricating the high-voltage MOS transistors are also provided.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 22, 2007
    Inventors: Sung-Hoi Hur, Young-Min Park, Sang-Bin Song, Min-Cheol Park, Ji-Hwon Lee, Su-Youn Yi, Jang-Min Yoo
  • Patent number: 7193266
    Abstract: Apparatus and methods are provided. Conductive straps are connected to a subset of word lines of a memory device. Alternatively, first conductive straps are respectively connected only to first portions of first word lines of a memory device, and second conductive straps are respectively connected only to second portions of second word lines of the memory device, where each first word line is adjacent at least one second word line. One or more contacts can be used to connect a conductive strap to its respective word line.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Frankie F. Roohparvar
  • Patent number: 7190024
    Abstract: In a method for forming a semiconductor device and a semiconductor device formed in accordance with the method, a thin dielectric layer is provided between a lower conductive layer and an upper conductive layer. In one embodiment, the thin dielectric layer comprises an inter-gate dielectric layer, the lower conductive layer comprises a floating gate and the upper dielectric layer comprises a control gate of a transistor, for example, a non-volatile memory cell transistor. The thin dielectric layer is formed using a heat treating process that results in reduction of surface roughness of the underlying floating gate, and results in a thin silicon oxy-nitride layer being formed on the floating gate. In this manner, the thin dielectric layer provides for increased capacitive coupling between the lower floating gate and the upper control gate. This also leads to a lowered programming voltage, erasing voltage and read voltage for the transistor, while maintaining the threshold voltage in a desired range.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: March 13, 2007
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sung-Taeg Kang, Jeong-Uk Han, Sung-Woo Park, Seung-Beom Yoon, Ji-Hoon Park, Bo-Young Seo
  • Publication number: 20070052008
    Abstract: A memory structure comprising a plurality of memory cells is described. Each memory cell comprises a substrate, a shallow trench isolation, a spacer, a tunnel oxide, and a floating gate. The shallow trench isolation in the substrate is used to define an active area. The spacer is at the sidewall of the shallow trench isolation and is higher than the shallow trench isolation. The tunnel oxide is on the active area. The floating gate is on the tunnel oxide.
    Type: Application
    Filed: November 15, 2005
    Publication date: March 8, 2007
    Inventors: Chih-Ping Chung, Chun-Nan Lin, Chung-Yi Chen, Hung-Kwei Liao
  • Patent number: 7180124
    Abstract: Nonvolatile memory cells having a split gate structure and methods of fabricating the same are provided. The nonvolatile memory cells include active regions defined at a predetermined region of a semiconductor substrate. A portion of each of the active regions is etched to form a cell trench region. Insulated floating gates are disposed on a pair of sidewalls parallel with the direction that crosses the active region. A source region is disposed at a bottom surface of the cell trench region. A gap region between the floating gates is filled with a common source line electrically connected to the source region. The common source line is extended along the direction that crosses the active regions. The active regions, which are adjacent to the floating gates, are covered with word lines parallel with the common source line. Drain regions are disposed in the active regions adjacent to the word lines. The drain regions are electrically connected to bit lines that cross over the word lines.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: February 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Woo Kim, Dong-Jun Kim, Min-Soo Cho, Dai-Geun Kim
  • Publication number: 20070034937
    Abstract: A method of manufacturing a semiconductor device comprises forming a side wall spacer on side walls of an auxiliary gate in such a way that a CVD method using dichlorosilane as a staring material is carried out for deposition of a so-called high temperature oxide film (HTO film) at a high temperature of approximately 800° C. After the film formation, the film is post-annealed at temperatures higher than the film-forming temperature. In this way, the resulting side wall spacer becomes more dense than a silicon oxide film constituting part of a cap insulating film. Moreover, processing (double etching) of a control gate and a floating gate is performed by anisotropic dry etching and wet etching. Thus, the shape failure of the floating gate can be prevented, thereby preventing decrease in reliability and production yield.
    Type: Application
    Filed: July 26, 2006
    Publication date: February 15, 2007
    Inventor: Akihiko Sato
  • Patent number: 7176083
    Abstract: An embedded flash cell structure comprising a structure, a first floating gate having an exposed side wall over the structure, a second floating gate having an exposed side wall over the structure and spaced apart from the first floating gate, a first pair of spacers over the respective first floating gate and the second floating gate, a second pair of spacers at least over the respective exposed side walls of the first and second floating gates, a source area in the structure between the second pair of spacers, a plug over the source implant, and first and second control gates outboard of the first pair of spacers and exposing outboard portions of the structure and respective drain areas in the exposed outboard portions of the structure is provided. A method of forming the embedded flash cell structure is also provided.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Der-Shin Shyu, Hung-Cheng Sung, Chen-Ming Huang
  • Patent number: 7176519
    Abstract: A memory cell, memory cell arrangement, and method for producing a memory cell arrangement is described where electric charge carriers can be introduced from a trench structure, which delivers charge carriers, into a charge storage area by applying a predefined electrical potential to the cell.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: February 13, 2007
    Assignee: Infineon Technologies AG
    Inventor: Franz Schuler
  • Patent number: 7176516
    Abstract: A new structure is disclosed for semiconductor devices with which contact regions are self-aligned to conductive lines. Openings to a gate oxide layer, in partially fabricated devices on a silicon substrate, having insulating sidewalls. First polysilicon lines disposed against the insulating sidewalls extend from below the top of the openings to the gate oxide layer. Oxide layers are grown over the top and exposed sides of the first polysilicon lines serving to insulate the first polysilicon lines. Polysilicon contact regions are disposed directly over and connect to silicon substrate regions through openings in the gate oxide layer and fill the available volume of the openings. Second polysilicon lines connect to the contact regions and are disposed over the oxide layers grown on the first polysilicon lines.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chia-Ta Hsieh
  • Publication number: 20070023820
    Abstract: In a non-volatile memory device and methods of forming and operating the same, one memory transistor includes sidewall selection gates covering both sidewalls of a floating gate when the floating gate and a control gate are stacked. The sidewall selection gates are in a spacer form. Since the sidewall selection gates are in a spacer form on the sidewall of the floating gate, the degree of integration of cells can be improved. Additionally, since the side wall selection gates are disposed on both sidewalls of the floating gate, a voltage applied from a bit line and a common source line can be controlled and thus conventional writing/erasing errors can be prevented. Therefore, distribution of threshold voltage can be improved.
    Type: Application
    Filed: July 19, 2006
    Publication date: February 1, 2007
    Inventors: Seung-Jin Yang, Jeong-Uk Han, Kwang-Wook Koh, Jae-Hwang Kim, Sung-Chul Park, Ju-Ri Kim
  • Publication number: 20070023818
    Abstract: The invention is directed to a flash memory comprising a first source/drain region, a second source/drain region, a first floating gate, a second floating gate, a lightly doped region and a control gate. The first source/drain region and the second source/drain region are located in the substrate and apart from each other. The first floating gate and the second floating gate are isolated from each other and are located on the substrate between the first and the second source/drain regions, wherein the first floating gate is close to the first source/drain region and the second floating gate is close to the second source/drain region. The lightly doped region is located in the substrate between the first and the second floating gates. Also, the control gate is located over the substrate and isolated from the first and the second floating gates.
    Type: Application
    Filed: August 1, 2005
    Publication date: February 1, 2007
    Inventors: Chia-Hua Ho, Erh-Kun Lai
  • Publication number: 20070023823
    Abstract: A nonvolatile memory device and a method for fabricating the nonvolatile memory device are disclosed. The method comprises forming a device isolation pattern comprising a first opening and a second opening wider than the first opening, wherein the first opening is formed in the second opening; and forming a gate insulating layer on a first portion of an active region of the substrate, wherein the first opening exposes the first portion of the active region of the substrate. The method further comprises forming a first conductive layer in the first and second openings and on the gate insulating layer, partially etching the first conductive layer to form a U-shaped floating gate electrode, forming a gate interlayer insulating layer on the U-shaped floating gate electrode, forming a second conductive layer on the gate interlayer insulating layer and the device isolation pattern, and patterning the second conductive layer.
    Type: Application
    Filed: July 24, 2006
    Publication date: February 1, 2007
    Inventors: Seung-Jun Lee, Dong-Gyun Han
  • Publication number: 20070018231
    Abstract: A nonvolatile semiconductor memory device includes a gate portion formed by laminating a tunnel insulating film, floating gate electrode, inter-poly insulating film and control gate electrode on a semiconductor substrate, and source and drain regions formed on the substrate. The tunnel insulating film has a three-layered structure having a silicon nitride film sandwiched between silicon oxide films. The silicon nitride film is continuous in an in-plane direction and has 3-coordinate nitrogen bonds and at least one of second neighboring atoms of nitrogen is nitrogen.
    Type: Application
    Filed: July 24, 2006
    Publication date: January 25, 2007
    Inventors: Yuuichiro Mitani, Daisuke Matsushita, Ryuji Ooba, Isao Kamioka, Yoshio Ozawa
  • Publication number: 20070018229
    Abstract: An electronic device can include discontinuous storage elements that lie within a trench. In one embodiment, the electronic device can include a substrate that includes a trench extending into a semiconductor material. The trench can include a ledge and a bottom, wherein the bottom lies at a depth deeper than the ledge. The electronic device can include discontinuous storage elements, wherein a trench portion of the discontinuous storage elements lies within the trench. Gate electrodes may lie adjacent to walls of the trench. In a particular embodiment, a portion of a channel region within a memory cell may not be covered by a gate electrode. In another embodiment, a doped region may underlie the ledge and allow for memory cells to be formed at different elevations within the trench. In other embodiment, a process can be used to form the electronic device.
    Type: Application
    Filed: July 25, 2005
    Publication date: January 25, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Jane Yater, Gowrishankar Chindalore, Cheong Hong
  • Publication number: 20070007581
    Abstract: A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
    Type: Application
    Filed: September 14, 2006
    Publication date: January 11, 2007
    Inventors: Bomy Chen, Sohrab Kianian, Yaw Hu
  • Patent number: 7161206
    Abstract: According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 9, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Yong-Kyu Lee
  • Publication number: 20060284267
    Abstract: A flash memory comprises a substrate, control gates, doped regions, an isolation layer, isolation structures, floating gates, tunneling dielectric layers and inter-gate dielectric layers. The control gates are arranged over the substrate with a first direction, and the doped regions are arranged within the substrate with a second direction. The isolation layers are disposed between the control gates and the doping regions, and the isolation structures are disposed within the substrate where the doped regions and the control gates do not overlap. Furthermore, the floating gates are disposed between the control gates and the substrate that is not covered by the isolation layers. The tunneling dielectric layers are disposed between the substrate and the floating gates. The inter-gate dielectric layers are disposed between the control gates and the floating gates.
    Type: Application
    Filed: June 20, 2005
    Publication date: December 21, 2006
    Inventors: Hsin-Fu Lin, Chun-Pei Wu
  • Patent number: 7151021
    Abstract: A bi-directional read/program non-volatile memory cell and array is capable of achieving high density. Each memory cell has two spaced floating gates for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having three portions. One of the floating gate is over a first portion; another floating gate is over a second portion, and a gate electrode controls the conduction of the channel in the third portion between the first and second portions. A control gate is connected to each of the source/drain regions, and is also capacitively coupled to the floating gate. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode. Bi-directional read permits the cell to be programmed to store bits, with one bit in each floating gate.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: December 19, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bomy Chen, Jack Frayer, Dana Lee
  • Publication number: 20060273373
    Abstract: A semiconductor device, includes: a non-volatile memory element, wherein the non-volatile memory element includes: a first region; a second region formed adjacent to the first region; and a third region formed adjacent to the second region; and the non-volatile memory element includes: a semiconductor layer; an isolation insulating layer provided on the semiconductor layer and defines a forming region of the non-volatile memory element; a first diffused layer formed on the semiconductor layer in the first region; a first source region and a first drain region formed on the first diffused layer; a second diffused layer spaced apart from the first diffused layer and formed on the semiconductor layer at a periphery of the first diffused layer and the second region; a third diffused layer formed on the semiconductor layer in the third region; a second source region and a second drain region formed on the third diffused layer; a first insulating layer formed above the semiconductor layer in the forming region of t
    Type: Application
    Filed: June 6, 2006
    Publication date: December 7, 2006
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Susumu Inoue, Yutaka Maruo
  • Publication number: 20060267111
    Abstract: A semiconductor structure and method for forming the same. The structure includes multiple fin regions disposed between first and second source/drain (S/D) regions. The structure further includes multiple front gates and back gates, each of which is sandwiched between two adjacent fin regions such that the front gates and back gates are alternating (i.e., one front gate then one back gate and then one front gate, and so on). The widths of the front gates are greater than the widths of the back gates. The capacitances of between the front gates and the S/D regions are smaller than the capacitances of between the back gates and the S/D regions. The distances between the front gates and the S/D regions are greater than the distances between the back gates and the S/D regions.
    Type: Application
    Filed: May 18, 2006
    Publication date: November 30, 2006
    Inventors: Brent Anderson, Andres Bryant, Edward Nowak
  • Publication number: 20060267070
    Abstract: Methods and apparatus utilizing a stepped floating gate structure to facilitate reduced spacing between adjacent cells without significantly impacting parasitic capacitance. The stepped structure results in a reduced surface area of a first floating gate in close proximity to an adjacent floating gate with substantially no reduction in coupling area, thus facilitating a reduction in parasitic capacitance leading to improved gate coupling characteristics. Also, because of the reduced surface area exposed to adjacent floating gates, the floating gates may be formed with reduced spacing, thus further leading to improved gate coupling characteristics.
    Type: Application
    Filed: August 4, 2006
    Publication date: November 30, 2006
    Inventor: Paul Rudeck
  • Patent number: 7141824
    Abstract: A SiC material composition is selected to establish the barrier energy between the SIC gate and a gate insulator. Various embodiments of selected SiC material composition include a memory application, such as a flash EEPROM, and a light detector or imaging application.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: November 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7138679
    Abstract: A semiconductor memory device comprises a silicon substrate having a main surface, a trench formed on the silicon substrate to open in the main surface and a memory cell formed on the trench. The memory cell includes a first storage holding part formed on a first side wall of the trench, a second storage holding part formed on a second side wall of the trench, impurity diffusion layers formed on both sides of the trench and a gate electrode formed to extend from the trench onto the impurity diffusion layers for covering the first and second storage holding parts.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: November 21, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Hajime Arai
  • Patent number: 7138680
    Abstract: A memory device comprises a substrate including isolation regions and active regions, and a floating gate stack proximate the substrate. The floating gate stack comprises a first high-k dielectric layer proximate the substrate, a first metal layer proximate the first high-k dielectric layer, and a second high-k dielectric layer proximate the first metal layer. The memory device comprises a control gate electrode proximate the floating gate stack.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: November 21, 2006
    Assignee: Infineon Technologies AG
    Inventors: Hong-Jyh Li, Mark Gardner
  • Publication number: 20060258101
    Abstract: A non-volatile memory cell comprising a transistor and two plane capacitors. In the memory cell, a switching device is disposed on a substrate, a first plane capacitor having a first doped region and a second plane capacitor having a second doped region. The switching device and the first and second plane capacitors share a common polysilicon floating gate configured to retain charge as a result of programming the memory cell. The memory cell is configured to be erased by tunneling between the first doped region and the common polysilicon floating gate without causing junction breakdown within the memory cell. The first and second doped regions are formed in the substrate before forming the common polysilicon floating gate such that the capacitance of the first and second plane capacitors are constant when the memory cell operates within an operating voltage range.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 16, 2006
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Chao-Ming Koh, Jia-Ching Doong, Gia-Hua Hsieh
  • Publication number: 20060255396
    Abstract: A nonvolatile semiconductor memory device comprising: a gate electrode portion comprising: a floating gate electrode formed above a main surface of a semiconductor substrate of a first conductivity type, separated from the substrate by a tunnel insulating film; an inter-electrode insulating film formed on the floating gate electrode and formed of a stacked structure film of at least one type of high dielectric permittivity material; and a control gate electrode formed above the inter-electrode insulating film; and at least one interface layer between the inter-electrode insulating film and the floating gate electrode or the inter-electrode insulating film and the control gate electrode; source and drain regions of a second conductivity type which are formed on the main surface of the substrate with the gate electrode portion being arranged between the source and drain regions.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 16, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Akiko Nara
  • Publication number: 20060237769
    Abstract: The present invention relates to a method for forming a set of floating gates which are isolated from each other by means of slits, as well as semiconductor devices using the floating gate. The present invention provides a method for manufacturing an array of semiconductor devices on a substrate (10), each device having a floating gate (36), comprising: first forming isolation zones (14) in the substrate (10), thereafter forming a floating gate separator (32) on the isolation zones (14) at locations where separations between adjacent floating gates (36) are to be formed, after forming the floating gate separator (32), forming the floating gates (36) on the substrate (10) between parts of the floating gate separator (32), and thereafter removing the floating gate separator (32) so as to obtain slits in between neighboring floating gates (36). This method has an advantage over prior art in that less residues of floating gate material, or less floating gate material shorts between adjacent floating gates occur.
    Type: Application
    Filed: December 16, 2003
    Publication date: October 26, 2006
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Robertus Van Schaijk, Michiel Slotboom
  • Patent number: 7125769
    Abstract: A method of fabricating a flash memory devices disclosed wherein, upon formation of sidewall oxide films, a regrown thickness of a screen oxide film is controlled. The width of an element isolation film is reduced by means of an etch process for removing the re-growth oxide film. This allows a floating gate space to be easily secured, and a thickness of the sidewall oxide films is reduced by means of a liner nitride film pre-treatment cleaning process. It is thus possible to secure the trench space, which facilitates gap-filling.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: October 24, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cha Deok Dong
  • Publication number: 20060226468
    Abstract: A multi-bit memory cell (200) with a control gate (220) for controlling a middle portion of a channel region (208) provides improved operation including faster programming at smaller voltages and currents. The memory cell (200) includes a source (204) and a drain (206) diffused into a substrate (202) forming a channel region (208) therebetween. A first charge storing layer (214), a second charge storing layer (216) and the control gate (220) are formed on the substrate (202) over the channel region (208) and a gate (218) is formed over the source (204), the drain (206), the first and second charge storing layers (214, 216) and the control gate (220). Dielectric material (210, 212, 224, 226, 228) separates the source (204) and the drain (206) from the gate (218), and the control gate (220) from the first charge storing layer (214), the second charge storing layer (216) and the gate (218).
    Type: Application
    Filed: April 7, 2005
    Publication date: October 12, 2006
    Inventor: Wei Zheng
  • Patent number: 7115458
    Abstract: Methods and apparatus utilizing a stepped floating gate structure to facilitate reduced spacing between adjacent cells without significantly impacting parasitic capacitance. The stepped structure results in a reduced surface area of a first floating gate in close proximity to an adjacent floating gate with substantially no reduction in coupling area, thus facilitating a reduction in parasitic capacitance leading to improved gate coupling characteristics. Also, because of the reduced surface area exposed to adjacent floating gates, the floating gates may be formed with reduced spacing, thus further leading to improved gate coupling characteristics.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul J. Rudeck
  • Publication number: 20060208307
    Abstract: A split gate flash memory is provided. Trenches are formed in the substrate to define active layers. The device isolation layers are formed in the trenches. The surface of the device isolation layers is lower than the surface of the active layers. The stacked gate structures each including a tunneling dielectric layer, a floating gate and a cap layer are formed on the active layers. The inter-gate dielectric layers are formed on the sidewalls of the stacked gate structures. The select gates are formed on one side of the stacked gate structure and across the active layer. The select gate dielectric layers are formed between the select gates and the active layers. The source regions are formed in the active layers on the other side of the stacked gate structures. The drain regions are formed in the active layers on one side of the select gates.
    Type: Application
    Filed: October 11, 2005
    Publication date: September 21, 2006
    Inventors: Ko-Hsing Chang, Wu-Tsung Chung, Tsung-Cheng Huang
  • Patent number: 7109549
    Abstract: Disclosed is a semiconductor device having a plurality of memory cells arranged in a first direction and a second direction perpendicular to the first direction, each memory cell comprising a first insulating film formed on a semiconductor substrate, a floating gate formed on the first insulating film, a second insulating film which includes a first portion formed on a top surface of the floating gate and a second portion formed on that side surface of the floating gate which is parallel to the first direction, and a control gate which covers the first and second portions of the second insulating film, a width in the second direction of the floating gate increasing with increasing distance from its bottom, and a width in the second direction of the second portion of the second insulating film decreasing with increasing distance from its bottom.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 19, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshio Ozawa
  • Publication number: 20060202284
    Abstract: Source diffusion layers and drain diffusion layers are alternately formed in lateral device forming regions separated by device isolation regions. Control gate electrodes are formed on both sides of each source diffusion layer through gate ONO films interposed therebetween. Gate electrodes are formed over their corresponding side surfaces of the control gate electrodes through inter-gate electrode insulating films interposed therebetween respectively. The control gate electrodes and the gate electrodes are respectively connected in a vertical direction by a source line and word lines on each device isolation region. Further, an intermediate insulating film is formed over the surface of a silicon substrate formed with memory cells, and each lateral drain diffusion layer is connected to a bit line through contacts.
    Type: Application
    Filed: March 8, 2006
    Publication date: September 14, 2006
    Inventor: Takashi Yuda
  • Publication number: 20060202255
    Abstract: Non-volatile memory devices and methods for fabricating non-volatile memory devices are disclosed. More specifically, split gate memory devices are provided having frameworks that provide increased floating gate coupling ratios, thereby enabling enhanced programming and erasing efficiency and performance.
    Type: Application
    Filed: March 3, 2006
    Publication date: September 14, 2006
    Inventors: Hee Jeon, Sung-Taeg Kang, Hyok-Ki Kwon, Yong Kim, BoYoung Seo, Seung Yoon, Jeong-Uk Han
  • Publication number: 20060197143
    Abstract: The present invention includes floating gate transistor structures used in non-volatile memory devices such as flash memory devices. In one embodiment, a system includes a CPU and a memory device including an array having memory cells having columnar structures and a floating gate structure interposed between the structures that is positioned closer to one of the structures. In another embodiment, a memory device includes an array having memory cells having adjacent FETs having source/drain regions and a common floating gate structure that is spaced apart from the source/drain region of one FET by a first distance, and spaced apart from the source/drain region of the opposing FET by a second distance. In still another embodiment, a memory device is formed by positioning columnar structures on a substrate, and interposing a floating gate between the structures that is closer to one of the structures.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Inventor: Leonard Forbes
  • Patent number: 7102193
    Abstract: A method of fabricating a non-volatile memory is provided. A substrate having a trench therein for forming a trench device is provided. Then, a doped metal silicide layer is formed on the substrate in the trench. A heating process is performed to form a source/drain area in the substrate under the doped metal silicide layer. Thereafter, a first conductive layer is formed on the doped metal silicide layer to fill up the trench.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: September 5, 2006
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Pin-Yao Wang, Liang-Chuan Lai
  • Patent number: 7098104
    Abstract: A silicon layer doped with an impurity for a floating gate, a protective layer, a silicon nitride layer of a laminated hard mask and a first NSG layer are formed into a desired pattern, on which a second NSG layer is formed and left as a side wall. With the second NSG layer as a mask, the silicon nitride layer is etched. Using the remaining silicon nitride layer as a mask, the silicon layer is etched to form a silicon pattern whose surface is covered with a second protective layer, and the silicon nitride layer is etched out. Accordingly, it is possible to prevent a damage at the surface of the floating gate at the time of forming the floating gate using doped polysilicon.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 29, 2006
    Assignee: NEC Electronics Corporation
    Inventors: Junichi Suzuki, Kohji Kanamori
  • Publication number: 20060186460
    Abstract: In a flash memory device, which can maintain an enhanced electric field between a control gate and a storage node (floating gate) and has a reduced cell size, and a method of manufacturing the flash memory device, the flash memory device includes a semiconductor substrate having a pair of drain regions and a source region formed between the pair of drain regions, a pair of spacer-shaped control gates each formed on the semiconductor substrate between the source region and each of the drain regions, and a storage node formed in a region between the control gate and the semiconductor substrate. A bottom surface of each of the control gates includes a first region that overlaps with the semiconductor substrate and a second region that overlaps with the storage node. The pair of spacer-shaped control gates are substantially symmetrical with each other about the source region.
    Type: Application
    Filed: December 13, 2005
    Publication date: August 24, 2006
    Inventors: Byung-yong Choi, Chang-woo Oh, Dong-gun Park, Dong-won Kim, Yong-kyu Lee
  • Publication number: 20060175656
    Abstract: Non-volatile memory devices are disclosed. In a first example non-volatile memory device, programming and erasing of the memory device is performed through the same insulating barrier without the use of a complex symmetrical structure. In the example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to a charge storage region. Further in the example device, erasing is accomplished by tunneling positive carriers from the charge supply region to the charge storage region. In a second example non-volatile memory device, a charge storage region with spatially distributed charge storage region is included. Such a charge storage region may be implemented in the first example memory device or may be implemented in other memory devices. In the second example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to the charge storage region.
    Type: Application
    Filed: March 2, 2006
    Publication date: August 10, 2006
    Applicant: Interuniversitair Microelektronica Centrum (IMEC vzw)
    Inventors: Bogdan Govoreanu, Maarten Rosmeulen, Pieter Blomme
  • Patent number: 7084506
    Abstract: The semiconductor device comprises logic blocks 12 forming a logic circuit, and interconnection regions 14. A gate interconnection 32a including the gate electrode of a load transistor L1 and the gate electrode of a driver transistor D1, and the source/drain diffused layer 38 of a load transistor L2 are connected to each other by a conductor plug 50b. A gate interconnection 32b including the gate electrode of a load transistor L2 and the gate electrode of a driver transistor D2, and the source/drain diffused layer 35 of the load transistor L1 are connected to each other by a conductor plug 50c. The source/drain diffused layer 37 of a transfer transistor T1 and the source/drain diffused layer 37 of the first driver transistor D1 are made common, and the source/drain diffused layer 40 of the transfer transistor T2 and the source/drain diffused layer 40 of the driver transistor D2 are made common. Accordingly, the area for the memory cells to be formed in can be made very small.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 1, 2006
    Assignee: Fujitsu Limited
    Inventor: Yoshihiro Takao
  • Publication number: 20060163579
    Abstract: A TFT matrix-type liquid crystal display device is used in laptop personal computers and wall TVs. On a transparent insulating substrate 10 there are formed gate bus lines 14 for commonly connecting the gates of thin film transistors, drain bus lines 16 for commonly connecting the drains of the thin film transistors, and outside terminals 20 and outside terminals 30 opposed respectively to the ends of the gate bus lines and the drain bus lines 16. Gate connection lines 24 for commonly connecting the gate bus lines 14 and drain connection lines 34 for commonly connecting the drain bus lines are formed in regions inner of the outside terminals 20, 30. The thin film transistor matrix device can be fabricated without occurrence of short circuit defects, with little characteristic change and with high yields.
    Type: Application
    Filed: March 16, 2006
    Publication date: July 27, 2006
    Inventors: Hidaki Takizawa, Shougo Hayashi, Takeshi Kinjo, Makoto Tachibanaki, Kenji Okamoto
  • Publication number: 20060163644
    Abstract: A plurality of split gate non-volatile memory cells are formed vertically in a trench along the sidewalls. Each cell is comprised of a bistable element and an adjacent fixed gate threshold element that share a common respective control gate/access gate. The bistable element has a gate insulator stack that is comprised of either a floating gate or a charge trapping layer over a tunnel insulator. A plurality of silicon rich nitride layers are formed over the floating gate or charge trapping layer and separated by a high dielectric constant layer.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Inventor: Arup Bhattacharyya
  • Publication number: 20060151825
    Abstract: The present invention relates to a gate structure of a flash memory cell and method of forming the same, and method of forming a dielectric film.
    Type: Application
    Filed: March 13, 2006
    Publication date: July 13, 2006
    Inventor: Sung Lee
  • Publication number: 20060138463
    Abstract: Semiconductor integrated circuit devices having SRAM cells and flash memory cells are provided. The devices include an integrated circuit substrate having an SRAM cell region, a flash memory cell region and a logic circuit region. An isolation layer is provided in a predetermined region of the substrate. The isolation layer defines a SRAM cell active region, a flash memory cell active region and a logic transistor active region in the SRAM cell region, the flash memory cell region and the logic circuit region, respectively. An SRAM cell gate pattern crosses over the SRAM cell active region. The SRAM cell gate pattern includes a main gate electrode and a dummy gate electrode which are sequentially stacked. A flash memory cell gate pattern crosses over the flash memory cell active region.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 29, 2006
    Inventors: Gyeong-Hee Kim, Jun-Eui Song
  • Publication number: 20060138523
    Abstract: Example embodiments of the present invention disclose a non-volatile semiconductor memory device, which may include a dielectric layer having an enhanced dielectric constant. A tunnel oxide layer pattern and a floating gate may be sequentially formed on a substrate. A dielectric layer pattern including metal oxide doped with Group III transition metals may be formed on the floating gate using a pulsed laser deposition process. The dielectric layer pattern having an increased dielectric constant may be formed of metal oxide doped with a transition metal such as scandium, yttrium, or lanthanum.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 29, 2006
    Inventors: Jong-Cheol Lee, Jae-Hyoung Choi, Han-Mei Choi, Gab-Jin Nam, Young-Sun Kim
  • Publication number: 20060138522
    Abstract: Flash memory devices include pillar patterns formed between selected pairs of floating gates and control gate extensions that penetrate between selected pairs of floating gates are provided. Methods of fabricating the flash memory devices are also provided.
    Type: Application
    Filed: November 28, 2005
    Publication date: June 29, 2006
    Inventor: Dong-Chan Kim
  • Patent number: 6674130
    Abstract: A new type of partially-depleted SOI MOSFET is described in which a tunneling connection between the gate and the base is introduced. This is achieved by using a gate dielectric whose thickness is below its tunneling threshold. The gate pedestal is made somewhat longer than normal and a region near one end is implanted to be P+ (or N+ in a PMOS device). This allows holes (electrons for PMOS) to tunnel from gate to base. Since the hole current is self limiting, applied voltages greater than 0.7 volts may be used without incurring excessive leakage (as is the case with prior art DTMOS devices). A process for manufacturing the device is also described.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: January 6, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo-Nan Yang, Yi-Ling Chan, You-Lin Chu, Hou-Yu Chen, Fu-Liang Yang, Chenming Hu