With Two-dimensional Charge Carrier Gas Channel (e.g., Hemt; With Two-dimensional Charge-carrier Layer Formed At Heterojunction Interface) (epo) Patents (Class 257/E29.246)
  • Publication number: 20130082305
    Abstract: An improved structure of the high electron mobility transistor (HEMT) and a fabrication method thereof are disclosed. The improved HEMT structure comprises a substrate, a channel layer, a spacing layer, a carrier supply layer, a Schottky layer, a first etch stop layer, a first n type doped layer formed by AlxGa1-xAs, and a second n type doped layer. The fabrication method comprises steps of: etching a gate, a drain, and a source recess by using a multiple selective etching process. Below the gate, the drain, and the source recess is the Schottky layer. A gate electrode is deposited in the gate recess to form Schottky contact. A drain electrode and a source electrode are deposited to form ohmic contacts in the drain recess and the source recess respectively, and on the second n type doped layer surrounding the drain recess and the source recess respectively.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 4, 2013
    Inventors: Cheng-Guan YUAN, Shih-Ming Joseph Liu
  • Publication number: 20130082240
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, an HEMT stack spaced apart from the substrate, and a pseudo-insulation layer (PIL) disposed between the substrate and the HEMT stack. The PIL layer includes at least two materials having different phases. The PIL layer defines an empty space that is wider at an intermediate portion than at an entrance of the empty space.
    Type: Application
    Filed: August 10, 2012
    Publication date: April 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Publication number: 20130082276
    Abstract: The present invention relates to a nitride semiconductor device and a manufacturing method thereof. According to one aspect of the present invention, a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a p-type nitride layer formed on the nitride semiconductor layer between the source and drain electrodes; an n-type nitride layer formed on the p-type nitride layer; and a gate electrode formed between the source and drain electrodes to be close to the source electrode and in contact with the n-type nitride layer so that a source-side sidewall thereof is aligned with source-side sidewalls of the p-type and n-type nitride layers is provided. Further, a method of manufacturing a nitride semiconductor device is provided.
    Type: Application
    Filed: March 23, 2012
    Publication date: April 4, 2013
    Inventors: Young Hwan PARK, Woo Chul JEON, Ki Yeol PARK, Seok Yoon HONG
  • Publication number: 20130083570
    Abstract: A semiconductor device includes a first element structure that includes a charge supply layer of first polarity; a charge channel layer of second polarity, the charge channel layer being formed above the charge supply layer and including a recess portion; and a first electrode formed in the recess portion above the charge channel layer.
    Type: Application
    Filed: August 29, 2012
    Publication date: April 4, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Tadahiro Imada
  • Publication number: 20130075752
    Abstract: A semiconductor device includes: a first semiconductor layer formed on a substrate; a second semiconductor layer formed on the first semiconductor layer; a third semiconductor layer formed on the second semiconductor layer; a gate electrode formed on the third semiconductor layer; and a source electrode and a drain electrode formed in contact with the second semiconductor layer, wherein a semiconductor material of the third semiconductor layer is doped with a p-type impurity element; and the third semiconductor layer has a jutting out region that juts out beyond an edge of the gate electrode toward a side where the drain electrode is provided.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Junji KOTANI
  • Publication number: 20130075749
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; an electron channel layer and an electron supply layer formed over the substrate; a gate electrode, a source electrode and a drain electrode formed on or above the electron supply layer; a first p-type semiconductor layer formed between the electron supply layer and the gate electrode; and a second p-type semiconductor layer formed between the electron supply layer and at least one of the source electrode and the drain electrode. The one of the source electrode and the drain electrode on the second p-type semiconductor layer includes: a first metal film; and a second metal film Which contacts the first metal film on the gate electrode side of the first metal film, and a resistance of which is higher than that of the first metal film.
    Type: Application
    Filed: July 17, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Youichi KAMADA
  • Publication number: 20130075787
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; a compound semiconductor stacked structure formed over the substrate; and a gate electrode, a source electrode and a drain electrode formed on or above the compound semiconductor stacked structure. The compound semiconductor stacked structure includes: an electron channel layer; and a nitride semiconductor layer which includes an electron supply layer formed over the electron channel layer. An indium (In) fraction at a surface of the nitride semiconductor layer in each of a region between the gate electrode and the source electrode and a region between the gate electrode and the drain electrode is lower than an indium (In) fraction at a surface of the nitride semiconductor layer in a region below the gate electrode.
    Type: Application
    Filed: July 17, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Junji KOTANI
  • Publication number: 20130075751
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; an electron channel layer and an electron supply layer formed over the substrate; a gate electrode, a source electrode and a drain electrode formed on or above the electron supply layer; a p-type semiconductor layer formed between the electron supply layer and the gate electrode; and a hole barrier layer formed between the electron supply layer and the p-type semiconductor layer, a band gap of the hole barrier layer being larger than that of the electron supply layer.
    Type: Application
    Filed: August 15, 2012
    Publication date: March 28, 2013
    Applicant: Fujitsu Limited
    Inventor: Kenji IMANISHI
  • Publication number: 20130075785
    Abstract: A semiconductor device includes a first semiconductor layer formed on a substrate, the first semiconductor containing an impurity element; a second semiconductor layer formed on the first semiconductor layer; a third semiconductor layer formed on the second semiconductor layer; and a gate electrode, a source electrode and a drain electrode that are formed on the third semiconductor layer. In the semiconductor device, the second semiconductor layer includes an impurity diffusion region in which an impurity element contained in the first semiconductor layer is diffused, the impurity diffusion region being located directly beneath the gate electrode and being in contact with the first semiconductor layer, and the impurity element causes the impurity diffusion region to be a p-type impurity diffusion region.
    Type: Application
    Filed: July 9, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Tetsuro Ishiguro, Atsushi Yamada
  • Publication number: 20130075786
    Abstract: A semiconductor device including a high resistance layer formed on a substrate, the high resistance layer being formed with a semiconductor material doped with an impurity element that makes the semiconductor material highly resistant; a multilayer intermediate layer formed on the high resistance layer; an electron transit layer formed with a semiconductor material on the multilayer intermediate layer; and an electron supply layer formed with a semiconductor material on the electron transit layer, wherein the multilayer intermediate layer is formed with a multilayer film in which a GaN layer and an AlN layer are alternately laminated.
    Type: Application
    Filed: July 12, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Tetsuro ISHIGURO
  • Publication number: 20130075789
    Abstract: A semiconductor device, comprising: a first semiconductor layer disposed on a substrate; a second semiconductor layer disposed on the first semiconductor layer; a lower insulating film disposed on the second semiconductor layer; a p-type electroconductive oxide film disposed on the lower insulating film; an upper insulating film disposed on the oxide film; and a gate electrode disposed on the upper insulating film, wherein the lower insulating film under the gate electrode has a depressed portion.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Masahito KANAMURA, Toyoo Miyajima, Toshihiro Ohki
  • Publication number: 20130076443
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; an electron channel layer and an electron supply layer formed over the substrate; a gate electrode, a source electrode and a drain electrode formed on or above the electron supply layer; and a p-type semiconductor layer formed between the electron supply layer and the gate electrode. The p-type semiconductor layer contains, as a p-type impurity, an element same as that being contained in at least either of the electron channel layer and the electron supply layer.
    Type: Application
    Filed: July 11, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Atsushi YAMADA
  • Publication number: 20130076442
    Abstract: An embodiment of a compound semiconductor device includes: a substrate; a compound semiconductor stacked structure formed over the substrate; and an amorphous insulating film formed between the substrate and the compound semiconductor stacked structure.
    Type: Application
    Filed: July 10, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Norikazu Nakamura, Atsushi Yamada, Shiro Ozaki, Kenji Imanishi
  • Publication number: 20130075788
    Abstract: A method for fabricating a semiconductor device is disclosed. The method includes sequentially forming a first semiconductor layer, a second semiconductor layer and a semiconductor cap layer containing a p-type impurity element on a substrate, forming a dielectric layer having an opening after the forming of the semiconductor cap layer, forming a third semiconductor layer containing a p-type impurity element on the semiconductor cap layer exposed from the opening of the dielectric layer, and forming a gate electrode on the third semiconductor layer.
    Type: Application
    Filed: August 8, 2012
    Publication date: March 28, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Shuichi TOMABECHI
  • Patent number: 8405126
    Abstract: A semiconductor device includes a semiconductor layer stack formed on a substrate, a first ohmic electrode and a second ohmic electrode which are formed on the semiconductor layer stack, and are spaced from each other, a first control layer formed between the first ohmic electrode and the second ohmic electrode, and a first gate electrode formed on the first control layer. The first control layer includes a lower layer, an intermediate layer which is formed on the lower layer, and has lower impurity concentration than the lower layer, and an upper layer which is formed on the intermediate layer, and has higher impurity concentration than the intermediate layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Daisuke Shibata, Tatsuo Morita, Manabu Yanagihara, Yasuhiro Uemoto
  • Patent number: 8405125
    Abstract: The semiconductor device includes a GaN-based layered body having an opening and including an n-type drift layer and a p-type layer located on the n-type drift layer, a regrown layer including a channel and located so as to cover the opening, and a gate electrode located on the regrown layer and formed along the regrown layer, wherein the opening reaches the n-type drift layer, and an edge of the gate electrode is not located outside a region of the p-type layer when viewed in plan.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: March 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaya Okada, Makoto Kiyama
  • Publication number: 20130069071
    Abstract: Compression strains are generated at an interface between the cap layer and the barrier layer and an interface between the channel layer and the buffer layer and a tensile strain is generated at an interface between the barrier layer and the channel layer. Therefore, negative charge is higher than positive charge at the interface between the cap layer and the barrier layer and the interface between the channel layer and the buffer layer, while positive charge is higher than negative charge at the interface between the barrier layer and the channel. The channel layer has a stacked layer structure of a first layer, a second layer, and a third layer. The second layer has a higher electron affinity than those of the first layer and the third layer.
    Type: Application
    Filed: July 19, 2012
    Publication date: March 21, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yasuhiro Okamoto, Hironobu Miyamoto
  • Publication number: 20130069074
    Abstract: According to an example embodiment, a power device includes a substrate, a nitride-containing stack on the substrate, and an electric field dispersion unit. Source, drain, and gate electrodes are on the nitride-containing stack. The nitride-containing stack includes a first region that is configured to generate a larger electric field than that of a second region of the nitride-containing stack. The electric field dispersion unit may be between the substrate and the first region of the nitride-containing stack.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-won LEE, Su-hee CHAE, Jun-youn KIM, In-jun HWANG, Hyo-ji CHOI
  • Publication number: 20130069113
    Abstract: An embodiment of a compound semiconductor device includes: a Si substrate; a Si oxide layer formed over a surface of the Si substrate; a nucleation layer formed over the Si oxide layer, the nucleation layer exposing a part of the Si oxide layer; and a compound semiconductor stacked structure formed over the Si oxide layer and the nucleation layer.
    Type: Application
    Filed: July 16, 2012
    Publication date: March 21, 2013
    Applicant: Fujitsu Limited
    Inventor: Atsushi YAMADA
  • Publication number: 20130069116
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a first layer. A second layer is disposed on the first layer and different from the first layer in composition. An interface is between the first layer and the second layer. A third layer is disposed on the second layer. A gate is disposed on the third layer. A source feature and a drain feature are disposed on opposite sides of the gate. Each of the source feature and the drain feature includes a corresponding metal feature at least partially embedded in the second and the third layer. A corresponding intermetallic compound underlies each metal feature. Each intermetallic compound contacts a carrier channel located at the interface.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chih Chen, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chun-Wei Hsu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 8399913
    Abstract: A field-effect semiconductor device such as a HEMT or MESFET is monolithically integrated with a Schottky diode for feedback, regeneration, or protection purposes. The field-effect semiconductor device includes a main semiconductor region having formed thereon a source, a drain, and a gate between the source and the drain. Also formed on the main semiconductor region, preferably between gate and drain, is a Schottky electrode electrically coupled to the source. The Schottky electrode provides a Schottky diode in combination with the main semiconductor region. A current flow is assured from Schottky electrode to drain without interruption by a depletion region expanding from the gate.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 19, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Mio Suzuki, Akio Iwabuchi
  • Patent number: 8399912
    Abstract: Some exemplary embodiments of a III-nitride power device including a HEMT with multiple interconnect metal layers and a solderable front metal structure using solder bars for external circuit connections have been disclosed. The solderable front metal structure may comprise a tri-metal such as TiNiAg, and may be configured to expose source and drain contacts of the HEMT as alternating elongated digits or bars. Additionally, a single package may integrate multiple such HEMTs wherein the front metal structures expose alternating interdigitated source and drain contacts, which may be advantageous for DC-DC power conversion circuit designs using III-nitride devices. By using solder bars for external circuit connections, lateral conduction is enabled, thereby advantageously reducing device Rdson.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: March 19, 2013
    Assignee: International Rectifier Corporation
    Inventors: Chuan Cheah, Michael A. Briere
  • Publication number: 20130062666
    Abstract: A compound semiconductor device includes a substrate; and a compound semiconductor layer disposed over the substrate, wherein the compound semiconductor layer includes a first region having first conductivity-type carriers generated by activating a first impurity and also includes a second region having carriers at lower concentration as compared to the first region, the carriers being generated by activating a second impurity which is the same type as the first impurity.
    Type: Application
    Filed: July 25, 2012
    Publication date: March 14, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Tadahiro IMADA
  • Publication number: 20130062621
    Abstract: Embodiments of the present disclosure includes a III-N device having a substrate layer, a first III-N material layer on one side of the substrate layer, a second III-N material layer on the first III-N material layer, and a barrier layer disposed on another side of the substrate layer, the barrier layer being less electrically conductive than the substrate layer.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: TRANSPHORM INC.
    Inventors: Nicholas Fichtenbaum, Lee McCarthy, Yifeng Wu
  • Patent number: 8395187
    Abstract: A compound semiconductor epitaxial substrate having a pseudomorphic high electron mobility field effect transistor structure including an InGaAs layer as a strained channel layer and an AlGaAs layer containing n type impurities as a front side electron-donating layer, wherein said substrate contains an InGaP layer in an orderly state on the front side of the above described InGaAs layer as the strained channel layer.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 12, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tsuyoshi Nakano, Masahiko Hata
  • Publication number: 20130056797
    Abstract: A semiconductor device including a base substrate; a semiconductor layer which is disposed on the base substrate and has a 2-Dimensional Electron Gas (2DEG) generated within the semiconductor layer; a plurality of first ohmic electrodes which are disposed on the central region of the semiconductor layer and have island-shaped cross sections; a second ohmic electrode which is disposed on edge regions of the semiconductor layer; and a Schottky electrode part has first bonding portions bonded to the first ohmic electrodes, and a second bonding portion bonded to the semiconductor layer. A depletion region is provided to be spaced apart from the 2DEG when the semiconductor device is driven at an on-voltage and is provided to be expanded to the 2DEG when the semiconductor device is driven at an off-voltage, the depletion region being generated within the semiconductor layer by bonding the semiconductor layer and the second bonding portion.
    Type: Application
    Filed: November 1, 2012
    Publication date: March 7, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Samsung Electro-Mechanics Co., Ltd.
  • Publication number: 20130056746
    Abstract: A semiconductor device includes: an electron-transit layer made of a semiconductor, the electron-transit layer having a first band gap; an electron-supply layer disposed on the electron-transit layer, the electron-supply layer being made of a semiconductor having a second band gap that is wider than the first band gap; a barrier-forming layer disposed on the electron-supply layer, the barrier-forming layer being made of a semiconductor having a third band gap that is narrower than the second band gap; an upper-channel layer disposed on the barrier-forming layer, the upper-channel layer being made of a semiconductor doped with an impurity; a side-surface of the barrier-forming layer and the upper-channel layer formed by partly removing the barrier-forming layer and the upper-channel layer; an insulating-film disposed on the side-surface; a gate-electrode disposed on the insulating-film; a source-electrode connected to the upper-channel layer; and a drain-electrode connected to the electron-supply layer or the
    Type: Application
    Filed: July 26, 2012
    Publication date: March 7, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Kazukiyo JOSHIN
  • Patent number: 8389977
    Abstract: Group III-nitride devices are described that include a stack of III-nitride layers, passivation layers, and conductive contacts. The stack includes a channel layer with a 2DEG channel, a barrier layer and a spacer layer. One passivation layer directly contacts a surface of the spacer layer on a side opposite to the channel layer and is an electrical insulator. The stack of III-nitride layers and the first passivation layer form a structure with a reverse side proximate to the first passivation layer and an obverse side proximate to the barrier layer. Another passivation layer is on the obverse side of the structure. Defected nucleation and stress management layers that form a buffer layer during the formation process can be partially or entirely removed.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: March 5, 2013
    Assignee: Transphorm Inc.
    Inventors: Rongming Chu, Umesh Mishra, Rakesh K. Lal
  • Patent number: 8390091
    Abstract: A monolithic semiconductor structure includes a stack of layers. The stack includes a substrate; a first layer made from a first semiconductor material; and a second layer made from a second semiconductor material. The first layer is situated between the substrate and the second layer and at least one of the first semiconductor material and the second semiconductor material contains a III-nitride material. The structure includes a power transistor, including a body formed in the stack of layers; a first power terminal at a side of the first layer facing the second layer; a second power terminal at least partly formed in the substrate; and a gate structure for controlling the propagation through the body of electric signals between the first power terminal and the second power terminal.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: March 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Philippe Renaud
  • Publication number: 20130049070
    Abstract: A structure of high electron mobility transistor growth on Si substrate and the method thereof, in particular used for the semiconductor device manufacturing in the semiconductor industry. The UHVCVD system was used in the related invention to grow a Ge film on Si substrate then grow the high electron mobility transistor on the Ge film for the reduction of buffer layer thickness and cost. The function of the Ge film is preventing the formation of silicon oxide when growing III-V MHEMT structure in MOCVD system on Si substrate. The reason of using MHEMT in the invention is that the metamorphic buffer layer in MHEMT structure could block the penetration of dislocation which is formed because of the very large lattice mismatch (4.2%) between Ge and Si substrate.
    Type: Application
    Filed: July 30, 2012
    Publication date: February 28, 2013
    Inventors: Edward YI CHANG, Shih-Hsuan Tang, Yueh-Chin Lin
  • Publication number: 20130049071
    Abstract: For an HEMT component, in particular on the basis of GaN, it is proposed, for the purpose of reducing field spikes in the conduction channel, in a partial section of the conduction channel between gate electrode and drain electrode, to set the sheet resistance of the conduction channel such that it is higher than in adjacent regions. Various measures for subsequently increasing the sheet resistance in an area-selective manner are specified.
    Type: Application
    Filed: May 12, 2011
    Publication date: February 28, 2013
    Applicant: UNITED MONOLITHIC SEMICONDUCTORS GMBH
    Inventors: Helmut Jung, Hervé Blanck
  • Patent number: 8384130
    Abstract: Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode spaced apart from the drain electrode, in Schottky contact with the nitride semiconductor layer, and having an ohmic pattern in ohmic contact with the nitride semiconductor layer inside; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: February 26, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park
  • Patent number: 8384129
    Abstract: High electron mobility transistors and fabrication processes are presented in which a barrier material layer of uniform thickness is provided for threshold voltage control under an enhanced channel charge inducing material layer (ECCIML) in source and drain regions with the ECCIML layer removed in the gate region.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 26, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Karl D. Hobart, Charles R. Eddy, Jr., Michael A Mastro, Travis Anderson
  • Patent number: 8384089
    Abstract: A nitride semiconductor device including: a substrate; a nitride semiconductor layer formed on the substrate and having a heterojunction interface; and a recess portion formed on the nitride semiconductor layer, wherein the nitride semiconductor layer includes: a carrier transit layer, which has a composition represented by the formula: Alx1Inx2Ga1?x1?x2N, (0?x1?1, 0?x2?1, 0?(x1+x2)?1); and a carrier supply layer including: a first layer formed on the carrier transit layer, said first layer having a composition represented by the formula: AlyGa1?yN, (0<y?1, x1<y); a second layer formed on the first layer, said second layer containing GaN; and a third layer formed on the second layer, said third layer having a composition represented by the formula: AlzGa1?zN, (0<z?1, x1<z), and wherein the recess portion is formed to penetrate the third layer and expose a surface of the second layer at a bottom portion of the recess portion.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: February 26, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ken Sato
  • Publication number: 20130043492
    Abstract: A nitride semiconductor transistor includes a heterojunction layer including a plurality of nitride semiconductor layers having different polarizations, and a gate electrode disposed on the heterojunction layer. An electron current reduction layer having a p-type conductivity is disposed between the heterojunction layer and the gate electrode to pass hole current therethrough and reduce electron current.
    Type: Application
    Filed: October 23, 2012
    Publication date: February 21, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Publication number: 20130043484
    Abstract: A high electron mobility transistor includes a source, gate and drain, a first III-V semiconductor region having a two-dimensional electron gas (2DEG) which provides a first conductive channel controllable by the gate between the source and drain, and a second III-V semiconductor region below the first III-V semiconductor region and having a second conductive channel connected to the source or drain and not controllable by the gate. The first and second III-V semiconductor regions are spaced apart from one another by a region of the high electron mobility transistor having a different band gap than the first and second III-V semiconductor regions.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Häberlen
  • Patent number: 8378388
    Abstract: A semiconductor device includes: a semiconductor layer made of Fe-doped GaN; a first buffer layer that is provided on the semiconductor layer so as to contact an upper surface of the semiconductor layer and is made of AlN or AlxGa1-xN (0.4<x<1); and an operating layer that is provided on the first buffer layer and is made of a GaN-based semiconductor.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Mitsunori Yokoyama
  • Patent number: 8378334
    Abstract: Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 19, 2013
    Assignee: Intel Corporation
    Inventors: Titash Rakshit, Gilbert Dewey, Ravi Pillarisetty
  • Publication number: 20130032860
    Abstract: A novel semiconductor power transistor is presented. The semiconductor structure is simple and is based on a Hetero-structure FET structure, where the access regions have been eliminated so as to effectively obtain a lower specific on-resistance, and a higher control on the transport properties of the device, drastically reducing the dispersion phenomena associated with these regions. The present invention can be realized both with polar and non-polar (or semi-polar) materials, without requiring delta doping implantation. It can be fabricated as an enhancement or depletion mode device with much higher control on the device threshold voltage with respect to state-of-the-art HFET devices, and achieving superior RF switching performance. Furthermore, due to the absence of access regions, enhancement mode devices can be realized without discontinuity in the channel conductivity, which results in an even lower on-resistance.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Publication number: 20130032816
    Abstract: High electron mobility transistors (HEMTs) including a substrate and a HEMT stack on the substrate, the HEMT stack including a compound semiconductor layer that includes a 2-dimensional electron gas (2DEG), an upper compound semiconductor layer that has a polarization index higher than a polarization index of the compound semiconductor layer, and a source electrode, a drain electrode, and a gate that are disposed on the upper compound semiconductor layer. The substrate may be a nitride substrate that has a dielectric constant and a thermal conductivity higher than a dielectric constant and a thermal conductivity of a silicon substrate. The substrate may include an insulating layer that has a dielectric constant and a thermal conductivity higher than a dielectric constant and a thermal conductivity of the silicon substrate, a metal layer that is deposited on the insulating layer, and a plate that is attached to the metal layer.
    Type: Application
    Filed: March 27, 2012
    Publication date: February 7, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-jun Hwang, Hyuk-soon Choi, Jae-joon Oh, Jong-bong Ha, Jong-seob Kim, Ki-ha Hong, Jai-kwang Shin
  • Patent number: 8368121
    Abstract: A circuit includes input drain, source and gate nodes. The circuit also includes a group III nitride enhancement-mode HFET having a source, drain and gate and a voltage shifter having a first terminal connected to the gate of the enhancement mode HFET at a common junction. The circuit also includes a load resistive element connected to the common junction. The drain of the enhancement-mode HFET serves as the input drain node, the source of the enhancement-mode HFET serves as the input source node and a second terminal of the voltage shifter serves as the input gate node.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 5, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Xiaobin Xin, Milan Pophristic, Michael Shur
  • Publication number: 20130026489
    Abstract: An N-face GaN HEMT device including a semiconductor substrate, a buffer layer including AlN or AlGaN deposited on the substrate, a barrier layer including AlGaN or AlN deposited on the buffer layer and a GaN channel layer deposited on the barrier layer. The channel layer, the barrier layer and the buffer layer create a two-dimensional electron gas (2-DEG) layer at a transition between the channel layer and the barrier layer.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: Northrop Grumman Systems Corporation
    Inventors: Vincent Gambin, Xing Gu, Benjamin Heying
  • Patent number: 8357571
    Abstract: Methods of forming semiconductor devices having customized contacts are provided including providing a first insulator layer and patterning the first insulator layer such that the first insulator layer defines at least one contact window. A second insulator layer is provided on the first insulator layer and in the at least one contact window such that the second insulator layer at least partially fills the at least one contact window. A first portion of the second insulator layer is etched such that a second portion of the second insulator layer remains in the at least one contact window to provide at least one modified contact window having dimensions that are different than dimensions of the at least one contact window. Related methods and devices are also provided.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 22, 2013
    Assignee: Cree, Inc.
    Inventors: Fabian Radulescu, Jennifer Gao, Jennifer Duc, Scott Sheppard
  • Publication number: 20130015498
    Abstract: There are disclosed herein various implementations of composite semiconductor devices. In one implementation, such a composite semiconductor device includes a transition body formed over a diode, the transition body including more than one semiconductor layer. The composite semiconductor device also includes a transistor formed over the transition body. The diode may be connected across the transistor using through-semiconductor vias, external electrical connectors, or a combination of the two.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Inventor: Michael A. Briere
  • Publication number: 20130015460
    Abstract: An embodiment of the disclosure includes a semiconductor structure. The semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and different from the first III-V compound layer in composition. An interface is defined between the first III-V compound layer and the second III-V compound layer. A gate is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on opposite side of the gate. Each of the source feature and the drain feature includes a corresponding metal feature at least partially embedded in the second III-V compound layer. A corresponding intermetallic compound underlies each metal feature. Each intermetallic compound contacts a carrier channel located at the interface.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chih CHEN, Jiun-Lei Jerry YU, Fu-Wei YAO, Chun-Wei HSU, Fu-Chih YANG, Chun Lin TSAI
  • Publication number: 20130015499
    Abstract: There are disclosed herein various implementations of composite semiconductor devices. In one implementation, such a composite semiconductor device includes a semiconductor on insulator (SOI) substrate including a diode and an insulator layer. The composite semiconductor device also includes a transition body formed over the diode, and a transistor formed over the transition body. The diode is connected across the transistor using through-semiconductor vias, external electrical connectors, or a combination of the two.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Applicant: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Publication number: 20130015501
    Abstract: There are disclosed herein various implementations of nested composite diodes. In one implementation, a nested composite diode includes a primary transistor coupled to a composite diode. The composite diode includes a low voltage (LV) diode cascoded with an intermediate transistor having a breakdown voltage greater than the LV diode and less than the primary transistor. In one implementation, the primary transistor may be a group III-V transistor and the LV diode may be an LV group IV diode.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Michael A. Briere
  • Publication number: 20130009166
    Abstract: One embodiment of a semiconductor device according to the present invention includes a substrate, a base compound semiconductor layer layered on the substrate to form a base, a channel defining compound semiconductor layer layered on the base compound semiconductor layer to define a channel, and an impact ionization control layer that is layered within a layering range of the base compound semiconductor layer and controls the location of impact ionization, wherein the base compound semiconductor layer is formed of a first compound semiconductor, the channel defining compound semiconductor layer is formed of a second compound semiconductor, and the impact ionization control layer is formed of a third compound semiconductor that has a smaller band gap than the first compound semiconductor.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventors: Nobuyuki ITO, John Kevin Twynam
  • Publication number: 20130009212
    Abstract: To provide a transistor device, which is composed of a compound semiconductor, having a multilayer structure in which a high electron mobility transistor (HEMT) and a heterojunction bipolar transistor (HBT) are overlapped on the same substrate and epitaxial-grown thereon, wherein a band gap energy of an indium gallium phosphide layer (InGaP) included in an epitaxial layer, is set to 1.91 eV or more.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Inventors: Takeshi MEGURO, Jiro Wada, Yoshihiko Moriya
  • Publication number: 20130009165
    Abstract: Disclosed herein are a nitride semiconductor device, a method for manufacturing the same, and a nitride semiconductor power device. According to an exemplary embodiment of the present invention, a nitride semiconductor device includes: a nitride semiconductor layer over a substrate wherein the nitride semiconductor layer has a two-dimensional electron gas (2DEG) channel formed therein; a D-mode FET that includes a gate electrode Schottky-contacting with the nitride semiconductor layer to form a normally-on operating depletion-mode (D-mode) HEMT structure; and a Schottky diode part that includes an anode electrode Schottky-contacting with the nitride semiconductor layer and increases a gate driving voltage of the D-mode FET, the anode electrode being connected to the gate electrode of the D-mode FET. In addition, the nitride semiconductor power device and the method for manufacturing a nitride semiconductor device are proposed.
    Type: Application
    Filed: May 14, 2012
    Publication date: January 10, 2013
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Hwan Park, Ki Yeol Park, Woo Chul Jeon