Gate Stack For Field-effect Devices (epo) Patents (Class 257/E29.126)
  • Patent number: 9041092
    Abstract: A semiconductor device includes a pillar-shaped silicon layer including a first diffusion layer, a channel region, and a second diffusion layer formed in that order from the silicon substrate side, floating gates respectively disposed in two symmetrical directions so as to sandwich the pillar-shaped silicon layer, and a control gate line disposed in two symmetrical directions other than the two directions so as to sandwich the pillar-shaped silicon layer. A tunnel insulating film is formed between the pillar-shaped silicon layer and each of the floating gates. The control gate line is disposed so as to surround the floating gates and the pillar-shaped silicon layer with an inter-polysilicon insulating film interposed therebetween.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 26, 2015
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 9006094
    Abstract: A stratified gate dielectric stack includes a first high dielectric constant (high-k) gate dielectric comprising a first high-k dielectric material, a band-gap-disrupting dielectric comprising a dielectric material having a different band gap than the first high-k dielectric material, and a second high-k gate dielectric comprising a second high-k dielectric material. The band-gap-disrupting dielectric includes at least one contiguous atomic layer of the dielectric material. Thus, the stratified gate dielectric stack includes a first atomic interface between the first high-k gate dielectric and the band-gap-disrupting dielectric, and a second atomic interface between the second high-k gate dielectric and the band-gap-disrupting dielectric that is spaced from the first atomic interface by at least one continuous atomic layer of the dielectric material of the band-gap-disrupting dielectric.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Paul C. Jamison
  • Patent number: 8937006
    Abstract: A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a semiconductor device. The method also includes forming a step-forming-hard-mask (SFHM) on the MG stack in a predetermined area on the semiconductor substrate, performing MG recessing, depositing a MG hard mask over the semiconductor substrate and recessing the MG hard mask to fully remove the MG hard mask from the MG stack in the predetermined area.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Minchang Liang, Chie-Iuan Lin, Yao-Kwang Wu
  • Patent number: 8785313
    Abstract: A method of manufacturing a semiconductor device, and the method includes forming a stack of a work function layer, a blocking structure, and a metal cap layer sequentially on a substrate. The forming of the blocking structure includes sequentially depositing at least a metal diffusion prevention layer over the work function layer and an electrical performance enhancement layer over the metal diffusion prevention layer before forming the metal cap layer. The electrical performance enhancement layer includes a TiN layer having a Ti/N ratio greater than 1.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: July 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor-Wen Chan, Hsueh Wen Tsau
  • Patent number: 8772110
    Abstract: In a semiconductor device, a thin wall oxide film formed over sidewalls of an active region is formed, and a portion of the wall oxide film adjacent to a gate region is removed. A gate insulating film is formed where the portion of wall oxide film was removed to prevent a parasitic transistor from being generated by the wall oxide film.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 8, 2014
    Assignee: SK Hynix Inc.
    Inventor: Seung Joo Baek
  • Patent number: 8754417
    Abstract: Vertically stacked Field Effect Transistors (FETs) are created where a first FET and a second FET are controllable independently. The vertically stacked FETs may be connected in series or in parallel, thereby suitable for use as a portion of a NAND circuit or a NOR circuit. Epitaxial growth over a source and drain of a first FET, and having similar doping to the source and drain of the first FET provide a source and drain of a second FET. An additional epitaxial growth of a type opposite the doping of the source and drain of the first FET provides a body for the second FET.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Todd Alan Christensen, Phil Christopher Felice Paone, David Paul Paulsen, John Edward Sheets, II
  • Patent number: 8692321
    Abstract: A semiconductor device includes a trench defined by etching a semiconductor substrate including a device isolation film and an active region, an active region protruded from a side and bottom of the trench, and a gate electrode surrounding the active region simultaneously while being buried in the trench.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: April 8, 2014
    Assignee: SK Hynix Inc.
    Inventor: Seong Wan Ryu
  • Patent number: 8609522
    Abstract: A process for producing a conducting electrode on a substrate, including: depositing a layer made of a dielectric; depositing a protective layer made of the nitride of a metal on the dielectric layer; depositing a functionalization layer made of a material including a chemical species, such that the free enthalpy of formation of the nitride of the species is less, in absolute value, than the free enthalpy of formation of the nitride of the metal of the protective layer over the temperature range between 0° C. and 1200° C.; and annealing the assembly including the protective layer and the funtionalization layer so that the species diffuse from the functionalization layer into the protective layer and the nitrogen atoms migrate from the protective layer into the functionalization layer.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 17, 2013
    Assignee: Commissariat à l'énergie atomique et aux ènergies alternatives
    Inventors: Remy Gassilloud, François Martin
  • Patent number: 8581350
    Abstract: Current drive efficiency is deteriorated in the conventional FET. The FET 20 includes an electrode film 24a provided over the semiconductor substrate 10 and a stressor film 24b that is provided on the electrode film 24a and constitutes a gate electrode 24 together with the electrode film 24a. Each of the electrode film 24a and the stressor film 24b is composed of a metal, a metallic nitride or a metallic silicide. The stressor film 24b is capable of exhibiting a compressive stress over the semiconductor substrate 10.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takeo Matsuki
  • Patent number: 8564072
    Abstract: A semiconductor device includes a blocking structure between a metal layer and at least one underlying layer. The blocking structure has a first layer configured for preventing diffusion of metal from the metal layer into the at least one underlying layer, and a second layer configured for enhancing electrical performance of the semiconductor device.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 22, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bor-Wen Chan, Hsueh Wen Tsau
  • Patent number: 8546885
    Abstract: An integrated circuit fabrication is disclosed, and more particularly a field effect transistor with a low resistance metal gate electrode is disclosed. An exemplary structure for a metal gate electrode of a field effect transistor comprises a lower portion formed of a first metal material, wherein the lower portion has a recess, a bottom portion and sidewall portions, wherein each of the sidewall portions has a first width; and an upper portion formed of a second metal material, wherein the upper portion has a protrusion and a bulk portion, wherein the bulk portion has a second width, wherein the protrusion extends into the recess, wherein a ratio of the second width to the first width is from about 5 to 10.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: October 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hao Hou, Peng-Soon Lim, Da-Yuan Lee, Xiong-Fei Yu, Chun-Yuan Chou, Fan-Yi Hsu, Jian-Hao Chen, Kuang-Yuan Hsu
  • Patent number: 8497511
    Abstract: An array substrate includes scan lines and data lines defining pixel structures. Each pixel structure includes a first TFT, a second TFT and a pixel electrode. The first TFT includes a first gate connected to the scan line, a first source disposed above and partially overlapping the first gate, and a first drain disposed above the first gate. An end of the first source is connected to the data line. The first drain has at least one first concavity in which the first source is disposed partially. The second TFT includes a second gate connected to the scan line, a second source disposed above the second gate and connected to the first drain, and a second drain disposed above and partially overlapping the second gate. The second source has at least one second concavity in which the second drain is disposed partially. The pixel electrode connects to the second drain.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: July 30, 2013
    Assignee: E Ink Holdings Inc.
    Inventors: Chuan-Feng Liu, Chi-Ming Wu, Chia-Jen Chang
  • Patent number: 8450161
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 28, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yu Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Liang Chen, Chung-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang
  • Patent number: 8415674
    Abstract: Methods of forming a semiconductor device include forming an insulation layer on a semiconductor structure, forming an opening in the insulation layer, the opening having a sidewall defined by one side of the insulation layer, forming a first metal layer in the opening, at least partially exposing the sidewall of the opening by performing a wet-etching process on the first metal layer, and selectively forming a second metal layer on the etched first metal layer. An average grain size of the first metal layer is smaller than an average grain size of the second metal layer. Related semiconductor devices are also disclosed.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Soo Lim, HyunSeok Lim, Shin-Jae Kang, Kyung-Tae Jang
  • Patent number: 8324681
    Abstract: A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: December 4, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue, Kuang Yeu Hsieh
  • Patent number: 8258546
    Abstract: A semiconductor device includes a semiconductor substrate and a transistor formed in the substrate, the transistor having a gate stack that has an interfacial layer formed on the substrate, a high-k dielectric layer formed over the interfacial layer, a metal layer formed over the high-dielectric layer, a capping layer formed between the interfacial layer and high-k dielectric layer; and a doped layer formed on the metal layer, the doped layer including at least F.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lung Hung, Yong-Tian Hou, Keh-Chiang Ku, Chien-Hao Huang
  • Patent number: 8253187
    Abstract: A non-volatile semiconductor storage device 10 has a plurality of memory strings 100 with a plurality of electrically rewritable memory transistors MTr1-MTr4 connected in series. The memory string 100 includes a columnar semiconductor CLmn extending in a direction perpendicular to a substrate, a plurality of charge accumulation layers formed around the columnar semiconductor CLmn via insulating films, and selection gate lines on the drain side SGD contacting the columnar semiconductor to configure transistors. The selection gate lines on the drain side SGD have lower selection gate lines on the drain side SGDd, each of which is arranged with an interval with a certain pitch, and upper selection gate lines on the drain side SGDu located on a higher layer than the lower selection gate lines on the drain side SGDd, each of which is arranged on gaps between the lower selection gate lines on the drain side SGDd.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kido, Hideaki Aochi, Mitsuru Sato, Yasuyuki Matsuoka
  • Patent number: 8193586
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Hao-Ming Lien, Ssu-Yi Li, Jun-Lin Yeh, Kang-Cheng Lin, Kuo-Tai Huang, Chii-Horng Li, Chien-Hau Fei, Wen-Chih Yang, Jin-Aun Ng, Chi Hsin Chang, Chun Ming Lin, Harry Chuang, Chien-Liang Chen
  • Patent number: 7977735
    Abstract: A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 12, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue, Kuang Yeu Hsieh
  • Patent number: 7902015
    Abstract: A nanoscopic transistor is made by forming an oxide layer on a semiconductor substrate, applying resist, patterning the resist using imprint lithography to form a pattern aligned along a first direction, applying a first ion-masking material over the pattern, selectively lifting it off to leave a first ion mask to form a gate, forming doped regions by implanting a suitable dopant, applying another layer of resist and patterning the second resist layer using imprint lithography to form a second pattern aligned along a second direction, applying a second ion-masking material over the second pattern, selectively lifting it off to leave a second ion mask defined by the second pattern, and forming second doped regions in the substrate by implanting a suitable second dopant selectively in accordance with the second ion mask. The method may be used to make an array of nanoscopic transistors.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Adam L Ghozeil, James Stasiak, Kevin Peters, Galen H. Kawamoto
  • Patent number: 7847352
    Abstract: A semiconductor device includes: a semiconductor layer formed on a semiconductor substrate by performing epitaxial growth; a first buried insulating layer which is buried in the first region under the semiconductor layer; and a second buried insulating layer which is buried in the second region under the semiconductor layer in the position lower than the first buried insulating layer.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: December 7, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Teruo Takizawa
  • Patent number: 7847367
    Abstract: An integrated circuit device includes an integrated circuit substrate and a first gate pattern on the substrate. A non-conductive barrier layer pattern is on the first gate pattern. The barrier layer pattern has openings at selected locations therein extending to the first gate pattern. A second gate pattern is on the barrier layer pattern and extends into the opening in the barrier layer pattern to electrically connect the second gate pattern to the first gate pattern.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dae-Ik Kim
  • Patent number: 7834358
    Abstract: Basic logic gates are formed in a small area, and a highly integrated and microscopic structure is provided. In an nMOSFET and a pMOSFET, gate electrodes are formed facing each other and sandwiching a semiconductor region via gate insulting layers. Respective drain regions of the nMOSFET and the pMOSFET are connected to each other. A high potential is applied to a source region of the pMOSFET while an intermediate potential between the high and a low potential is applied to a source region of the nMOSFET. As a result, a NAND gate is provided. The intermediate potential between the high and the low potential is applied to the source region of the pMOSFET. The low potential is applied to the source region of the nMOSFET. As a result, a NOR gate is provided.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: November 16, 2010
    Assignee: Kabushik Kaisha Toshiba
    Inventor: Kazuya Matsuzawa
  • Publication number: 20100264519
    Abstract: Disclosed are methods and devices for targeting CD of selected transistors in a semiconductor device. Varying CD is done by forming hard mask lines in a hard mask layer that have varying amounts of spacer material associated therewith. Hard mask lines corresponding to selected transistors are either left covered or uncovered by a resist applied over the hard mask layer. Then, spacer material is selectively removed from the hard mask lines to vary the width of hard mask lines and associated side wall spacers. A gate layer is then etched through the spaces in the hard mask lines to form gate lines having varying widths and targeted CD.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: SPANSION LLC
    Inventors: Bradley M. Davis, Jihwan Choi, Angela T. Hui
  • Patent number: 7709334
    Abstract: A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: May 4, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue, Kuang-Yeu Hsieh
  • Patent number: 7696038
    Abstract: Methods for fabricating flash memory devices are provided. In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises forming a first gate stack and a second gate stack overlying a substrate. A trench is etched into the substrate between the first gate stack and the second gate stack. A first impurity doped region is formed within the substrate underlying the trench.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: April 13, 2010
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Kuo-Tung Chang, Hiroyuki Kinoshita, Timothy Thurgate, Wei Zheng, Ashot Melik-Martirosian, Angela Hui, Chih-Yuh Yang
  • Patent number: 7683402
    Abstract: Semiconductor devices whose current characteristics can be prevented from varying even if a phase shift mask is used for patterning gate electrodes of MISFETs, and a manufacturing method thereof are disclosed. According to one aspect of the present invention, there is provided a semiconductor device comprising a first transistor including a first gate electrode provided above a semiconductor substrate, and a first source and a first drain provided in the semiconductor substrate, a second transistor arranged to be adjacent to the first transistor, and including a second gate electrode provided above the semiconductor substrate in parallel with the first gate electrode, and a second source and a second drain provided in the semiconductor substrate, and a third gate electrode provided between the first transistor and the second transistor and in parallel with the first and second gate electrodes.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Fujii, Kouichirou Inoue, Naoto Higuchi, Taisei Suzuki
  • Patent number: 7642143
    Abstract: Provided are a method of fabricating a multilayered thin film transistor using a plastic substrate and an active matrix display device including the thin film transistor fabricated by the method. The method includes: preparing a substrate formed of plastic; forming a buffer insulating layer on the plastic substrate; forming a silicon layer on the buffer insulating layer; patterning the silicon layer to form an active layer; forming a gate insulating layer on the active layer; stacking a plurality of gate metal layers on the gate insulating layer; patterning the plurality of gate metal layers; and etching a corner region of the lowest gate metal layer formed on the gate insulating layer of the patterned gate metal layers. Accordingly, a gate metal is formed which includes a multilayered gate metal layer and has an etched corner region, thereby reducing an electric field of the corner to reduce a leakage current of the TFT.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: January 5, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Hae Kim, Choong Heui Chung, Jae Hyun Moon, Yoon Ho Song
  • Patent number: 7592652
    Abstract: An object of the present invention is to realize a numerical aperture higher than that of a pixel having a conventional construction by using a pixel circuit having a novel construction in an electro-optical device. Therefore, it is utilized that the electric potential of a gate signal line in a row except for an i-th row is set to a constant electric potential in a period except for when a gate signal line (106) in the i-th row is selected. A gate signal line 111 in an (i?1)-th row is also used as an electric current supply line for an EL element (103) controlled by the gate signal line (106) in the i-th row. Thus, wiring number is reduced and high numerical aperture is realized.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: September 22, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 7579660
    Abstract: A semiconductor device includes a substrate including a semiconductor layer at a surface, a gate insulating film disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating film. The gate electrode includes a conductive layer consisting of a nitride of a predetermined metal in contact with the gate insulating film. The conductive layer is formed by stacking a first film consisting of a nitride of the predetermined metal and a second film consisting of the predetermined metal, and diffusing nitrogen from the first film to the second film by solid-phase diffusion.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: August 25, 2009
    Assignees: Tokyo Electron Limited, Oki Electric Industry Co., Ltd.
    Inventors: Koji Akiyama, Zhang Lulu, Morifumi Ohno
  • Publication number: 20090039406
    Abstract: A nitrided region is formed on a surface of a polysilicon layer by a nitriding treatment wherein plasma of a processing gas is generated by introducing microwaves into a processing chamber by a planar antenna having a plurality of slots. Then, a CVD oxide film or the like is formed on the nitrided region and after patterning the polysilicon layer and the like after the prescribed shape, and then, a thermal oxide film is formed by thermal oxidation on exposed side walls and the like of the polysilicon layer by having the nitrided region as an oxidation barrier layer. Thus, generation of bird's beak can be suppressed in the process at a temperature lower than the temperature in a conventional process.
    Type: Application
    Filed: April 14, 2006
    Publication date: February 12, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junichi Kitagawa, Takashi Kobayashi
  • Patent number: 7411252
    Abstract: Disclosed is a tri-gate field effect transistor with a back gate and the associated methods of forming the transistor. Specifically, a back gate is incorporated into a lower portion of a fin. A tri-gate structure is formed on the fin and is electrically isolated from the back gate. The back gate can be used to control the threshold voltage of the FET. In one embodiment the back gate extends to an n-well in a p-type silicon substrate. A contact to the n-well allows electrical voltage to be applied to the back gate. A diode created between the n-well and p-substrate isolates the current flowing through the n-well from other devices on the substrate so that the back gate can be independently biased. In another embodiment the back gate extends to n-type polysilicon layer on an insulator layer on a p-type silicon substrate. A contact to the n-type polysilicon layer allows electrical voltage to be applied to the back gate.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Matthew J. Breitwisch, Edward J. Nowak
  • Patent number: 7344965
    Abstract: A method for making dual pre-doped gate stacks used in semiconductor applications such as complementary metal oxide semiconductor (CMOS) devices and metal oxide semiconductor field effect transistors (MOSFETs) is provided. The method involves providing at least one pre-doped conductive layer, such as poly silicon (poly-Si), on a gate stack and etching by exposing the conductive layer to an etching composition comprising at least one carbon containing gas. The carbon containing gas can be selected from gases having the general formula CxHy, such as, for example, CH4, C2H2, C2H4, and C2H6. The carbon containing gas can further be selected from gases having the general formula CxHyA, wherein A can represent one or more additional substituents selected from O, N, P, S, F, Cl, Br, and I. The processes can result in dual pre-doped gate stacks having essentially vertical sidewalls and further having a width of at least about 3 nm, such as from about 5 nm to about 150 nm.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: March 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Timothy Joseph Dalton, Wesley Natzle
  • Publication number: 20070296048
    Abstract: A double gate transistor comprises a substrate (105, 905) and first and second electrically insulating layers (110, 910), (120, 920). The first and second electrically insulating layers form a fin (130, 930). A first gate dielectric (140,940) is at a first side (131, 931) of the fin and a second gate dielectric (150, 950) is at a second side (132, 932) of the fin. A first metal region (160, 960) is adjacent to the first gate dielectric and has a first surface (161, 961), and a second metal region (170, 970) is adjacent to the second gate dielectric and has a second surface (171, 971). The first electrically insulating layer has a third surface (111, 911), the second electrically insulating layer has a fourth surface (121, 921), and the first surface and the second surface lie between the third and fourth surfaces.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Ibrahim Ban, Uday Shah
  • Patent number: 7297587
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 20, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Publication number: 20070176247
    Abstract: Methods and apparatus are provided for semiconductor devices. The apparatus comprises a substrate having therein a source region and a drain region separated by a channel region extending to a first surface of the substrate, and a multilayered gate structure located above the channel region. The gate structure comprises, a gate dielectric, preferably of an oxide of Hf, Zr or HfZr substantially in contact with the channel region, a first conductor layer of, for example an oxide of MoSi overlying the gate dielectric, a second conductor layer of, e.g., poly-Si, overlying the first conductor layer and adapted to apply an electrical field to the channel region, and an impurity migration inhibiting layer (e.g., MoSi) located above or below the first conductor layer and adapted to inhibit migration of a mobile impurity, such as oxygen for example, toward the substrate.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 2, 2007
    Inventors: Chun-Li Liu, Marius Orlowski, Matthew Stoker
  • Publication number: 20070052043
    Abstract: Example embodiments relate to a multilayer gate electrode, a semiconductor device having the same and methods of fabricating the same. Other example embodiments relate to a semiconductor device with a multilayer gate electrode which is relatively stable at higher temperatures, has improved resistance characteristics and improved reliability, and methods of fabricating the same. The multilayer gate electrode may include a polycrystalline semiconductor layer on the gate insulating layer and doped with conductive type impurities, an ohmic contact layer on the polycrystalline semiconductor layer and including tungsten (W1?x) and non-tungsten metal (Mx, x=about 0.01 to about 0.55), a metal barrier layer on the ohmic contact layer and a refractory metal layer on the metal barrier layer.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 8, 2007
    Inventors: Tae-Ho Cha, Chang-Won Lee, Hee-Sook Park, Woong-Hee Sohn, Byung-Hee Kim
  • Publication number: 20070052042
    Abstract: In order to provide a semiconductor device having good quality by keeping the relative permittivity of a High-K insulation film in a high state, or to provide a method for manufacturing a semiconductor device in which the relative permittivity of the High-K insulation film can be kept in a high state, a semiconductor device is disclosed that includes a silicon substrate, a gate electrode layer, and a gate insulation film between the silicon substrate and the gate electrode layer. The gate insulation film is a high relative permittivity (high-k) film being formed by performing a nitriding treatment on a mixture of a metal and silicon. The High-K film itself becomes a nitride so as to prevent SiO2 from being formed.
    Type: Application
    Filed: March 31, 2004
    Publication date: March 8, 2007
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Hidetoshi Wakamatsu, Yasuo Kobayashi
  • Patent number: 7176090
    Abstract: A method for making a semiconductor device is described. That method comprises forming on a substrate a dielectric layer and a sacrificial structure that comprises a first layer and a second layer, such that the second layer is formed on the first layer and is wider than the first layer. After the sacrificial structure is removed to generate a trench, a metal gate electrode is formed within the trench.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 13, 2007
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Mark L. Doczy, Matthew V. Metz, Suman Datta, Uday Shah, Brian S. Doyle, Robert S. Chau
  • Patent number: 7173280
    Abstract: A semiconductor device that uses a high reliability TFT structure is provided. The gate electrode of an n-channel type TFT is formed by a first gate electrode and a second gate electrode that covers the first gate electrode. LDD regions have portions that overlap the second gate electrode through a gate insulating film, and portions that do not overlap. As a result, the TFT can be prevented from degradation in an ON state, and it is possible to reduce the leak current in an OFF state.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: February 6, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Setsuo Nakajima
  • Publication number: 20070001246
    Abstract: A gate electrode with a double diffusion barrier and a fabrication method of a semiconductor device including the same are provided. The gate electrode of a semiconductor device includes: a silicon electrode; a double diffusion barrier formed on the silicon electrode and including at least a crystalline tungsten nitride-based layer; and a metal electrode formed on the double diffusion barrier.
    Type: Application
    Filed: November 1, 2005
    Publication date: January 4, 2007
    Inventors: Kwan-Yong Lim, Min-Gyu Sung, Heung-Jae Cho, Hong-Seon Yang, Seung-Ryong Lee
  • Publication number: 20060284269
    Abstract: Raised structures comprising overlying silicon layers formed by controlled selective epitaxial growth, and methods for forming such raised-structure on a semiconductor substrate are provided. The structures are formed by selectively growing an initial epitaxial layer of monocrystalline silicon on the surface of a semiconductive substrate, and forming a thin film of insulative material over the epitaxial layer. A portion of the insulative layer is removed to expose the top surface of the epitaxial layer, with the insulative material remaining along the sidewalls as spacers to prevent lateral growth. A second epitaxial layer is selectively grown on the exposed surface of the initial epitaxially grown crystal layer, and a thin insulative film is deposited over the second epitaxial layer.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 21, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Er-Xuan Ping, Jeffrey McKee